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Abstract

Spacecraft returning scientific samples or humans from space must be capable of surviving re-entry and landing in a desired location.
Traditionally, this has been accomplished via a propulsive de-orbit burn. However, it is not always possible to mount a propulsion sys-
tem on board a satellite or a capsule. In the case of small satellites deployed from the International Space Station, for example, on-board
propulsion systems are forbidden for safety reasons.

Our work proposes a new technological solution for re-entering and landing a spacecraft in a desired location from a low Earth orbit
using exclusively aerodynamic drag and eliminating the need for chemical propulsion. First, an iterative procedure is utilized to compute
the desired state at the re-entry interface (100 km) such that a propagation of the vehicle dynamics in the nominal re-entry drag config-
uration from this initial state leads to a landing at a desired latitude and longitude on the surface of the Earth. Next, a re-entry point
targeting algorithm is utilized to determine the on-orbit ballistic coefficient profile necessary to target the desired re-entry point. Finally,
the ballistic coefficient profile during the final hours of the trajectory before the re-entry interface is iteratively modified to correct any
remaining along-track error in the landing location.

The proposed solution is applied to a small satellite system that is jettisoned from the ISS and is equipped with a deployable heat
shield that also serves as a drag device.
� 2021 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Controlled spacecraft re-entry has been essential since
the beginning of the space program (AviDyne, 1968) to
ensure that crewed space capsules land in a desired location
for a safe and timely recovery. All space vehicles that have
performed such a controlled re-entry and landing have ini-
tiated the re-entry with a de-orbit burn. After the burn, to
increase landing precision, a control technique called bank
https://doi.org/10.1016/j.asr.2021.09.029
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angle modulation has been utilized to rotate the vehicle (us-
ing thrusters) around the velocity vector to point the aero-
dynamic lift vector in a desired location (Morth, 1966; Lu,
2012; Tigges et al., 2011; Putnam et al., 2009; Hankey,
1988; Gallais, 2007; Regan, 1993; Bogner, 1966;
Wingrove, 1963; De Zaiacomo et al., 2009; Roenneke
and Cornwell, 1993; Schierman et al., 2004; Mooij, 2013;
D’Souza and Sarigul-Klijn, 2008). To date, there has not
been a spacecraft that has successfully re-entered the atmo-
sphere and achieved a desired landing location without the
use of thrusters.
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However, some other control mechanisms such as drag
modulation (DM) can be used instead of the de-orbit burn
technique. In DM the effective drag force on the vehicle is
varied to achieve the necessary reduction in orbital energy
normally associated with a de-orbit burn during the orbital
sector before the re-entry interface. Multiple methods exist
for achieving the drag variation including deploying and
retracting booms behind the vehicle (Omar and
Bevilacqua, 2019) or having a mechanism that can contin-
uously change the aerodynamic shape of the vehicle to gen-
erate the required drag force (Fortezza et al., 2013).

In this work, we build upon prior work in drag modula-
tion to develop a set of guidance, navigation, and control
algorithms that utilize the modulation of a drag device to
lead a low-Earth-orbit (LEO) satellite to a desired landing
location using exclusively aerodynamic drag. Prior work on
drag modulation explored algorithms that guide a satellite
only to a desired re-entry interface point at 100–120 km
altitude and then have an uncontrolled re-entry with dis-
persions on the order of thousands of kilometers on the
ground (Omar and Bevilacqua, 2019; Carná et al., 2019).
This level of accuracy is insufficient for applications such
as spacecraft sample return or the recovery of crewed cap-
sules in the event of a propulsion system failure. To facili-
tate these important potential applications, the original re-
entry point targeting algorithm developed by the authors is
used as one stage of a new ground targeting algorithm in
the same way that the re-entry burn is but one component
of a more elaborate entry, descent, and landing algorithm
on traditional space capsules. This ground targeting algo-
rithm is the first of its kind to the authors’ knowledge to
provide for the guidance of a satellite from its initial orbit
to a ground landing location using exclusively aerodynamic
forces with highly accurate guidance trajectories on the
order of a few tens of kilometers.

