Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL: 10.2514/1.1010049

JOURNAL OF AEROSPACE INFORMATION SYSTEMS
Vol. 10, No. 8, August 2013

Spacecraft Attitude Determination System Using Nano-Optical
Devices and Linux Software Libraries

Christopher M. Shake,* Kelsey Saulnier,’ and Riccardo Bevilacqua®
Rensselaer Polytechnic Institute, Troy, New York 12180

DOI: 10.2514/1.1010049

This paper presents a new spacecraft attitude determination system based on small optical devices and Linux-based
software. This technology intends to support nanosatellite operations by providing low-cost, low-mass, low-volume,
low-power, and redundant attitude determination capabilities with quick and straightforward onboard
programmability for real-time spacecraft operations. The chosen commercial-off-the-shelf optical devices perform
sensing and image processing on the same circuit board, and they are biologically inspired by insects’ vision systems,
which measure optical flow and/or track objects while navigating the environment. The firmware on the devices is
modified here to enable communication with PC/104 form-factor embedded computers running RealTime
Application Interface for Linux. Algorithms are developed for operations using optical flow mode and point-tracking
mode, and an application programming interface, along with Simulink® S-functions, is created. The performances of
the proposed system, used in optical flow mode, point-tracking mode, and a combination of the two, are assessed using
a spacecraft simulator at Rensselaer Polytechnic Institute, and they are compared with measurements from the
PhaseSpace® motion-tracking system.

I. Introduction

ANOSPACECRAFT hold the potential to replace expensive big platforms for Earth-orbiting missions, as well as for outer planet exploration

and colonization, due to the advantages of multivehicle operations versus a centralized approach [1]. The benefits include on-orbit
reconfiguration, ease of replacement of a single malfunctioning unit (e.g., thanks to the use of commercial components versus space qualified
expensive systems), and the possibility to develop and launch the spacecraft in a short timeframe. It is also worth mentioning the educational
impact that platforms such as CubeSat have had in recent years, when the space community has experienced a rapid increase of university-
developed space missions [2]. An additional appeal of working with small vehicles is the possibility of testing their guidance, navigation, and
control (GNC) using on-the-ground spacecraft simulators. This testing represents the missing link between computer numerical simulations
and on-orbit operations by partially reproducing the dynamical conditions of space flight in a laboratory environment. By its nature, on-the-
ground testing is a low-risk low-cost high-return tool for spacecraft operation certification.*

Attitude determination is an important aspect of satellite operations, with higher-accuracy systems allowing for different types of scientific
missions. The current state of the art for CubeSat-sized satellites is relatively low accuracy and generally purpose built for each mission. The most
common methods used on CubeSats involve sun sensors, Earth sensors, and/or magnetometers for initial and absolute state determinations, then
propagation of the state with rate gyro information from an inertial measurement unit, resulting in accuracies in the ¢ = 1-5 deg range after
filtering [3]. Higher-fidelity systems like star trackers can provide 0.01 deg accuracy, but they are currently too large to fit on CubeSats, or at least
take up nearly the full payload space of a one-unit (1U) CubeSat while requiring more power than can be typically generated [4].

In an effort to support the nanospacecraft community, this work presents the development and on-the-ground experimental validation of an
attitude determination system (ADS) based on commercially available bio-inspired optical devices and real-time application interface (RTAI)
Linux-based Simulink software libraries. The main drive for this work is to provide nanospacecraft developers with an ADS that can be
straightforwardly reproduced using commercial off-the-shelf (COTS) hardware and quickly (re)programmed. In addition, the cost, size, weight,
and power consumption of such a system should be minimized for potential implementation on very small vehicles. The preceding illustrated
features also allow for redundancy; that is, multiple sensors could in principle be operated to improve navigation accuracy and/or for safety in the
event of malfunctions, as they will take up a small enough portion of the respective spacecraft budgets to allow for multiple units.

Using two nonaligned optical sensors, it is possible to reconstruct the orientation of the platform hosting the sensors themselves by observing a
known environment (i.e., a star pattern). The chosen optical devices are the CYES sensors from Centeye, Inc.." which consist of a low-resolution
camera connected to an Atmel AVR-series microcontroller that performs the image processing. The firmware used on the microcontrollers is open
source, allowing modification and addition ofimage-processing algorithms. This firmware is available online™ under an open-source license. The
device choice is justified by ease of commercial availability, flexibility of software modification, small size, and low mass and power
requirements. Though the sensors have limited resolution and processing power, this paper is intended to demonstrate attitude determination
capabilities using small optical sensors that could be used on a nanosatellite, and the methodologies illustrated here can scale to higher-accuracy
devices in the same-size family.

The chosen software infrastructure is based on RTAI Linux [5], since it allows for custom design of real-time software for a variety of devices, as
compared to the proprietary nature of real-time operating systems (OSs) like XPCtarget [6]. In addition, RTAI Linux is one of the available target
0Ss for the Simulink Coder™ (formerly Real-Time Workshop™), a software tool that generates real-time executables from Simulink models.

Received 8 May 2012; revision received 15 October 2012; accepted for publication 17 December 2012; published online 9 August 2013. Copyright © 2012 by
Christopher Shake, Kelsey Saulnier, and Riccardo Bevilacqua. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies
of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923; include the code 2327-3097/13 and $10.00 in correspondence with the CCC.

*Graduate Student, Department of Mechanical, Aerospace, and Nuclear Engineering, JEC 1034; shakec @rpi.edu.

fGraduate Student, Department of Electrical, Computer, and Systems Engineering, JEC 1034; saulnk @rpi.edu.

Assistant Professor, Department of Mechanical, Aerospace, and Nuclear Engineering, JEC 5048; bevilr@rpi.edu. Member AIAA.

¥Data available online at http://ssco.gsfc.nasa. gov/facility.html [retrieved 7 May 2012].

Data available online at http://centeye.com/ [retrieved 15 October 2012].

**Data available online at http://code.google.com/p/centeye-8bit-sensor/ [retrieved XXXX].

369

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

370 SHAKE, SAULNIER, AND BEVILACQUA

Fig. 1 CYES8v2 device with lens and pin header.

This last feature led to the choice of Simulink S-function development. Using RTAI Linux and Simulink libraries enables nanospacecraft
developers to quickly (re)program the devices if needed, and to easily integrate them into existing GNC algorithms. Last, but not least, the open-
source nature of the Linux solution allows for public access and contributions from all over the world. More reasons for the choice of RTAI are
presented in previous work [6].

Experimental validation of the ADS is performed employing a robotic spacecraft simulator at the Advanced Autonomous Multiple Spacecraft
(ADAMUS) laboratory at Rensselaer Polytechnic Institute [7]. In particular, the ADS data are compared to the data from a commercial IR light-
emitting diode (LED)-based motion-capture system from PhaseSpace, Inc. The motion-capture system is characterized by high accuracy, and it is
used to provide the reference truth attitude. The simulator’s hardware is designed solely for GNC on the ground testing, and as such has not been
tested for thermal, vacuum, or radiation resistance, and neither have the COTS sensors used herein.

This paper presents original contributions in the following areas: 1) development of a nano-ADS with a potential for implementation on
nanospacecraft; 2) development of the software infrastructure to seamlessly (re)program the ADS; 3) experimental validation of the ADS in a
laboratory space-simulated environment operating in optical flow mode (angular velocity computation), point-tracking mode (quaternion
computation), and a combination of the two modes; 4) conclusion that the proposed ADS has the potential to replace both star trackers and
gyroscopes on nanospacecraft; and 5) detailed instructions to reproduce the system, and online software available to the nanospacecraft
community.

