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SPATIAL RESOLUTION IN DENSITY PREDICTION FOR
DIFFERENTIAL DRAG MANEUVERING GUIDANCE

David Guglielmo∗, David Pérez†, Riccardo Bevilacqua‡, and Leonel Mazal§

Atmospheric differential drag can be used to control the relative motion of multiple
coplanar spacecraft in Low Earth Orbit (LEO), without the use of any propellant,
provided that they can vary their ballistic coefficients. However, the variability of
the atmospheric density, and therefore the drag acceleration, makes the generation
of accurate drag-based guidance a challenging problem. Currently available den-
sity models have biased results, causing errors in the drag force estimation. In this
work a method for predicting the atmospheric density along the future orbit of a
spacecraft is combined with a calibrator used with existing empirical atmospheric
models. The combination is used to improve differential drag-based relative ma-
neuvering by adding spatial resolution to atmospheric density prediction methods.
This leads to the creation of more realistic guidance trajectories for spacecraft rel-
ative maneuvering based on differential drag.

INTRODUCTION

Formations of small satellites hold the potential for replacing large complex spacecraft, as ex-
plained in Refs. 1–4. In-orbit inspection and maintenance missions and other complex space tasks
can be performed by spacecraft flying in formation. The loss of one spacecraft in a formation may
not compromise the mission, providing redundancy. Additionally, smaller satellites are lighter and
can be stacked in a launcher5–7 which reduces the cost of orbit injection. Consequently, there is a
growing interest in the aerospace community in the development of methods for small spacecraft
autonomous formation flying.

Any formation of spacecraft requires the ability for the spacecraft involved to control their relative
position and velocity, which is typically performed at high operation cost using thrusters. Hence,
alternative lower-cost means to maneuver spacecraft are of great interest. Leonard et al.8 proposed
varying the cross sectional area of spacecraft to alter the drag force acting on them, as a method
for controlling their relative motion at LEO. Differential drag can allow for propellant-less planar
relative maneuvering, which can reduce fuel usage and costs for formation flying missions. Sensors
mounted onboard spacecraft can also benefit from a cleaner environment due to the lack of thruster
plumes. However, using differential drag to maneuver imposes the constraint of operating where
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the atmosphere is sufficiently dense to generate significant drag force, and limits the maneuvers to
the orbital plane. Moreover, using the drag for maneuvering can increase the orbital decay of the
spacecraft. Despite the downsides of differential drag, future impacts of the ideas here proposed can
be foreseen for higher orbits. For example, the concept of exploiting differentials in environmental
forces can be also imagined for geosynchronous satellites using solar radiation pressure.

In the last few years there have been quite a few papers inspired by Leonard’s differential drag
idea. Bevilacqua et al.9, 10 used the linear Schweighart and Sedwick model11 to create a differential
drag based rendezvous guidance assuming constant density. Ben-Yaacov and Gurfil12 studied the
use of differential drag for cluster-keeping purposes. Pérez and Bevilacqua13 developed a Lyapunov-
based controller for relative maneuvering of spacecraft using differential drag. Dell’Elce and Ker-
schen proposed the use of model predictive control14 and a three-step optimal control approach15

for drag based rendezvous maneuvers. There have been a few efforts for exploiting the differential
drag concept in real missions. The ORBCOMM16 constellation used differential drag for formation
keeping. Also, the JC2Sat17–20 project developed by the Canadian Space Agency (CSA) and the
Japan Aerospace Exploration Agency (JAXA) proposed the use of differential drag for relative ma-
neuvering of spacecraft within close proximity of each other extending the methodology presented
by Leonard and studying implementation issues such as navigational errors.

Figure 1. Concept for obtaining density in the region of space bounding all possible
maneuvers, shown for a single spacecraft, showing inertial and local reference frames.

Difficulties in estimating the drag force results in lack of realism in any drag-based guidance
trajectory, making tracking more difficult. In the literature on drag-based maneuvering, it is usually
assumed that the density is constant for guidance and control purposes (see Refs. 10, 16, 21–23).
Any guidance trajectory created under the assumption of constant density will be inaccurate due
to unrealistic control forces. In Ref. 24, forecasted density was used for creating a guidance for a
drag based rendezvous. The density forecasting was performed using a feed-forward neural network

2



predictor, similar to those developed by Pérez et al.,25 which are limited to forecasting the density
along the orbit of a non-maneuvering spacecraft (i.e., with a constant ballistic coefficient). However,
perfect knowledge of the density was assumed, that is, modeling or measuring errors were not
accounted for. Furthermore, the predicted density was assumed to be constant in space regardless
of the position of the spacecraft at a given time. As a consequence of this the density at the target
and chaser positions were the same throughout the guidance.