In this paper the methodology developed is applied to a
micro satellite (50 kg class) released from an ISS orbit with
the intent of a re-entry and landing in Kazakhstan for pay-
load recovery. The micro satellite is equipped with a heat
shield that can be repeatedly deployed and folded on-
orbit (Fig. 1)) to provide drag modulation. The heat shield
Fig. 1. Example of a Re-entry Satellite in Folded
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is based on the design of the Mini Irene Flight demonstra-
tor (Bassano et al., 2011 Gardi et al., 2017 Vernillo et al.,
2017 Zamprotta et al., 2019 Vernillo et al., 2019). The Mini
Irene Flight demonstrator has already been manufactured,
tested in a plasma wind tunnel facility, and is now ready to
be tested in an upcoming ESA suborbital mission (Fedele
and Mungiguerra, 2018 Fedele et al., 2019 Fedele et al.,
2020 Fedele, 2020). The same heat shield has also been ana-
lyzed for use in a Mars aerocapture mission for a small
satellite (Isoletta et al., 2021).

The work here presented is organized as follows: Sec-
tion 3 explains the guidance trajectory generation algo-
rithm that computes the trajectory and drag profile the
satellite must follow to land in a desired location. Section 4
presents the tracking algorithms that enable the satellite to
follow the guidance trajectory in the face of uncertainties,
particularly in the drag force. Finally, Section 5 shows
the results of Monte Carlo simulations and case-studies
conducted to verify the performances of the aforemen-
tioned algorithms applied to the reference capsule.

Ultimately, the ability to re-enter and recover a
propellant-free capsule in a desired location using exclu-
sively aerodynamic drag is a game-changing technology
that has significant implications. Services such as ISS sam-
ple return could be made possible using small capsules with
deployable drag devices stored on the station. Satellites
containing scientific payloads could return these payloads
to Earth without needing propulsion systems or traditional
large heat shields. These techniques could also facilitate the
controlled landing of a large number of small, propellant-
less probes deployed from a mother ship on other planets
with atmospheres like Mars or could enable aerocapture
for science missions at Uranus and Neptune. Finally, the
GNC techniques discussed in this paper could be used as
backup methods for the controlled re-entry of crewed cap-
sules in the event of a propulsion system malfunction.

2. Simulation environment

The high fidelity simulation environment utilized to test
the algorithms discussed in this papers consists of two com-
and Deployed Heat Shield Configurations.
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ponents. The orbital simulator is utilized to compute the
spacecraft’s trajectory while in orbit (above 100 km) and
contains high fidelity gravitational and density models.
The re-entry simulator models the trajectory below
100 km and more precisely characterizes the re-entry
aero-thermodynamic environment experienced by the
satellite.

2.1. Orbital Environment

During the orbital phase of a satellite’s trajectory, aero-
thermodynamic heating is not significant, the dynamic
pressure experienced by the satellite is low, and the aerody-
namic environment is one of free molecular flow where the
mean free path between particles is large and particles do
not interact with each other. While the drag coefficient
for a given satellite geometry is not expected to change sig-
nificantly during this regime, large atmospheric density
variations can occur due to changes in solar and geomag-
netic activity (Vallado and Finkleman, 2014). In addition,
because a satellite may spend weeks or months on orbit
during a period of interest, the perturbations due to the
non-uniform gravitational field of the Earth can have a sig-
nificant long-term effect and must be taken into account. In
the low Earth orbits considered in this work, solar pres-
sure, solar gravity, lunar gravity, relativity, atmospheric
winds, tidal effects, and Earth precession and nutation were
not found not be significant and were not considered. Only
aerodynamic drag and Earth’s gravity were precisely mod-
eled in this orbital simulator, but all algorithms in this
work were designed to be usable in a higher fidelity simula-
tion environment such as STK if a higher accuracy is
desired.