This paper is organized as follows. Section 11 describes the optical devices and theirrelated developed software. Section 11l contains information
about the PhaseSpace motion-capture system and associated S-function. Section IV is an overview of the spacecraft simulator of the ADAMUS
laboratory. Section V provides experimental validation results, and Sec. VI presents the conclusions.

Appendices are included with detailed steps used to reproduce all presented data and results. The source code and the Simulink library are
downloadable from the MathWorks® file exchange. The source code for the optical devices firmware is available from the centeye-8bit-sensor
Google Code repository (see footnote ™) with modifications available from the authors.

II. Optical Devices

The Centeye CYESv2 model, shown in Fig. 1, was used for the presented research. The device consists of a small optical chip connected to a
microcontroller that communicates with other devices over the interintegrated circuit (12C) two-wire interface. These sensors have not been space
qualified or used in any previous space mission. With a target use on CubeSats flying in low Earth orbits, radiation is not as much of a concern as
higher-altitude orbits. The relatively simple electronics are based around Atmel microcontrollers, which have a relatively large process size
(electron pathway width) compared to state-of-the-art desktop processors and produce far less heat, which makes them inherently more suitable
for space even before radiation hardening. Recent missions using non-space-qualified hardware in CubeSats have been successful, notably
STRaND-1 with a smartphone as the central avionics [8]. While in use, the sensors do not require a heat sink and the surface temperature of the
Atmel chip rises only slightly above room temperature, showing good potential for in-space thermal feasibility.

A. Hardware

Technical specifications for the sensors are presented in Table 1. The vision chip provides a binning ability where pixels in the two, four, or eight
neighboring rows and/or columns can be read as a single larger pixel. Using this feature creates smaller images with less noise that are used in the
interests of memory use and processing speed. The brightness of each pixel is available as an analog signal in the vision chip itself. When reading

Tablel CYE8v2 specifications

Parameter Value

Resolution 64 x 64 pixel, monochrome

Camera output Log-response photodiodes, onboard 8-bit ADC
Image reading ~ Sequential or direct pixel addressing
Microcontroller Atmel AVR ATmega644P

Interfaces 12C/system management bus (SMBus) and serial peripheral interface bus (SPI)*
Processor speed 8 MHz (default), 20 MHz (high-power mode)
Memory 64 KB flash, 4 KB static RAM, 2 KB EEPROM

Output speed 100 kHz (SMBus), effective 6 kB /s shared between all sensors on the SMBus interface

“SPI not yet implemented in firmware.

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

SHAKE, SAULNIER, AND BEVILACQUA 371

Fig. 2 CYES vision chip with lens.

Object
=P

Pinhole

Projected
Object

Image Plane

Fig. 3 Pinhole image-projection diagram.

that value, the onboard analog-to-digital converter (ADC) uses user-defined upper and lower voltage limits to produce a scaled 8bit digital value
that spans a subset of the available analog range, defined by the user as the expected brightness range of the scene. With the limits on memory, the
default operation mode uses a binned 8 x 8 image so that a fixed-pattern noise mask can be stored in the electrically erasable programmable read-
only memory (EEPROM) and all working variables can be stored in RAM during processing.

The lenses on the CYES vision chip (Fig. 2) exploit the entire photosensitive area of the chip, and they allow for a full 64 x 64 image to be used.
Pinhole optics are also available that create a pinhole image over a 16 X 16 pixel area of the sensor, trading lower resolution for a wider field of
view and no added optical distortion. For the data obtained in this work, the pinhole optics were used and an § x 8 pixel image was used from the
center of the pinhole, giving horizontal and vertical fields of view of 22.6 deg. With the log-response pixels, a wide range of intensities can be
imaged, with the only change necessary for going from sun sensing to point lights on a foreign satellite being the exposure time brackets. If the
sensor is set to track stars and the sun crosses the field of view, it will register as a very bright saturated point, but it will not damage the sensor and
normal tracking will resume as soon as it is outside the field of view.

The firmware provided with the sensors has been released by Centeye, Inc., under an open-source license. The provided C code communicates
with a host computer over a two-wire (I12C) interface. As part of this work, modifications were made to use the higher-level SMBus subset of the
12C protocol that the researchers' PC/104+ hardware supports, available in revision 7 of the firmware on the Google code site.™

B. Angular Measurements

‘When using images taken by a camera that is moving with pure rotation in a stationary environment, the images can be thought of very generally
as snapshots of the inside of a large sphere, much like the visible sky is approximated as a sky sphere. When determining the motion of the rotating
body that the camera is attached to, angular values must be used. However, the image that the camera produces is the projection of the curved
spherical surface onto its flat image plane, so the angular distance between two objects seen as x pixels apart in a corner of the image is different
than when they are seen as the same x pixels apart but in the center of the image.

To accurately measure angular positions (and thus movements), the image must be distorted appropriately to extract the measurements. The
pinhole projection diagram is presented in Fig. 3. Any object can be thought of as being on a flat surface parallel to the image plane, with
p/f = y/d,where pisthe distance from the center of the image to the point in the image plane, f is the focal length, d is the distance from the focal
point to the object, and v is the distance from the camera center line to the object. From this, 8 = tan™' y/d = tan™! p/f, where § is the angular
coordinate of the object. As the physical objects being imaged move toward and away from the camera, the angular location does not necessarily
change with respect to the camera central axis, allowing the angular coordinates of any point on the image to be found without knowing y or d, as
long as the focal length and pixel pitch (physical distance between pixel centers) are known. Using only the angular value also removes the need to
approximate the object being on a plane parallel to the image plane, as the distance to the camera is no longer needed to locate the object. Using a
camera with a lens instead of a pinhole does not change the transformation as long as the lens has negligible distortion and the focal length
is known.

f'Data available online at http://code.google.com/p/centeye-8bit-sensor/source/detail r=7 [retrieved 15 October 2012].

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL: 10.2514/1.1010049

372 SHAKE, SAULNIER, AND BEVILACQUA

2D Angular Yeloclty

l, > Mean
ooon _I-> prev_img (discrate)
on P Ang_trans Memory II_A_ZD 12C_Interface

w n
curr_Img Moving
Camera Planar to Angular Avarage

Transformation K _I_.
L —

z-1
Accumulator
Fig. 4 Optical flow block diagram.

C. Firmware and Algorithms

Two different aspects of the images are captured by the firmware: optical flow and point-tracking. For navigation relative to generic objects with
no predefined characteristics, optical flow is used to measure the rate at which a texture moves in front of the camera. This mode was available in
the CYESR sensor firmware when the sensors were purchased. This rate represents an angular velocity because both the foreign object size and its
distance are not inherently known, but the pixel pitch and focal length are known.

Point-tracking is the method of identifying a point of interest in the image and tracking its location between frames. The algorithm for this mode
was developed for this paper. For the point-tracking application, the authors assume that points of interest are stars or light beacons on target
spacecraft, and the detection scheme is designed with that in mind.

The original firmware uses the two-dimensional (2-D) variation of an optical flow algorithm from Srinivasan called IIA [9]. The designer of the
sensors previously published a dissertation on optical flow sensors for use with micro air vehicles [10], including a thorough review of available
algorithms and justification for the case to implement IIA. In this work, we retain that algorithm for the optical flow mode.