In this work, a linear fit density calibrator (inspired by the one developed by Pérez and Bevilac-
qua26) is introduced to provide to simulate estimation of real atmospheric density data from density
calculated using existing atmospheric models. DTM-2013,27 a high-accuracy density model, is used
to represent observed density, while NRLMSISE-0028 and JB200829 are used as inputs to the cali-
brator. The use of this calibrator accounts for modeling errors in the creation of the guidance. The
calibrator is used in conjunction with recurrent neural network density predictors similar to those
developed in Ref. 25 to forecast atmospheric density, allowing the design of guidance trajectories
for differential drag-based maneuvering.

To create the guidance, the orbits of chaser and target are propagated in the past along three orbits.
These orbits (Past Orbits in Figure 1) correspond to trajectories with the minimum (minimum drag),
half (medium drag) and maximum (maximum drag) available drag area deployed. The calibrator
is used to estimate the density along these three orbits. It should be noted that the actual orbit of
the spacecraft corresponds to the case with the minimum area (in green in Figure 1). These orbits
extend back in time from the beginning of the maneuver (epoch time) to eight days into the past,
which includes all training and testing data sets, as well as the two days of data used for forecasting.
Using the density along these orbits, the density predictors are used to forecast the density in the
future along them (Future Orbits in Figure 1). This provides the guidance and control systems of
the spacecraft with predicted density values along the future orbits covering the region in space in
which the maneuver will take place, The guidance trajectory (in blue in Figure 1), is then created by
propagating the controlled dynamics of the spacecraft and interpolating the density from the nearest
points in the future orbits to the current position of the spacecraft in the guidance trajectory, thus
providing the spatial resolution.

The guidance methodology presented in this work assumes that two spacecraft (chaser and target)
have the capability to vary their ballistic coefficient (for example by deploying or retracting a set of
drag surfaces), thus changing the magnitude of the aerodynamic drag. The reference frame used in
this work for representing spacecraft relative motion is the Local Vertical Local Horizontal (LVLH)
reference frame, which is assumed to be attached to the target spacecraft. Figure 1 shows the Earth-
Centered Inertial frame (lower left) and the LVLH frame (upper right). In the LVLH frame x̂ points
from the origin of the ECI (Earth-Centered Inertial) frame to the target spacecraft, ẑ points in the
direction of angular momentum of the target’s orbit, and ŷ completes the right-handed frame.

Given that the out of plane component of the aerodynamic force is very small, atmospheric differ-
ential drag can provide effective control only in the orbital plane (x̂ and ŷ). Hence, the discussion
presented in this work will be limited to in-plane motion, assuming that out-of-plane (ẑ) motion
is controlled by different means. The attitude of the spacecraft is also assumed to be stabilized.
Additionally it is assumed that the control is either positive maximum (higher drag on the target),
negative maximum (higher drag on the chaser), or zero (minimum drag on both spacecraft), as
previously done in Refs. 9, 18–20, neglecting the time required by the surfaces to be deployed or
retracted. The time required to deploy or retract the surfaces (on the order of seconds) is negligible
with respect to the maneuver duration (on the order of days).
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This paper presents the following advances in the state of the art:

1. Spatial resolution is used to improve the accuracy of forecasted density.

2. A calibrator, that approximates density estimated by the DTM-2013 atmospheric model tak-
ing as inputs the densities estimated by the JB2008 and NRLMSISE-00 atmospheric models,
is used to account for imperfect knowledge of the density.

3. Recurrent neural network predictors are used to forecast the calibrated density from past
density along a given orbit for several orbits resulting from varied drag configurations.

4. Guidance trajectories are created for a rendezvous maneuver between two spacecraft, lever-
aging the spatial resolution described above to interpolate the predicted density to provide a
more accurate estimation of the drag force at each timestep.

5. The benefit of adding spatial resolution for the drag-based guidance is shown to vary for
periods of low and high geomagnetic activity.

This paper is organized as follows. The first section presents the drag acceleration and atmo-
spheric density, along with a calibrator designed for approximating density estimated by DTM-2013
and a predictor for forecasting density along a given orbit. The second section presents the basics
for spacecraft relative maneuvering using differential drag, including the nonlinear orbital dynamics
and linear relative dynamics equations, a Lyapunov controller designed for drag relative maneuver-
ing and the methodology presented for creating the guidance. The third section presents the results
for the numerical simulations. Finally the fourth section contains the conclusions.