2.1.1. Gravitational Model

The simplest gravitational model assumes that the Earth
is a point mass and that gravity always acts toward the cen-
ter of earth. With this two-body model, the acceleration
due to gravity is based on the ECI position of the satellite
(r) and is given by Eq. 2.1 (pp. 15) in Ref. Montenbruck
and Gill, 2005 as

ag ¼ � lr
r3

ð1Þ

where l is Earth’s gravitational parameter. A more realistic
gravitational model provides ag as the cumulative effect of
gravitational perturbations. These perturbations are
divided into zonal harmonics which capture variations in
Earth’s gravity at different latitudes, sectorial harmonics
which capture longitude-dependent gravitational effects,
and tesseral harmonics which capture gravitational effects
that are dependent on both longitude and latitude
Madden, 2006. The coefficients from the EGM2008 gravi-
tational model Pavlis et al., 2008 and the technique in
Montenbruck’s book (pp. 66–68) are utilized in this work
to accurately compute the acceleration due to the Earth’s
non-uniform gravity field at each point in time by calculat-
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ing the gradient of the potential function (Montenbruck
and Gill, 2005)

U ¼ le

R�

X1
n¼o

Xn
m¼0

CnmV nm þ SnmW nmð Þ ð2Þ
2.1.2. Aerodynamic Model

Aerodynamic drag force is discussed in Vallado’s book
(pp. 549–570) and is calculated by (Vallado, 2013)

Fd ¼ � 1

2
CdAqvrelvrel ð3Þ

where Cd is the drag coefficient, A is a reference area, q is
the ambient density, and vrel is the velocity of the spacecraft
relative to the atmosphere. Aerodynamic lift is not signifi-
cant during the orbital phase of the trajectory and is not
considered in the orbit simulator. Substituting the ballistic
coefficient defined as

Cb ¼ CdA
2m

ð4Þ

into Eq. (3), the acceleration due to drag can be written as

ad ¼ �Cbqvrelvrel ð5Þ
Drag is by far the most difficult force to accurately predict
due to uncertainties in Cd and q. Because the atmosphere
tends to rotate with Earth due to viscous forces, the veloc-
ity vector of the satellite relative to the rotating atmosphere
can be approximated as (Vallado, 2013)

vrel ¼ dr
dt

� x� � r ð6Þ

where r is the spacecraft position vector measured in the
ECI frame.

The NRLMSISE-00 atmospheric density model was uti-
lized in this work because it is modern, high performing
(Vallado, 2013), and an implementation is readily available
in the MATLAB aerospace toolbox. Based on 69,932 den-
sity measurements on satellite between 200 and 620 km alti-
tudes, the NRLMSISE-00 model exhibited a mean ratio of
measured to actual density of.9949 with a standard devia-
tion of.1717 (Marcos et al., 2006). In addition to latitude,
longitude, altitude, and time, the NRLMSISE-00 model
takes as inputs the F10.7 solar indices and the Ap geomag-
netic indices. Details about the inputs and implementation
of MATLAB’s atmosnrlmsise00 function are provided on
the MathWorks Website (MathWorks, 2016). 45 day fore-
casts of F10.7 and Ap are available online from the
National Oceanic and Atmospheric Administration, 2017.

2.1.3. Numerical Simulation Technique
To simulate the orbit of the spacecraft, the equations of

motion are first written in state space form and numerically
integrated. The spacecraft state vector x during the orbital
phase consists of the ECI (Earth-Centered Inertial) posi-
tion and velocity.
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x ¼ r

v

� �
ð7Þ

where r ¼ rx ry rz½ �T , v ¼ vx vy vz½ �T . The ECI

frame is defined as aligned with the Earth-Centered-
Earth-Fixed (ECEF) frame at the simulation epoch, and
the ECEF frame is assumed to rotate about the ECI z-
axis (through the North pole) at a constant rate of

x� ¼ 7:292� 10�5 rad/s. The derivative of the state vector
in the ECI frame can be written as

_x ¼ v

a

� �
ð8Þ

where a is the summation of the accelerations induced by
all forces acting on the spacecraft. a can be computed by
Newton’s second law (assuming spacecraft mass is not
changing) as

a ¼
P

F

m
ð9Þ

Eq. (8) along with an initial state value are numerically
integrated using MATLAB’s ode113 function
(MathWorks, 2017). The numerical integration process
provides the evolution of the state vector over time in the
ECI frame.