Figure 4 is a block diagram representing the data flow for the optical flow sensor mode. ITA produces a value representing 2-D motion in the
image plane between every two frames, in units of pixels per frame. Knowing the physical size of each pixel in the vision chip, this measurement is
converted directly into distance units, and with the approach given above in Sec. I1.B, angular motion is found. Since the flow is computed faster
than it can be read out, internal accumulators are used to record cumulative motion for odometry. This cumulative data, along with the
instantaneous flow and arolling average, are read from the sensor and sent to the host computer. The discrete derivative of the cumulative flow is
taken in a real-time environment to give a more precise angular velocity measurement that, by design, allows for variable read rates and smoothes
out zero-mean higher-frequency noise. This algorithm runs at approximately 3.4 kHz on the sensors on the 8 X 8 pixel image, although the data are
read out at a fraction of that speed due to constraints from the SMBus interface. Given that the ITA algorithm assumes a motion of up to one pixel
displacement per computation, with a 22.6 deg horizontal field of view, the maximum flow rate is theoretically over 150 rad /s, much faster than
could be tested.

For the current research, an additional algorithm was implemented for point finding and tracking. The difference in brightness of a point and its
nearest neighbors (curvature) increases at object edges and corners in the image, described by [11]. It is known that the points of interest in the
images for this application are bright, so a weighted combination of the brightness and curvature is used to identify the points with acceptable
accuracy when applied to both a simulated image sequence with known correct positions and visual comparison by overlaying the point locations
on a live image stream from the CYES sensors.

In the current research, the point lights represent stars or possibly a bright beacon on another spacecraft; in both cases, the rest of the image is not
expected to move relative to the point target, and the test environment for this proof of concept experiment is designed specifically with a high-
contrast ratio. The reason for including curvature in this algorithm is that a point-tracker using only brightness values returned a high percentage of
false points due to image noise. By varying the relative weightings of brightness and curvature manually for the algorithm, as it ran live on the
CYES sensors, and overlaying the located point on the video, weights were found that returned point locations matching those determined by
visual inspection. The method developed is presented as Algorithm 1.

The identified points in each frame are compared to the locations of the points in the previous frame based on distance. The points are considered
the same if a new point is found within a specified radius of the previous location. This criterion for matching is rudimentary, but due to the frame
rate being high relative to the image motion, it does not lose any points in this application as long as they are still visible in the frame. Rates up to
0.5 rad/s have been used during tests, and the sensors have not yet exhibited any loss of tracking. This rate is already five or more times faster than
fast, commercially available star trackers running in coarse mode.

This algorithm has been found to track points with accuracy in the one-eighth-of-a-pixel range for a single bright LED on a dark background,
using an 8 x 8 image from the CYES sensors, giving an angular resolution of just under 19 arcmin. Because of the additional memory and
computational resources required for this point-tracking algorithm compared to the optical flow method, it runs at a lower frequency of
approximately 1.2 kHz, which is still faster than the sensor can send data back to the host computer. The internal code is written to be able to track
motion of up to 2 pixels per frame for a feature point, which results in a theoretical maximum tracking rate of almost 120 rad /s, much faster than
could be tested. Even at 1 pixel displacement per frame, a feature point will cross the entire 8 pixel, 22.6 deg, horizontal field of view in under 7 ms,
so the theoretical limit is considerably higher than would ever be encountered in a feature tracking scenario.

D. Sensor Interface and Calibration

The Linux kernel includes an 12C interface that can be accessed using low-level system calls. To make it easier to use the bus in user
applications, a package known as I2C-dev is available that represents the bus as a character device on the system, similar to a hard drive or a

Algorithm 1 Point finder

1. Calculate curvature ¢ at each point in the image ¢; ; = 4b, ; — (bj_y ; + by ; + b; j-1 + by ;1) from brightness b.
2. Add curvature ¢ and brightness b with relative weights to create matrix M.
3. Locate maximum values of M and P, not counting points within a minimum radius p, of each other

4. Find the center of each point r;, = /i for i, j within a radius p, of P, where r represents the image coordinates at location i, j in M.

i

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

SHAKE, SAULNIER, AND BEVILACQUA 373

File Image Calibrate Sensor

File Image Calibrate Sensor

a) Optical flow display b) Point-tracking display

File Image Calibrate Sensor Help

This command is used to set the REST bias generator on the
wvision chip to generate the higher reference voltage for the
vision chip's ADC. The value between 0 and 63 is sent as a six-
bit value, with a lower number corresponding to a higher
voltage.

Default = 0, must be less than RESB

Changing this value invalidates any existing calibration mask.

REST: :|:

Calibrate Now? @ Yes | @No |

¢) Raw sensor output with pinhole location d) Sample calibration dialog
Fig. 5 Calibration GUI screenshots; further description follows in the text.

memory card.* Instructions for installing the 12C-dev interface are included in Appendix B. A set of C functions is defined by this package that
calls the internal kernel functions for interacting with the bus.

Using this C interface, a library of functions was written for interacting with the CYES sensors. Using this function library, a graphical user
interface (GUT) was written for both monitoring and calibration purposes. While there are many frameworks available for creating GUIs, GTK+**
was chosen because of its simplicity and portability. The intent of the program was to allow for quick monitoring of sensor operation and
calibration of commonly modified values, so it is not a fully featured application for managing all aspects of the sensors. For all operation modes,
the GUI displays the live image from the sensor used for calculations at a 10 Hz refresh rate. It reads the flow or point location information
corresponding to the image and shows a graphical overlay on the image with that information, as well as the numerical values in an adjacent
text box.

An overview of the available monitoring modes can be seen in Figs. 5a—5c. Note that the vision chip in use at the time of the screenshots was
using the pinhole optics instead of a lens, which was what the sensors came with off the shelf; the resulting data are no different for the 8 x 8
pinhole image compared to an image using a lens with pixel binning to create an 8 X 8 image. In Fig. 5a, the ITA optical flow algorithm is in use,
showing the motion in the field of view. An arrow is superimposed on the image to show the direction and magnitude of the flow, and the raw
numbers can be seen to the right. Figure 5b shows the point-tracking mode, with a circle superimposed on the centroid of the located point and
additional information to the right in text form. The number in the circle is an internal identification number shown for debugging purposes. The
internal identification number changes whenever the point cannot be matched between subsequent frames. In the firmware, the points are matched
between frames based on proximity, so jumps across a large distance will register as a different point. Figure 5¢ shows the raw 64 x 64 image,
sampled every 4 pixels, to assist in locating the pinhole on the vision chip. The crosshairs show the current center of the pinhole, and the
surrounding box shows the field of view used for flow computation and point finding.

The dialog in Fig. 5d is representative of the interface for changing many of the calibration options for the sensor, with instructions and an
explanation of the parameter effects. A full list of configurable parameters and the effects of each are available in Centeye documentation, ™ and
other similar dialogs have been omitted here for brevity. The parameter that does not have documentation from Centeye is the dialog for changing
the intensity and curvature weights for the point finding algorithm (as it was developed in house).

Dropdown menus (Fig. 6) contain options for various common commands such as saving a copy of the image, reading from a different sensor,
changing sensor operation mode, and calibration. For each of the menu options, a dialog box pops up with a description of the setting and what the
valid range is for calibration values, as well as any additional steps needed.

E. S-Function

Simulink from MathWorks is a graphical programming tool based on blocks that, when used with Simulink Coder, can generate real-time
executable programs from models that can run on a real-time OS (target). While primarily used for numerical simulations in the desktop
environment, custom blocks can be written in C, C++, and FORTRAN that can interact with hardware, and thus be used to control live systems.
These blocks, called S-functions, link to functions that can contain user code that the simulation engine calls at various events. Detailed

HData available online at http://www.kernel.org/doc/Documentation/i2c/dev-interface [retrieved 2013].

¥Data available online at http://www.gtk.org/ [retrieved 2013].

MData available online at http://code.google.com/p/centeye-8bit-sensor/source/browse/trunk/docs/AVRS_v2_Firmware-Instructions_Application-Prototype-
1_2010-08-18.pdf [retrieved 2013].