ATMOSPHERIC DENSITY AND DIFFERENTIAL DRAG

After gravity, atmospheric drag is the largest force acting on spacecraft at altitudes below 700
km. Proper understanding of the drag acceleration will allow for precise on orbit determination and
can be used for creating realistic guidance trajectories for drag-based maneuvering. The drag accel-
eration affecting spacecraft in LEO is a function of the atmospheric density and winds, and orbital
velocity, geometry, attitude, drag coefficient and mass of the spacecraft. Many of parameters must
be estimated, producing errors in the modeling of the drag force. This causes large uncertainties re-
garding the control forces available for drag-actuated maneuvers. The differential drag acceleration
for target and chaser in similar flow conditions is expressed with the following:

~aDrel
= −1

2

(
ρCBC~vC |~vC | − ρTBT~vT |~vT |)

)
(1)

where B = CDA
m and v represents the speed of a spacecraft through a medium. The subscript T

denotes the target, and C denotes the chaser spacecraft. According to Vallado,30 this approximation
of the drag acceleration holds true for a body in viscous flow, in which the time scale of collisions
between the body and gas particles is much smaller than the time scale of particle-particle collisions.
Furthermore, the equation also assumes that the two spacecraft are in similar flow conditions, and
have identical mass m. Doornbos et al.31 indicate that density can vary by more than one order of
magnitude at a given time and location as a result of different solar and geomagnetic conditions,
which highlights the importance of proper density modeling for the creation of drag based relative
maneuvering guidance.
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The atmospheric density can be estimated using atmospheric models, which can be classified
into physics-based and empirical models. The physics-based models can be more accurate but
suffer from bias caused by poor representation of the underlying physics (see Ref. 32), and are com-
putationally expensive due to the high number of variables used and the size of the spatial volume
they model. In contrast, empirical models, which rely on observed data, are less computationally
expensive. However, since data are not available for all locations and times, biases in the estimated
density can result due to behavior not captured in the observed data (as shown in Ref. 33). In this
work three empirical atmospheric models (DTM-2013,27 JB200829 and NRLMSISE-0028) are used
for modeling the density.

Solar and geomagnetic effects significantly influence atmospheric density; an example can be
observed in the evolution of the atmospheric density during the 2003 Halloween solar storm, as
explained by Bruinsma et al.34 Additionally, Walterscheid35 provides an explanation of the increase
in atmospheric density due to geomagnetic activity; solar EUV (Extreme UltraViolet) radiation
excites air molecules, with only local effects. The lower molecular weight air molecules in the
affected region then move to higher altitudes and are replaced by higher molecular weight particles,
increasing the average local mass density while leaving pressure unchanged.

Data Sets

Two time intervals in January 2005, were chosen for creating and testing the rendezvous guidance
trajectories. January 18th 2005 at 00:00:00 UTC and January 27th 2005 at 00:00:00 UTC were used
as the epoch times for the rendezvous maneuvers. As can be seen in Figure 2, these two maneuver
times were chosen since they correspond respectively to periods of sustained high and low Kp (a
proxy index for geomagnetic activity) in January 2005. These dates are chosen to clearly represent
the effect of Kp on the guidance. The data sets used for the inputs and targets for the predictor and
calibrator are shown below in Tables 1 and 2.

Day of Year, 2005

K
P
 *

 1
0

 

Figure 2. Geomagnetic Activity as Represented by Kp in January 2005, with Sus-
tained High Kp Boxed in Green and Sustained Low Kp Boxed in Orange
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Calibrator for Empirical Atmospheric Models

Table 1. Data Used for Calibrator
JB2008/NRLMSISE-00 DTM-2013

Calibrator Fit Data 1/10/2005-1/13/2005 1/10/2005-1/13/2005
Calibrator Test Data 1/14/2005-1/17/2005 1/14/2005-1/17/2005

The calibrators presented in Ref. 26 were designed to assimilate measurements of atmospheric
density, and combine the estimates of empirical models in order to improve density estimation.
In this work a calibrator was developed that takes as input the estimated density by the empirical
atmospheric models JB200829 and NRLMSISE-0028 (ρJB and ρMSIS , respectively), and outputs
value for the density (ρDTM ′) calibrated to approximate the density as modeled by DTM-201327

(ρDTM ), which represents the real density in this work. A linear fit model was used as the calibrator,
which consists of a weighted sum of the density of JB2008, NRLMSISE-00, and a bias to correct
the output, as shown in the following equation:

ρDTM ′ = w1 · ρJB,S + w2 · ρMSIS,S + b, (2)

w1 = 9.46 · 10−5, w2 = 2.808 · 10−4, b = 1.04 · 10−3kg/m3 (3)

The weights (w1 and w2), and the bias (b) were found in MATLAB using a least-squares method
to find the weights and bias minimizing the error. The data used to find the weights and the offset
(denoted fit data set) consists of input-output pairings, with JB2008 and NRLMSISE-00 densities
as inputs, and simultaneous DTM-2013 densities as targets (see Table 1). All data for the calibrator
fit were taken from the high Kp, min drag data set for the target. Over the fit data set the Pearson
correlation coefficient (r) between DTM-2013 and the calibrated density was 0.916 and the mean
squared error (MSE) was 1.168 ·10−8kg2/m6. The calibrator was applied on a test data set, consisting
of similar input-output pairings (explained in Table 1), to verify its generalization capability. Over
the test data set, the r was 0.930 and the MSE was 6.411 ·10−8kg2/m6.

The inputs to the calibrator are scaled according to Eqns. (4). Scaling the data according to
the mean and standard deviation allows for improved finite-precision computational accuracy. The
subscript S denotes scaled data.

ρJB,S =
ρJB − µJB

σJB
, ρMSIS,S =

ρMSIS − µMSIS

σMSIS
(4)

µMSIS =1.141 · 10−3 kg/m3 µJB = 9.580 · 10−4 kg/m3

σMSIS =3.429 · 10−4 kg/m3 σJB = 3.594 · 10−4 kg/m3

The means (µ), and standard deviations (σ) are those of JB2008 and NRLMSISE-00 densities in
the fit data set.

Predictors for Future Density

Three recurrent neural networks (such as the one shown in Figure 3), denoted predictors, are
used to forecast density two days into the future along an orbit from past calibrated density. The
neural networks used have two layers (input and output layer), and have delays in the input and
in the feedback loop. The delays provide temporal context of the inputs and the outputs to the
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Table 2. Data Used for Predictors
Dates Used

Training and Validation Delays, High Kp 1/10/2005-1/11/2005, Calibrated Density
Training and Validation Delays, Low Kp 1/19/2005-1/20/2005, Calibrated Density
Training and Validation Inputs, High Kp 1/12/2005-1/13/2005, Calibrated Density
Training and Validation Inputs, Low Kp 1/21/2005-1/22/2005, Calibrated Density
Training and Validation Targets, High Kp 1/14/2005-1/15/2005, Calibrated Density
Training and Validation Targets, Low Kp 1/23/2005-1/24/2005, Calibrated Density
Testing Delays, High Kp 1/12/2005-1/13/2005, Calibrated Density
Testing Delays, Low Kp 1/21/2005-1/22/2005, Calibrated Density
Testing Inputs, High Kp 1/14/2005-1/15/2005, Calibrated Density
Testing Inputs, Low Kp 1/23/2005-1/24/2005, Calibrated Density
Testing Targets, High Kp 1/16/2005-1/17/2005, Calibrated Density
Testing Targets, Low Kp 1/25/2005-1/26/2005, Calibrated Density
Forecasting Goal, High Kp 1/18/2005-1/19/2005, DTM-2013
Forecasting Goal, Low Kp 1/27/2005-1/28/2005, DTM-2013

Figure 3. A sample recurrent neural network with three neurons in the input layer
and two delays in the input (adapted from Ref. 25 )

networks, thus improving their forecasting ability. Training of the predictors (adjusting the weights)
was accomplished with the use of the Levenberg-Marquardt algorithm and using the MSE as the
performance function. MathWorks recommends the use of the Levenberg-Marquardt method as a
first choice for training the neural networks, due to its speed compared to other methods. Network
validation is used to prevent overfitting, that is, the network memorizing the training data set. The
validation consists in evaluating the network during training on a different data set (validation set),
if the network’s MSE for the validation set increases a predetermined number of times in subsequent
validations during training (the default of 6 times is used), the training process is stopped to prevent
overfitting.

A propagator (modeling the dynamics described by Eqn. (5)) written in MATLAB was used to
propagate from the initial conditions (IC) of the target and chaser spacecraft at the epoch time. Using
the calibrated density, the position and velocity of each spacecraft were propagated backwards for
eight days for each of the orbits (min, med and max drag). This was done to accumulate sufficient
data for training and testing the predictor neural networks. The two sets of dates (representing high
and low geomagnetic activity) used for the maneuvers are shown in Table 2.

7



Training and validation of the networks is accomplished using the calibrator outputs from days
six to four prior to the epoch time as inputs, with the density data from days four to two prior to
the epoch to the epoch time as the targets. The validation data set consists of a random sampling of
30% of the aforementioned data set, thus leaving 70% for training. A test was performed for each
network over the combined training and validation data sets. Forecasting was performed using the
density data from the two days prior to the epoch as the inputs, using the predictors open-loop.