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

374 SHAKE, SAULNIER, AND BEVILACQUA

[CYEB (0x11) Pinhole Image Viewer =[50 [CYEB(0x11) Pinhole' Image Viewer [0 [
File Image EeEILIEIEN Sensor Help Calibrate Sensor
O.F. Deadzone pow: * Show Pinhole
Point Weights Show Raw Image

Show Point Tracking

Amp Type
VREF

s Enable Cal Mask

crage: Disable cal Mask

REST
RESB

Noise Mask e:
Find Pinhole
Manually Locate Pinhole

a) Calibration options menu b) Image display menu
Fig. 6 CYES8 GUI menu examples.

locations ———jm=
flow data ——jm
CYE8 CYE8 intensities ——
Reader i Reader
ag—m
flag ——=
a) Simulink block in optical flow mode b) Simulink block in point-tracking mode
=] Source Block Parameters: CYEB Read [x] =] Source Block Parameters: CYEB Read |[x]
S-Function {(mask) S-Function {mask)
This block reads data from CYES optical sensors This block reads data from CYES optical sensors
in a choice of formats. in a choice of formats.
Parameters Parameters
Sample Rate Sample Rate
o1 [o.1
Qutput Optical Flow - Output | Point Tracking -
Lens Type Pinhole - Lens Type Pinhole -

¢) Mask with optical flow selected d) Mask with point-tracking selected
Fig. 7 Block and mask for CYES reader in both modes.

instructions for how to use these blocks are included in Appendix C. A library for robotics applications was developed for previous research [6],
and in this work, more blocks are developed and presented as a separate library.

The first block in this new library (Fig. 7) is an implementation of the CYE8 SMBus interface, which reads data from a set number of sensors
with predefined bus addresses and provides two different outputs to the rest of the model depending on the sensor operation mode. When in optical
flow mode, the block reads the cumulative optical flow and it outputs the current cumulative flow, accounting for sensor output integer overflows,
the current flow (defined as the difference between the current and previous accumulated flow), and a debug flag indicating if the data were
successfully acquired from the sensor or retained from the previous read. In the point-tracking mode, the block takes the image coordinates
provided by the sensor, and then it calculates and outputs the three-dimensional (3-D) unit vector pointing toward the tracked point in the image
frame. Additional debugging information is also included, such as point intensity and the internal identification (ID) number. This block can then
be used in any Simulink model as a data source in a model for use on a Linux target. When the reference implementation is on a real-time target and
is set to read the sensors at a rate that the SMBus limitations can handle, the inclusion of the *“valid data” flag as an output allows the block to
provide what is effectively a clock pulse to the rest of the simulation. The block has a different number of outputs depending on the sensor mode
desired, demonstrated by Figs. 7a and 7b. The block mask (Figs. 7c and 7d) takes the sample rate, desired output type, and type of optics on the
connected sensor(s) as parameters.

ITI. PhaseSpace System

The PhaseSpace motion-capture system is a multicamera system that tracks the location of multiple active LED beacons in the experimental
area. These LEDs blink a unique binary ID so they can be identified by each camera. The system has been tested to have comparable accuracy to
the popular Vicon vision-based navigation system by Davis et al. [12].

A. Hardware

The cameras in this system (Fig. 8) consist of two perpendicular linear imagers to locate the LED beacons in the equivalent of a 3600 x 3600
pixel image. The system installed in the ADAMUS laboratory consists of eight cameras positioned around the experimental area, each with a
60 deg field of view, as seen in Fig. 9.

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

SHAKE, SAULNIER, AND BEVILACQUA 375

Fig. 8 PhaseSpace camera (from www.metamotion.com [retrieved 2013]).

Detail view in
Fig. 11

Spherical
bearing

Fig. 10 Spacecraft simulator with PhaseSpace beacons illuminated.

The spacecraft simulator mounts six LED beacons (Fig. 10) and is free to rotate in three axes on a spherical bearing. Also visible in Fig. 10 are
four CYE8v2 optical sensors, the dark chips near the top center of the image. A detailed view is provided in Fig. 11, showing how the sensors are
attached around the thrusters.

B. S-Function

The second new Simulink block is an interface for the PhaseSpace motion-capture system (Fig. 12a). The PhaseSpace system’s server has a
network visible interface using a proprietary protocol with a shared dynamic library that can be linked to in Linux to read data from it. The block
functions similarly to the CYES sensor block, polling the system and outputting a data array and an update flag. The data consists of seven values,
containing the spatial position and an attitude quaternion. The C source code for the S-function currently must be moditied and recompiled for
tracking different objects, as the location of each LED on the rigid body is hardcoded in the source. In the future, the block could be modified to
take those values as parameters in the mask. The block mask (Fig. 12b) contains parameters for the Internet Protocol (IP) address of the
PhaseSpace server and the sample rate.

PhaseSpace provides astandalone GUI for the system thatreads the same data as the S-function, and both have been run side by side to verify the
output of the Simulink block. The S-function reads the exact same data as the proprietary GUI, with the only difference being the parent software
environment.

IV. Spacecraft Simulator Overview

The spacecraft simulator in the ADAMUS laboratory at Rensselaer Polytechnic Institute is a novel 6-degree-of-freedom (6-DOF) system
(Fig. 13 and [7]). This system consists of an attitude stage (component listing in Table 2) supported by a spherical air bearing, resting on a vertical

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

376 SHAKE, SAULNIER, AND BEVILACQUA

Optical
Sensors

Fig. 11 Sensor mount detail.

‘-] Source Block Farameters: PhaseSpace x|

sfun_PhaseSpace (mask) (link)

Parameters

Server Name:

Sampling Time:

0.001
Position & Attitude —jm-

PhaseSpace

Flag |—m Cancel Help

a) Simulink block b) Mask for block in a
Fig. 12 PhaseSpace S-function block and mask.

counterbalanced base that translates over an epoxy floor (Fig. 9). The onboard computer is PC/104 form factor and runs RTAI Linux, whichis a
patch for the Linux kernel thatallows forhard real-time applications by preempting kernel calls, letting programs run based on wall time instead of
CPU cycles [5]. Instructions for installing and using RTAI are included in Appendix A.

Communications between the onboard computer and other computers in the laboratory network (including desktops and future additional
spacecraft simulators) use IEEE 802.11 Wi-Fi wireless networking, using a D-Link Pocket Wireless adapter connected to the wired ethernet port
on the PC/104. This configuration is used instead of a universal serial bus (USB) Wi-Fi adapter because it was found in previous research that
RTAI does not handle USB devices without dropping out of the real-time task to access them [6]. This also has the advantage that no additional
driver or configuration is needed for the wireless adapter since the PC/104 communicates through the wired port. Using Wi-Fi instead of
other communications options makes it possible for any other computer to communicate with the simulator using Transmission Control
Protocol/Internet Protocol (TCP/IP) or User Datagram Protocol (UDP), so the system can be accessed remotely over SSH (Secure Shell) *** and
query other networked servers for data with various protocols. In the current work, TCP/IP is used as the control channel by logging into the
PC/104 with SSH, while live data are streamed over UDP. Previous work [6] also demonstrated that this specific wireless adapter and
communication method is robust with no significant delay or data loss being introduced, at speeds up to 100 Hz.

V. Experimental Results

This section presents data obtained using the previously described ADS. The comparison against data from the PhaseSpace motion-capture
system is used to assess the performance of the proposed ADS. The tests use the same hardware and setup in both sensor operating modes,
i.e., point-tracking and optical flow modes.

The roles of the three computers involved in the test are shown in Fig. 14. The solid lines indicate wired data connections between the
PhaseSpace computer and cameras, dashed lines are wireless links between the computers and router, and dotted lines are used for labels. A
desktop computer running Linux is the operator station, which is running MATLAB® and Simulink. The models are created on the desktop
computer, and from there, C code is generated with Simulink Coder and the executable is uploaded to the PC/104 to run. During the test, the
desktop runs another Simulink model that receives data live from the PC/104 to show live-updating figures and plots to monitor the operation. This
monitoring function is not required for the PC/104 system to operate, but it is currently required for saving simulation data for later analysis.
Instructions for this procedure are included in Appendix D.

The PC/104 runs the RTAI patched Linux kernel and is used remotely with SSH over the laboratory Wi-Fi connection. If it were using only data
from onboard optical sensors instead of also comparing with position information from PhaseSpace, it would be entirely self-sufficient once the

*##Data available online at http://www.snailbook.com/protocols.html [retrieved 2013].

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

SHAKE, SAULNIER, AND BEVILACQUA 377

Sets of 3 orthogonal thrusters (x4)

Spherical
air bearing
ball

a) S/C Simulator: onboard computer, sensors,
actuators, and tanks powering on/off thrusters

Vertical Spherical

stage: air bearing

air bearing cup

pulleys,

air bearing

bushings

on vertical

guides,

cables,

and

moving

pedestal
Mass
balancing
deck with
dummy
masses and
controlled
venting tanks
to vary mass
in real time

Linear air bearings on flat surface
b) 6DOF stage ¢) S/C mounted on the 6DOF stage

Fig. 13 ADAMUS spacecraft simulator: a) attitude stage (spacecraft), b) translation stage (it allows 3-D translational motion, plus it hosts the cup for the
spherical attitude motion), and c) together.

controller program is started, and not requiring external input or even network connections (see Fig. 14) except to start or stop the program. For the
data presented here, the motion comes from manual manipulation of the attitude stage on its spherical bearing without translational motion.
Because of this hand operation, there is no truth data for the motion, so the PhaseSpace system with its known accuracy is used as areference. As
discussed previously, the maximum theoretical tracking rate of the sensors is much faster than any motions possibly used in the experiment, so the
rates given by hand were not artificially sped up or slowed down. As the image acquisition itself is faster than the algorithm as a whole, the image is
estimated to be acquired at 5 kHz or faster, at which rate any possibility of movement-induced light streaking across multiple pixels is assumed to
be so low as to be negligible.

A bird’s eye view of the simulator setup is illustrated in Fig. 15: two optical sensors are mounted perpendicular to each other on the attitude
stage, and two lights (“stars™) are fixed at known locations in the laboratory.

Table 2 Attitude stage components

Component Model Company

Thrusters, 12x EH2012 Gems Sensors And Controls
Battery management system MP-04R OceanServer Technology Inc.
DC-DC converter DCI23R OceanServer Technology Inc.
Li-ion batteries, 2x ND2054 Inspired Energy®
Motion-tracking system Impulse PhaseSpace Inc.

Compressed air tanks, 2x Ninja 4550 Ninja Paintball

Relays module IR104-PBF Diamond Systems
Wireless-fidelity (Wi-Fi) module DWL-G730AP D-Link

Onboard computer ADLSI5PC Advanced Digital Logic
Motor controller card DCM-2133 Galil Motion Control

Motor drives SDM-20242 Galil Motion Control

Mass balancing motors, 3x 35F4N-2.33-0xx Haydon Kerk

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

378 SHAKE, SAULNIER, AND BEVILACQUA

802.11b/g —
‘Wireless router aseSpace
T Server N
- \‘
Linux “‘
Desktop \
(Operator
Station)
; LEDs
- Optical y

Sensors

+ PC/104

;
s
/
I
5
Iz

- o

Fig. 14 Experimental setup representative sketch: PhaseSpace IR cameras and related image-processing server, operator desktop, and spacecraft
simulator mounting optical devices and motion-tracking LEDs.

Point Lights-====cwmcemuoe .4 :;.

Floor/Test Area

Spacecraft
Simulator

\ 4

Fig. 15 Representative sketch of optical sensor and star (point light) locations for the experiments.

LEDs are mounted on the spacecraft simulator attitude stage for the motion-capture system. This LED system consists of a controller and
integrated battery pack provided by PhaseSpace that produces the different flicker patterns to uniquely identify each light. The multicamera
system records the data, which are then processed and provided over Wi-Fi from the base station server to whichever computer needs the data: in
this case, the PC/104. As mentioned in the preceding section, the PhaseSpace system has been shown to be accurate and is used as the truth model.

A. Optical Flow to @ Computation

The first sensor operation mode tested was the optical flow computation. Two CYES sensors were mounted on perpendicular outside faces of
the attitude stage, and the point light sources were turned off. The reference voltages were calibrated to obtain images with sufficient contrast in the
laboratory lighting conditions, and the fixed-pattern noise masks were saved using the previously mentioned GUI A Simulink model was created
to obtain data from the optical sensors and the motion-capture system and to send those data over the Wi-Fi connection to the desktop. This model
was compiled with Simulink Coder and run on the PC/104. The desktop computer ran the data acquisition program, and the spacecraft simulator
attitude stage was moved abouteach of the three axes by hand. Nothing was done to change the walls or laboratory environment to make iteasier or
harder for the optical sensor to track motion, except for making sure that nothing was moving in the field of view relative to the walls.

The angular velocities obtained from both sensors were transformed into the body frame and combined into a single measurement. This
produced three angular velocities that were used to find the quaternion derivative [13]. The quaternion at the first time step was taken from the
PhaseSpace data, and then it was numerically integrated with the derivatives from the optical sensors as time progressed. The test results are shown
in Figs. 16 and 17, as the attitude stage was moved about each axis sequentially: first with a 360 deg rotation about the vertical axis, and then
smaller cyclic motions in the other two body axes, returning to approximately neutral after each. The data calculated from the optical sensors show
alarge tendency to drift, which was caused by the noise in the images showing up as phantom motion. Since no filtering was done in the system yet,
this drift was anticipated, so the data indicate that the system functioned as expected. While the difference in Euler angles (Fig. 16) shows a large
error, a visual comparison of the quaternions (Fig. 17) shows that the trends match and the output should become significantly better after
implementation of drift control. The third test scenario will present a method of addressing this drift error by combining the angular velocities from
the flow with the point-tracking mode.

B. Point-Tracking to g Computation
The second test was for the point-tracking sensor mode to verify that the algorithm worked as intended. The sensors were mounted and
calibrated the same way as in the previous test, with no physical changes to the attitude. The environment was modified by placing two bright point

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

SHAKE, SAULNIER, AND BEVILACQUA 379

o Quaternion comparision
s 1 T T T T T
2
T / . At
g 0 A
]
@ \
Q
% -1 1 L L | I
z 0 10 20 0 40
5
€ 1 T T T
5]
E - S —
S —_— - .
= Shr—
2
o
g : . \
& o 10 0 40
Time, sec

Fig. 16 Quaternions obtained from Motion Capture (top) and Optical Flow (bottom).

Euler angles differences, optical flow to phasespace
50 T T T ‘ T

Yaw error, deg
o
(=] (
1

A0 | 1 | 1 1

50 T T

Pitch error, deg
(]
{

50 I 1 L 1 1

0 10 20 30 40 50 60
8’ 20 T T
<
g o -
s
E 20 | 1 | |

0 10 20 30 40 50 B0

Time, sec

Fig. 17 Euler Angles Comparison for quaternions in Fig. 16.

lights on the walls that face the sensors in the attitude stage rest position, and turning off the ceiling lights to simulate a space setting with a known
star field. All other aspects of the test were equivalent, with the quaternion being calculated from the known light locations in the reference frame
and the calculated body frame vectors with the QUEST algorithm [14,15], with a modification from Markley and Mortari [16] to handle
singularities near 180 deg rotations.