To find the appropriate number of delays in the input layer and in the feedback loop, and the
number of neurons in the input layer (the number of neurons in the output layer was fixed at one),
each parameter was varied, while keeping the others fixed. The ranges tried were 1-5 (increment
of 1) neurons in the hidden layer, 10-200 (increment of 10) delays in the input layer, and 1-10
(increment of 1) delays in the feedback loop. Ten iterations for each parameter combination were
run in an effort to avoid stopping at training error local minima during the training process. The
neural network with the parameter combination with the lowest MSE over the combined training and
validation data sets was chosen to be used for creating the guidance. Table 3 shows the parameters
that produced the predictors with the lowest MSE for each case.

Table 3. Predictor Neural Network Details
Predictor Input Delays Feedback Delays Hidden Layer Neurons
Min Drag, High Kp 10 4 3
Min Drag, Low Kp 20 1 1
Med Drag, High Kp 100 5 3
Med Drag, Low Kp 20 2 1
Max Drag, High Kp 10 3 3
Max Drag, Low Kp 200 4 4

Figure 4. Forecasted and Calibrated Density for Minimum Drag Configuration on
Testing Data Set, High Kp

8



The semi-major axis of each of the three trajectories (min, med and max drag orbits in Figure 1)
evolve differently due to the difference in the drag acceleration. This results in slightly different
orbital periods, as the time moves further from the epoch. Consequently, the time evolution of
the density diverges as time moves away from the epoch time. Therefore, three different recurrent
neural network predictors are used, one for each of the three past trajectories. All the predictors
were trained using data from the target, and are used for forecasting the orbits of both the target
and chaser. A sample forecast is shown in Figure 4. The neural network shown was trained on the
density data for the min drag case of the high Kp maneuver. Figure 4 shows the inputs and outputs
of the neural network. The remaining neural networks exhibit similar behavior. Table 4 summarizes
the performance of each predictor.

Table 4. Predictor Metrics for Training and Testing

ANN Predictor r MSE kg2/m6

Min Drag, Training, High Kp 0.999 1.129·10−10

Min Drag, Training, Low Kp 0.989 4.190·10−9

Min Drag, Testing, High Kp 0.997 2.385·10−9

Min Drag, Testing, Low Kp 0.985 9.555·10−9

Med Drag, Training, High Kp 0.999 1.248·10−11

Med Drag, Training, Low Kp 0.951 8.888·10−9

Med Drag, Testing, High Kp 0.987 2.053·10−8

Med Drag, Testing, Low Kp 0.950 2.259·10−8

Max Drag, Training, High Kp 0.999 3.364·10−11

Max Drag, Training, Low Kp 0.935 9.677·10−9

Max Drag, Testing, High Kp 0.998 2.455·10−9

Max Drag, Testing, Low Kp 0.855 1.244·10−7

RELATIVE MANEUVERING WITH DIFFERENTIAL DRAG

Nonlinear Orbital Dynamics

The nonlinear orbital dynamics of the spacecraft, including two body forces, the J2 perturbation,
and drag acceleration, are represented using the following expressions:

~̈r =


Ẍn

Ÿn

Z̈n

 =

(
−µ
r3n

)Xn

Yn

Zn

(1− 3

2
· J2 ·

Re

r

2)


5 · Z
2
n

r2
− 1

5 · Z
2
n

r2n
− 1

5 · Z
2
n

r2
− 3

− 1

2
·ρ ·

Ẋn

Ẏn
Żn

 · ∣∣∣∣∣
Ẋn

Ẏn
Żn

 ∣∣∣∣∣ ·B (5)

These nonlinear dynamics (taken from Alfriend et al.36) are used to propagate both the target
and chaser when tracking the guidance, but are used to propagate only the target spacecraft when
creating the guidance.

Linear Relative Dynamics

Assuming that the orbit of the target is circular and that the separation between spacecraft is
small, the dynamics of the chaser relative to the target can be propagated using a linear model
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when creating the guidance. This is done in this work to reduce the computational cost of creating
the guidance. In this work the Schweighart and Sedwick model is used for this purpose since it
includes the averaged J2 perturbation. For motion restricted to the orbital plane, the Schweighart
and Sedwick model is given by:

~̇x = A · ~x+ ~B · aDrel
, A =


0 0 1 0
0 0 0 1
b 0 0 a
0 0 −a 0

 , ~B =


0
0
0
1

 (6)

where a and b are defined by:

a = 2 · n · c, b = (5 · c2 − 2)n2, c =

√
1 +

3 · J2 ·R2
e

8·

2

tar
(1 + 3 · cos(2 · itar)) (7)

with n, āref and itar being the mean motion, mean semi-major axis and mean inclination of the
target’s orbit, respectively. Re represents the Earth’s mean equatorial radius.

Lyapunov Controller

In Ref. 37 a control law was presented for the actuators of the surfaces which generate the
differential drag using a Lyapunov approach. The control law is used to force the nonlinear model
(i.e. the dynamics of the target and chaser spacecraft) to track the guidance trajectory. The value of
the control signal is selected based on the following quadratic function of the tracking error and its
time derivative:

V = ~eT · P · ~e
~e = ~xn − ~xt (8)

V̇ = 2 · ~eT · P
(
~f(~xn)− ~̇xt + ~B · aDrel

· û
)

where û is the command sent to the surface actuators, matrixQ is chosen such that a Lyapunov equa-
tion is satisfied (AT

d P + PAd = −Q), and matrices Ad and B represent a stabilized Schweighart
and Sedwick model. The resulting control law presented in Ref. 37 can be expressed as:

û = −sign( ~eT · P · ~B) (9)

A negative control signal û is interpreted as a signal to increase the area of the chaser relative to the
target, and a positive control signal is interpreted as the opposite. A zero control signal can only
result from a zero tracking error in relative position and velocity, and so is interpreted as a signal
to reduce the area of both spacecraft to preserve the orbit. The simulations presented use a variable
timestep for the integration, but the control law in Eqn. (9) is applied every 10 minutes when creating
the guidance, which allows sufficient time for the controller to alter the orbit significantly between
updates. The density is updated at intervals of 60 seconds, which is the sampling rate used for the
predictors. When tracking the guidance, the control law is applied once every minute.
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Guidance for Relative Maneuvering with Differential Drag

The calibrator and predictor described in the previous sections are used to generate the density
along the three orbits in the future (min, med and max drag). The guidance is then generated, utiliz-
ing the control law in Eqn. (9) using the forecasted density to propagate each spacecraft. As men-
tioned before, the dynamics of the target are propagated using the nonlinear dynamics in Eqn. (5),
while the linear relative dynamics in Eqn. (6) are used for propagating the chaser in relation to the
target. At each timestep, the density for each spacecraft is interpolated from the forecasted density
for that spacecraft, based on its location. The Lyapunov-based controller is used to determine the
control input (surface deployed or retracted for each spacecraft), based on the position and velocity
of the chaser relative to the target. The interpolated density values are used to calculate the drag
acceleration at each time step of the guidance, thus making it more realistic. The resulting guid-
ance utilizes the interpolation to account for the spatial distribution of the guidance; therefore, it is
denoted the spatial resolution guidance.

The process of creating a relative guidance trajectory is illustrated in Figure 5. Once the density
has been forecasted (steps 1-3) and the projected trajectories for each spacecraft have been calcu-
lated (step 4) as described previously, these trajectories and density time-series can be used to create
the guidance (step 5). This guidance is then tracked to create the relative maneuver (step 6). Three

1. Set ICs and desired rela�ve maneuver

2. Propagate the spacecra� states in reverse 

from the epoch for each case using the density 

calibrator to calculate the drag accelera�on

3. Use the calibrated density points of each 

case with the predictor ANN for that case to 

forecast the density a�er the epoch

4. Using the forecasted density points to 

calculate the drag accelera�on, propagate 

forward for each case to generate the future 

projected trajectories for each spacecra�

5. Interpola�ng these trajectories to calculate 

the density and drag accelera�on, generate a 

guidance rela�ve trajectory between the two 

spacecra� which matches the desired rela�ve 

manuever

6. Using the guidance as the desired condi�on 

for each �mestep, and DTM-2013 to represent 

the observed density, track the guidance to 

create the desired rela�ve maneuver

1

1

2

2

3,4

3,4

5

6

C

T

Figure 5. Concept of Calibrating and Forecasting Density, Followed by Guidance
Creation and Tracking

additional guidance trajectories were created, each using the predicted density from only one of
the three orbits along which the density was forecasted. The control law in Eqn. (9) is also used
to create these guidances. These additional guidance allow the study of the benefit of utilizing the
spatial resolution on the forecasted density provided by interpolating.

Tracking of the guidance relative trajectories is done using the same control law. The DTM-2013
density and the nonlinear dynamics in Eqn. (5) are used to propagate each spacecraft. At each
timestep, the guidance position and velocity are used as the desired state to track the guidance.
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NUMERICAL SIMULATIONS RESULTS

Figure 6. Rendezvous Trajectories in the xy Plane: (Top) Guidances Obtained With
and Without the Interpolated Density and (Bottom) Detail View of Rendezvous Loca-
tion, High Kp.

Figures 6 and 7 show all four guidance trajectories, while Figures 10 and 11 display the quadratic
error function (Eqn. (8)), for the tracking of the four guidance trajectories. The functions seen in
Figure 10 are smaller in the interpolated case, indicating that the controller can more easily force
the nonlinear dynamics to follow the guidance trajectory generated with the interpolated density.
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Guidance trajectories generated with a single trajectory case do not fully represent the complex
behavior of the density. This highlights the advantage of using the spatial resolution. Figures 8 and
9 show the control trajectories resulting from tracking the best guidance in the high and low Kp

cases.