In this test, the motion was again controlled by hand, butit was moved around in arbitrary directions to cover the full field of view of each sensor.
The results for this test had a much smaller error than the previous experiment, as seen in Fig. 18. The quaternion components were plotted with
point-tracking overlaid on the PhaseSpace data to show that not only were the motion trends similar, the values were also very close. Plots of the
error between the Euler angle representations of the attitudes are presented in Fig. 19, showing that the error is considerably lower than in the
optical flow mode.

Care was taken in this test to ensure that the rotation was not so large that the lights went outside the field of view of one or more sensors; else
those data points would be meaningless. Such out-of-frame points can be detected by checking the brightness of each identified point against the
average for the whole data set and rejecting data when the brightness is too low.

C. Point-Tracking with Higher-Frequency Flow Updates

The optical flow method is able to run much faster than the point-tracking: it works regardless of tracking points being in the field of view, and it
captures the direction of the motion even when the magnitude is off. While the point-tracking mode runs more slowly, it is not subject to drift, only
random error from image noise. A third test was then performed to combine the advantages of both sensor modes while mitigating the
disadvantages. By calculating the point-tracking quaternions at a low frequency and integrating the quaternions using the angular velocities from
the flow data at higher frequency, attitude data can be constructed at the higher frequency. To demonstrate the viability of this method, the data
from the point-tracking run (Fig. 18) were combined with optical flow data that were also captured during that run.

The data for both point-tracking and optical flows were obtained at 10 Hz in that test (limited by the bandwidth of the SMBus interface), so to
demonstrate the combined method, the point-tracking data was only used every 1 Hz, and then the angular velocities from optical flow were used
to update the quaternion at 10 Hz. This result is shown in Fig. 20, with the Euler angle error for the quaternions compared to the PhaseSpace
motion-capture data in Fig. 21. It is visually evident from the plots that the error does grow during the flow-only times, butit is pulled back down
each second as the quaternion resets to the value from the point-tracking data. It is also visible that the computed quaternion is not constant during
the flow update time, so the accuracy is improved compared to only using the low-frequency point-tracking data. While it was not necessary for
these results, the method also allows for the quaternions to be updated with flow data in the event that the points being tracked go outside the field
of view of the sensors, integrating the state until the points can be reacquired.

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

380

Unit quaternion components

Yaw error, degrees

Pitch error, degrees

Roll error, degrees

Unit quaternion components

SHAKE, SAULNIER, AND BEVILACQUA

Point tracking quaternion comparison

—_

- q1 __________
08 — 2 Phase
— {3 Space
06+ o e
. q‘]
+ g2 Point
O4r + o3 Tracking
+ q4 __________
0.2k

Time, sec
Fig. 18 Quaternions obtained from point-tracking (points) and motion capture (lines).

Euler angles differences, point tracking to phasespace
5 T L T T T T T T
- o, oow, F e & ; N Pautitin,
0 -'-“' -x‘*‘.j“\. " ‘”" - hﬂ' 0';.‘. - : :t "‘b ﬁ” 'ﬂ co “ } st t’*‘]
-
_5 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 a0
5 T T T T T T T T T
M + :* N "}
st S b + A + “ 2 m
0 AMAP L o‘{,’ ":“:; :. 'f A 30 A ¢’ st s ,ﬂ-
+ - + -
5 1 1 1 1+ 1 M | 1 *| 1
0 5 10 15 20 25 30 35 40 45 50
5 T T T T T T T T
ﬂ
0 ™, ”w - K ’ \\o_
S Y e i NS wq'«- -~~~
5 1 1 1
0 5 10 15 20 25 3IZI 35 40 45 50
Time, sec
Fig. 19 Euler angles comparison for quaternion in Fig. 18.
Flow quaternions with 1Hz point tracker update comparison
T T T T T T T T T
1
—_— q1 __________
08 — g2 Phase T
— 43 Space
06| T g e -
+ E]1
+ g2 Flow +
04p + g3 Tracking [T
+ qﬂ
02F B

Time, sec
Fig. 20 Combined flow and point-tracking quaternions (solid) with reference motion (dotted).

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL: 10.2514/1.1010049

SHAKE, SAULNIER, AND BEVILACQUA 381

Euler angles differences, flow with point tracking to phasespace

8
% 10 T T T T+ T T T T T -
@ * FR FA ,“ *
- o o Yy, + . & + 2
5 il N ." e em a"...“.o‘:"j . %*;ﬁ* "’gj .y . Fa r‘:‘: + Fad ﬁ'ﬂ»”*ﬂ‘ TR f_
= . e e %
) % M .
=z -10 1 1 1 | 1 1 1 1 1
8 0 5 10 15 20 25 30 35 40 45 50
8
9 10 T T T T T T T T T
g - d N g “~ Y
A kW * Y Fd o
a R A g il _|
5 0 \r‘ LA z;"",\’:*:’aubw,, "1,: ey ,.,-{v' Lan
g .’0’ ’0:'%”‘ 2 e +
*
5 10 5 10 18 20 % 30 % 10 15 50
o
8
@ 10 T T T T T T T T T
8’ - : hg * Fa "j
k=] F3 + &g * & - J
s DFmag 3ot LT L i IO T P a gy N T o A pan N
% PRSI “ PAAANAAN L™ «w" 1 X
= .10 1 1 1 1 1 1 1 1 L
EE 1] 5 10 15 20 25 30 35 40 45 50
Time, sec

Fig.21 Combined flow and Point-tracking Euler angles errors for quaternions in Fig. 20.

D. Results Overview

The results from the optical flow comparison (Figs. 16 and 17) show that the optical flow method successfully captures the general direction of
motion, but without any filtering or drift compensation, the direct numerical comparison shows a very large error. Table 3 contains acomparison of
the Euler angle errors for the three test cases. All three angles have similar error magnitudes within each test, so pitch was chosen to be
representative of the results.

While errors are indeed high for these results, they are presented as a proof of concept for sensors of this type, and a significant improvement to
as low as 1-2 deg errors is expected if images larger than 8 x 8 are used and filtering is implemented, e.g., extended Kalman filtering. For arough
task such as solar panel pointing to increase power-generation efficiency, [4] suggests an attitude determination error of less than 15 deg, which is
already met by both existing sensor systems and this new approach, and better accuracy would allow for missions such as diagnostic imaging of
other satellites. With the addition of an EKF and expected reduction of error to the 1-2 deg range, this system will be at or better than the level of the
most accurate sensors currently available for CubeSats.

E. Comparison with Existing Star Trackers

Table 4 contains a comparison of these results to a range of existing star trackers that have flown. The Miniature Star Tracker (MST) is the
smallest star tracker commercially available that could be found, and the CT-633 and SED26 are included as a reference for high-fidelity trackers
available on large satellites. While the CYES sensors presented here compare extremely favorably in mass, size, power usage, tracking rate, and
update rate, are they are equivalent in field of view, they are an order of magnitude less accurate than the only other tracker that could possibly fit on
a CubeSat. As mentioned before, the accuracy is presented here directly out of the sensors without any filtering, which will be implemented in

Table3 Numerical comparison of attitude determination modes

Data frequency, Hz Mean error, deg Maximum error, deg

Optical flow (pitch) 10 -5.177 —24.59
Point-tracking (pitch) 10 -0.267 453
Flow with point update ~ 10(flow), 1(point) —0.498 -8.02

Table 4 Comparison to existing star trackers®

CYESv2 pinhole MST® CT-633¢ SED26¢
Mass, g 0.7 375 w/o baffle 575-775 w/ 2500 w/o baftle 3100 w/30 deg baffle 3300 w/25 deg baffle
baftles
Size (w/ baffle), mm 5x18x13 ~95 x50 x50 135 x 135 x 142 160 x 170 x 290 w /30 deg
160 x 170 x 350 w/25 deg
Power, W 0.15 1 8to9 Tto9
Resolution, pixels 8§x8 1024 x 1280 Unlisted Unlisted
Field of view, deg 22 x 22 24 x 30 175 % 17.5 25-30
Accuracy, arcsec ~ £ 700 +70, 150(x 4+ v, z; lo) +4,38(x + v, z: 1o) +3, 15(x 4y, z: 30)
(unfiltered)
Update rate, Hz 100 (1k internal) 2 5 10
Tracking rate, deg /s >3000 10 (goal) 0.1 0.8 w/reduced 20
(theoretical) accuracy
Environmental Untested 30 + krad tolerance 12-15-year lifetime, 18-year lifetime, hardened
tolerance hardened

%w/ denotes with, and w/o denotes without.