Figure 7. Rendezvous Trajectories in the xy Plane: (Top) Guidances Obtained With
and Without the Interpolated Density and (Bottom) Detail View of Rendezvous Loca-
tion, Low Kp.
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Figure 8. Tracking the Best Rendezvous Trajectory in the xy Plane, High Kp.

Figure 9. Tracking the Best Rendezvous Trajectory in the xy Plane, Low Kp.

Performance Assessment

The metrics used to evaluate the performance of the controllers (shown in Table 5) are the mean
value of the quadratic error function and the number of changes in the control (control effort).
Table 5 summarizes the actions of the controllers. The guidance generated with spatial resolution
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in the high Kp case had the lowest mean value for the quadratic error function, implying that the
guidance created with spatial resolution was easiest to track.

In the low Kp case, because of the low difference in semi-major axis of the orbits, there was
significant overlap between cases in the forecasted density. The error of the networks could not
be reduced to less than the difference in density between the drag cases; implementing the neural
network predictors was unsuccessful in reducing the quadratic tracking error in the low Kp case
due to the small difference between cases. Improving the network would not be useful for reducing
the tracking error, since reducing the network error would begin to result in memorization of the
training set.

Table 5. Control performance metrics for the rendezvous maneuver tracking the guidance obtained
with the constant density and the predicted density from the neural network

Density Source Metric Guidance Tracking

Interpolated, High Kp
Control changes 228 373
Quadratic Error Function - 2.180 ·103

Interpolated, Low Kp
Control changes 129 154
Quadratic Error Function - 3.308·106

Min Drag, High Kp
Control changes 227 398
Quadratic Error Function - 3.125·103

Min Drag, Low Kp
Control changes 116 133
Quadratic Error Function - 3.283·106

Med Drag, High Kp
Control changes 225 392
Quadratic Error Function - 3.823·103

Med Drag, Low Kp
Control changes 142 123
Quadratic Error Function - 1.479·106

Max Drag, High Kp
Control changes 226 325
Quadratic Error Function - 3.342·103

Max Drag, Low Kp
Control changes 142 123
Quadratic Error Function - 3.425·106

Figure 2 shows the Kp during the first 100 days of 2005. The increased atmospheric density
results in increased separation between the forecasted trajectories due to more orbital decay in the
higher drag cases, resulting in a potentially larger difference in the interpolated density. Increas-
ing the separation through higher geomagnetic activity increases the spatial resolution accordingly,
resulting in a larger benefit to adding spatial resolution.
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Figure 10. Quadratic Error Function ~eTP~e for All Cases, High Kp.

Figure 11. Quadratic Error Function ~eTP~e for All Cases, Low Kp.

CONCLUSION

Adding spatial resolution was shown to improve the tracking of differential-drag based guidances.
The guidances created using a single forecasted trajectory to supply the density information were
compared the guidance created using spatial resolution with all three forecasted trajectories. The
quadratic error function was lowest when tracking the guidance created using spatial resolution in

16



the high Kp case, indicating that this guidance was easiest to track. Conversely, adding spatial
resolution in the low Kp case prevented the creation of a consistent relative guidance and increased
the tracking error when tracking the guidance created using spatial resolution.

The linear fit calibrator has been shown to successfully estimate DTM-2013 density from JB2008
and NRLMSISE-00 density at the same time and location. This allows it to be used as a proxy for
DTM-2013, which represents the observed atmospheric density. Additionally, the predictors have
successfully forecasted future density from past density. This forecasted density was then used to
create three forecasted trajectories for the target and the chaser spacecraft, providing the spatial
resolution mentioned above.

Improvements realized by adding spatial resolution have been shown to vary depending on the
geomagnetic activity during maneuvers. Periods of high geomagnetic activity result in higher atmo-
spheric density, producing larger separation between the forecasted trajectories. The larger separa-
tion then results in an increased benefit to adding spatial resolution.

Future work will address the generalization of this method to arbitrary maneuver epoch locations
and times, as well as the incorporation of atmospheric activity indices such as Kp and F10.7 into
the forecast of future density from past density.
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NOTATION

A Cross-wind area of drag surface
A State matrix from the Schweighart and Sedwick dynamics

aDrel
Magnitude of the relative aerodynamic drag acceleration experienced by spacecraft

aJ2rel Differential accelerations caused by the J2 perturbations
atar Mean semi-major axis of target spacecraft
B Gain matrix in controller
B Ballistic coefficient
CD Drag Coefficient
~e Tracking vector error

ECI Earth-Centered Inertial
f() Nonlinearities in the spacecraft dynamics

F10.7 10.7 solar radio flux, solar extreme ultraviolet radiation index
itar Mean inclination of target spacecraft
J2 Second zonal harmonic
Kp Quantifies disturbances in the horizontal component of the Earth’s magnetic field

LV LH Local vertical local horizontal
m Spacecraft mass

MSE Mean Squared Error
n Orbital frequency
P Constant gain matrix
r Pearson correlation coefficient
~rn Relative position vector from the center of the ECI frame
rn Displacement from the center of the ECI frame
Re Mean equatorial radius of the Earth
û Control signal to spacecraft

UTC Coordinated Universal Time
V Lyapunov Function
V̇ Time derivative of Lyapunov Function
~vT Velocity of the chaser spacecraft through a medium
~vT Velocity of the target spacecraft through a medium
~x Position in the ECI frame
~̇x Velocity in the ECI frame
~xd Desired ECI Relative State
~xn Actual ECI Relative State

x̂, ŷ, ẑ LVLH frame unit vectors
Xn, Yn, Zn Position in the ECI frame
Ẋn, Ẏn, Żn Velocity in the ECI frame
Ẍn, Ÿn, Z̈n Acceleration in the ECI frame

µ Universal gravitational parameter
ρ Atmospheric density
ω Orbital angular velocity
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[13] D. Pérez and R. Bevilacqua, “Lyapunov-Based Adaptive Feedback for Spacecraft Planar Relative Ma-
neuvering via Differential Drag,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5,
2014, pp. 1678–1684 http://dx.doi.org/10.2514/1.g000191.

[14] L. Dell’Elce and G. Kerschen, “Comparison between analytical and optimal control techniques in the
differential drag based rendez-vous,” Proceedings of the 5th International Conference on Spacecraft
Formation Flying Missions & Technologies, 2013.

[15] L. Dell’Elce and G. Kerschen, “Optimal Propellantless Rendez-Vous Using Differential Drag,” Acta
Astronautica, Vol. 109, 2015, pp. 112 – 123 http://dx.doi.org/10.1016/j.actaastro.
2015.01.011.

[16] T. D. Maclay and C. Tuttle, “Satellite Station-Keeping of the ORBCOMM Constellation Via Active
Control of Atmospheric Drag: Operations, Constraints, and Performance,” Advances in the Astronauti-
cal Sciences, Vol. 120, 2005, pp. 763–773.

[17] B. Kumar and A. Ng, Japan Canada Joint Collaboration Satellite Formation Flying (JC2SatFF) Mis-
sion Design,. 2013. Case Study.

[18] A. De Ruiter, J. Lee, and A. Ng, “A Fault-Tolerant Magnetic Spin Stabilizing Controller for the JC2Sat-
FF Mission,” Acta Astronautica, Vol. 68, August 2011, pp. 160–171 http://dx.doi.org/10.
1016/j.actaastro.2010.07.012.

[19] B. Kumar, A. Ng, K. Yoshihara, and A. De Ruiter, “Differential Drag as a Means of Spacecraft Forma-
tion Control,” Proceedings of the 2007 IEEE Aerospace Conference, IEEE, Big Sky, MT, March 2007,
pp. 1–9 http://dx.doi.org/10.1109/aero.2007.352790.

19

http://dx.doi.org/10.2514/2.4567
http://dx.doi.org/10.2514/2.4567
http://dx.doi.org/10.2514/2.3681
http://dx.doi.org/10.2514/2.3681
http://dx.doi.org/10.1109/acc.2003.1239845
http://dx.doi.org/10.1109/aero.2001.931726
http://dx.doi.org/10.2514/3.20374
http://dx.doi.org/10.2514/3.20374
http://dx.doi.org/10.2514/1.36362
http://dx.doi.org/10.1007/s10569--009--9240--3
http://dx.doi.org/10.2514/2.4986
http://dx.doi.org/10.2514/1.61496
http://dx.doi.org/10.2514/1.61496
http://dx.doi.org/10.2514/1.g000191
http://dx.doi.org/10.1016/j.actaastro.2015.01.011
http://dx.doi.org/10.1016/j.actaastro.2015.01.011
http://dx.doi.org/10.1016/j.actaastro.2010.07.012
http://dx.doi.org/10.1016/j.actaastro.2010.07.012
http://dx.doi.org/10.1109/aero.2007.352790


[20] B. S. Kumar and A. Ng, “A Bang-Bang Control Approach to Maneuver Spacecraft in a Formation with
Differential Drag,” Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit,
AIAA, Honolulu, HI, August 2008, pp. 18–21 http://dx.doi.org/10.2514/6.2008.6469.
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