"Data available online at http://www.spacemicro.com/Comtech_Areoastro/CAA_div.htm [retrieved 2013].
“Data available online at http://www .ballacrospace.com/file/media/D0399_CT-633.pdf [retrieved 2013].
9Data available online at http://www.sodern.com/sites/en/ref/SED26_154.html [retrieved 2013].

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

382 SHAKE, SAULNIER, AND BEVILACQUA

software and already exists in the other sensors. With CubeSat restrictions at 10 X 10 X 10 cm and 1.3 kg per 1U, providing only a few watts of
power total, the high-accuracy trackers are unsuitable and the MST is only viable if it is the entirety of the payload for the mission, which is
undesirable.

V1. Conclusions

This paper presents a new attitude determination system (ADS), based on nano-optical devices and real-time application interface Linux
software libraries. The goal of this work is to provide nanospacecraft with attitude determination capability, characterized by quick and affordable
integration. In particular, C interfaces for the optical devices and the PhaseSpace motion-capture system are developed and readily integrated into
a Simulink environment. Firmware modifications for the optical devices are also presented, and new algorithms are tested. An overview of each
hardware component is included along with a description of how it is applicable to a ground-based spacecraft simulator.

Validation of the proposed solution is performed via hardware-in-the-loop experimentation using a newly built six-degree-of-freedom
spacecraft simulator at Rensselaer Polytechnic Institute, employing only three-axis attitude motion. The comparison between the new system'’s
data and the PhaseSpace’s data shows satisfactory agreement. In particular, two modes of operation are tested for the optical devices. The first one
computes angular velocity for the platform hosting the ADS, through optical flow measurements. The second extracts quaternions from point-
tracking of known light sources in the laboratory environment. A combination of the two modes is used to highlight the advantages of each while
mitigating the relative disadvantages, using optical flow measurements to update quaternions produced by the lower-frequency point-tracking
mode. The proposed ADS method holds the potential for replacing star trackers and gyroscopes on very small space platforms.

Appendix A: Installation of Real-Time Application Interface Linux on a PC/104

The following assumes that a basic installation of Ubuntu 10.04 Long Term Support has been completed on the PC/104, including setting up an
open-SSH server for remote logins, for which there are guides and installation media available at http://www.ubuntu.com/ (retrieved 2013). Other
versions of Linux will most likely work but may require changes in the following steps. General instructions for installing RTAI in modern
versions of Ubuntu are also available from the HART Toolbox website (http://hart.sourceforge.net/ [retrieved 2013]). If this appendix is to be
followed in the future and the referenced versions of programs are out of date, that project will likely have up to date instructions.

Lines with the >> prefix are to be entered at the command line. The commands are intended to be run as a nonroot user that has root permissions
(through the sudo command); if running as root, that part of the commands can be omitted. The outermost parenthesis surrounding any filename or
option listed in this Appendix is for identification in the text, and it is not a part of said filename or option and should be omitted when entering on
the computer. Any text in an instruction shown as <text> is a placeholder for something that is specific to the user’s computer and should be
replaced with the appropriate text as indicated, without keeping the <> brackets. The instructions in this and the following appendices are to be
performed on the PC/104 system.

1) Install required packages used in installation:
>> sudo apt-get install cvs subversion build-essential libtool automake libncurses5-dev

2) Download an RTAI-patched version of the Linux kernel from the LinuxCNC project:
>> echo deb http://www.linuxcnc.org/lucid lucid base emc2.4 > /tmp/linuxcnc.list
>> echo deb-src http://fwww.linuxcnc.org/lucid lucid base emc2.4 >> /tmp/linuxcnc.list
>> sudo mv /tmp/linuxcnc.list /etc/apt/sources.list.d/
>> gpg —keyserver pgpkeys.mit.edu —recv-key 8F374FEF
>> gpg -a —export 8F374FEF | sudo apt-key add -
>> sudo apt-get update
>> sudo apt-get install linux-headers-2.6.32-122-rtai linux-image-2.6.32-122-rtai

3) Reboot into the newly installed RTAI kernel; the option will show up in the bootloader menu.

4) Download and configure the latest RTAI software package:
>> cd fust/src
>> sudo cvs -d:pserver: anonymous @cvs.gna.org:/cvs/rtai co magma
>> sudo In -s magma rtai
>> cd fusr/src/rtai
>> sudo make menuconfig

5) Make sure the following options are correct in the configuration tool: a) installation location /usr/realtime, b) kernel source tree location /usr/
src/linux-headers-2.6.32-122-rtai, ¢) verify that the number of processors matches how many cores your system has (usually 1 on a PC/104).

6) Compile and install the modules:
>> sudo make
>> sudo make install
>> sudo sed -i 'SA(PATH=\"\)A1VusrVrealtimeVbin:/’ /etc/environment

7) Log out and back in again (or just reboot the PC/104).

8) Create an RTAI module load script:
>> sudo nano /usrflocal/bin/start_rtai

9) Add the following lines to that file:
sync
/sbin/insmod /usr/realtime/modules/rtai_hal. ko
/sbin/insmod /usr/realtime/modules/rtai_up.ko
/sbin/insmod /usrfrealtime/modules/rtai_fifos.ko
/sbin/insmod /usr/realtime/modules/rtai_sem.ko
/sbin/insmod /usr/realtime/modules/rtai_mbx.ko
/sbin/insmod /usr/realtime/modules/rtai_msg.ko
/sbin/insmod /usr/realtime/modules/rtai_netrpc.ko ThisNode="127.0.0.1"
sync

10) Save and exit the file (CTRL+x, confirm saving and filename with “y™).

11) Set that file to be executable:
>> sudo chmod a+x fust/local/bin/start_rtai

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

SHAKE, SAULNIER, AND BEVILACQUA 383

12) Verity that the modules load correctly by running that file as root:
>> fusr/local/bin/start_rtai

13) Set that loader script to be called when the system boots by adding the following line to /etc/rc.local before the “exit 0 line:
fusr/local/bin/start_rtai

Appendix B: Configuration of 12C-dev

The 12C-dev module is included with the Linux kernel by default, but the header file to include in C programs when compiling them to use it
must be downloaded manually.

1) Install the package that contains the file >> sudo apt-get install I2C-tools libI2C-dev.

2) Set the module to be loaded at boot time by adding “I2C-dev” to the end of the file /etc/modules the same way the start_rtai file was edited
previously.

Appendix C: Using the S-Functions in a Simulink Model

This appendix and all the following are done from the Linux desktop and not the PC/104. It also assumes that MATLAB, Simulink, and the
Simulink Coder have been installed and configured with the GNU Complier collection available for use with the “mex” command. More
information about this is available from MathWorks.

The C S-functions must be compiled into executables that MATLAB can natively call (“mexed”) before they can be included in a Simulink
model. Thisis asimple procedure for the CYES reader block; once the files are copied to the toolbox folder, navigate to the directory containing the
. files from within MATLAB and run “mex <filename>.c” for it, then put the resulting mex file into a folder in MATL.AB’s list of include paths so
it can be used.

The PhaseSpace block requires the addition of extra shared libraries for communication with the server, which are available from PhaseSpace,
Inc. To being using this block, a few things must be changed to match your system.

1) Open sfun_PhaseSpaceC.c and change the paths on the two #include lines that point to “owl.h” and “owl_math.h” to point to where they are
on your system.

2) Define the coordinates of the LEDs on your specific test spacecraft in the variable “float RIGID_BODY/[][]” just inside mainFunction().

3) mex the .c file along with the shared library from within MATLAB with “mex sfun_PhaseSpaceC.c libowlsock.so™.

‘When using the blocks in a model that is to be run on the PC/104, some more options must be configured.

1) With the model open, open the Configuration Parameters dialog (in the “Simulation” menu).

2) Select the “Real-Time Workshop” tab in the left panel.

3) In the “System target file” box, click the “Browse” button and select “rtai.tlc”, and make sure the language in the option just below it is set
to C.

4) At the bottom of the same panel, check the option for “Generate Code Only”.

5) The rtai.tmf file needs to be modified to handle using a shared library for the PhaseSpace block by commenting out the “-static™ option in the
LDFLAGS variable (line 71) by changing it to “#-static”.

6) In the same file, in the bottom of the “Additional Libraries™ section, “/usr/local/lib/libowlsock.so™ should be added to the end of last line
starting with “LIBS +=".

After this, it is possible to generate the program to be run on the PC/104 from the Simulink model.

1) Now back in the Configuration Parameters dialog, press the “Generate code™ button to set up the model for compiling.

2) Look at the output in the main MATLAB window for any errors, and when it completes successfully, the last part of the output will show
which directory the code has been generated in.

3) Open a terminal window and navigate to this directory, which will be in the same location as the model itself in the folder
“<model_name>_rtai”: >> make -f <model_name>.mk.

4) If the compilation fails with “file not found” errors for the S-functions or required libraries, copy the sfun_<block_name>.c into that
directory and recompile until it works.

Appendix D Connecting to the PC/104 and Running the Models in Real Time

1) Access a terminal window on the desktop computer and navigate to the directory containing the Simulink model (which also contains the
executable after it has been compiled, with the same name as the model but no extension). Connect to the PC/104 and upload the file to the home
directory on it:
>> sftp <username> @ <PC/104 IP address>
>> put <executable_name>
>> exit

2) Remotely log on to the PC/104 to run the model:
>> ssh <username>@ <PC/104 [P address>
>> sudo ./<executable_name> -v —f 5

3) The preceding command runs the model in verbose mode to show all the output at the command line (-v), with a total run time of 5 s (-f 5).
Omitting “-v"” will make it run with no output, changing the value after “-f” changes the time for the simulation to run, and omitting “-f#” makes
the simulation run indefinitely. More information about the available options can be found from MathWorks in the Simulink Coder help.

Acknowledgment
This research was supported by the NASA/New York State Space Grant Consortium, grant J40259.

References
[1] Thakker, P., and Shiroma, W., “Emergence of Pico- and Nanosatellites for Atmospheric Research and Technology Testing,” Progress in Astronautics and
Aeronautics, Vol. 234, ATAA, Reston, VA, 15 Sept. 2010.

[2] Chin, A., Coelho, R.. Brooks, L., Nugent, R., and Puig-Suari, J., “Standardization Promotes Flexibility: A Review of CubeSats’ Success,” AIAA/Oth
Responsive Space Conference, AIAA Paper RS6-2008-4006, 2008.

Downloaded by University of Mississippi on August 9, 2013 | http://arc.aiaa.org | DOL 10.2514/1.1010049

384 SHAKE, SAULNIER, AND BEVILACQUA

[3] Konstantinidis, K., “CubeSats: a Review,” Online Semester Project, Space Research Laboratory, Democritus Univ. of Thrace, Xanthi, Greece, 2010,
http://www.thesciencecollective.com/ctide/wp-content/uploads/2011/11/Cubesats_a_review_KKonstant.pdf [retrieved 10 Oct. 2012].
[4] Bowen, J. A., “On-board Orbit Determination and 3-Axis Attitude Determination For Picosatellite Applications,” M.S. Thesis, Dept. of Aerospace
Engineering, California Polytechnic State Univ., San Luis Obispo, CA, July 2009.
[5] Mantegazza, P., Dozio, E. L., and Papacharalambous, S., “RTAI: Real Time Application Interface,” Linux Journal, Vol. 2000, No. 72, April 2000.
[6] Bevilacqua, R.,Hall,J., Horning, J., and Romano, M., “Ad Hoc Wireless Networking and Shared Computation for Autonomous Multirobot Systems,” Journal
of Aerospace Computing, Information, and Communication, Vol. 6, No. 5, 2009, pp. 328-353.
doi:10.2514/1.40734
[7] Gallardo, D., Bevilacqua, R., and Rasmussen, R. E., “Advances on a 6 Degrees of Freedom Testbed for Autonomous Satellites Operations,” AIAA Guidance,
Dynamics and Control Conference, AIAA Paper 2011-6591, 2011.
[8] Kenyon, S., Bridges, C. P., Liddle, D., Dyer, R., Parsons, J., Feltham, D., Taylor, R., Mellor, D., Schofield, A., and Linehan, R., “STRaND-1: Use of a $500
Smartphone as the Central Avionics of a Nanosatellite,” 62nd International Astronautical Congress 2011, Cape Town, South Africa, Paper IAC-11-B4.6B.8,
Oct. 2011.
[9] Srinivasan, M. V., “An Image-Interpolation Technique for the Computation of Optic Flow and Egomotion,” Bielogical Cybernetics, Vol. 71, No. 5, 1994,
pp. 401-415.
doi: 10.1007/BF00198917
[10] Barrows, G. L., “Mixed-Mode VLSI Optic Flow Sensors for Micro Air Vehicles,” Ph.D. Dissertation, Dept. of Electrical Engineering, Univ. of Maryland at
College Park, College Park, MD, Dec. 1999.
[11] Kitchen, L., and Rosenfeld, A., “Gray Level Corner Detection,” Pattern Recognition Letters, Vol. 1, No. 2, 1982, pp. 95-102.
doi:10.1016/0167-8655(82)90020-4
[12] Davis, J., Doebbler, J., and Vavrina, M., “Characterization and Calibrating the Novel PhaseSpace Camera System,” AIAA Guidance, Navigation, and Control
Conference, AIAA Paper 2011-6582, Aug. 2011.
[13] Wie, B., Space Vehicle Dynamics and Control, AIAA Education Series, AIAA, Reston, VA, 1998, pp. 326-327.
[14] Shuster, M. D., “Approximate Algorithms for Fast Optimal Attitude Computation,” AIAA Guidance and Control Conference, AIAA Paper 1978-1249,
Aug. 1978.
[15] Shuster, M. D., and Natanson, G. A., “Quaternion Computation from a Geometric Point of View,” Journal of Guidance and Control, Vol. 4, No. 1, 1981,
pp- 70-77.
doi:10.2514/3.19717
[16] Markley, F. L., and Mortari, M., “Quaternion Attitude Estimation Using Vector Measurements.” Journal of the Astronautical Sciences, Vol. 48, Nos. 2-3,
April-Sept. 2000, pp. 359-380.

E. Atkins

Associate Editor