2.2. Re-Entry Environment

A three degree of freedom simulator was developed in
SIMULINK to simulate the re-entry environment. The
NRMLSISE-00 atmosphere model has been used to evalu-
ate air density q and sound speed a values depending on the
current altitude, position, and epoch. An aerodynamic
database based on CIRA heritage projects is also used to
help evaluate aerodynamic forces. The core of the re-
entry simulator is composed of an ”Equations of Motion”
block which takes aerodynamic forces as an input and inte-
grates the differential equations of motion given by Eq. 14a
and Eq. 15a in order to compute the spacecraft’s state over
time.

2.2.1. Reference Frames

Since the objective of the simulation is to reproduce the
motion of the re-entry capsule, the equations of motion
must be integrated with respected to an inertial (non-
moving) reference frame. The geocentric-equatorial
Earth-centered inertial (ECI) reference frame ðO;X ; Y ; ZÞ
with its origin at the center of the planet, the x-axis point-
ing in the direction of the vernal equinox, and the z-axis
pointing through the North Pole is used for this. The y-
axis completes the right-handed coordinate system and lies
in the planet’s equatorial plane.

Assuming the planet rotates with a constant velocity x�
around the z-axis, X ¼ x�Dt represents the rotation rate
between the inertial and the Earth-centered-Earth-fixed
(ECEF) ðXR; Y R; ZRÞ reference frames. The two frames
are aligned when Dt ¼ 0.
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In the ECEF reference frame, h and / represent the lon-
gitude and the geocentric latitude of the vehicle’s position,
respectively, while r represents the vehicle’s geocentric alti-
tude (see Fig. 2).

Note that the geocentric latitude / is different from the
geodetic latitude /G. while the first is defined as the angle
between the radius r and the equatorial plane, the latter
is defined as the angle between the local surface normal
vector and the equatorial plane. This definition is related
to distinction between geocentric and geodetic altitude (r
and h respectively) as illustrated in Fig. 3.

If a local horizontal plane is introduced as the plane per-
pendicular to the vector from the surface of the Earth to
the satellite at any given instant, the flight-path angle c
can be defined as the angle between the local horizontal

plane and the capsule velocity vector ~V . Similarly, the
heading w is the angle between the local parallel of latitude

and the projection of ~V on the horizontal plane.

By convention, c is positive when ~V is above the local
horizontal plane while w is increased when turns are made
toward the left and is zero when facing east.
ðCM ;XB; Y B; ZBÞ represents the body reference frame for
the considered spacecraft (see Fig. 4).
2.2.2. Atmosphere and Gravitational Model

Different analytical and empirical atmospheric models
exist for the computation of capsule re-entry trajectories.
Their major objective is to provide air density q and tem-
perature T values since these are essential for the computa-
tion of aerodynamic forces, Mach number, and other
coefficients.

As in the orbital simulator, an empirical global reference
atmospheric model called NRMLSISE-00 has been imple-
mented in the 3DOF simulator in order to model density
and airspeed values (see Fig. 5).

As discussed in Section 2.1.1, the gravitational accelera-
tion vector is given by the gradient of Eq. 2. Since the J 2

term is significantly larger than the higher order coeffi-
cients, a first or second order approximation is sufficient
for re-entry modeling. When the J 2 effect is considered,
the gravity vector remains in the plane containing the satel-
lite position vector and the north pole but is given by two
components. The first component is directed opposite the
position vector ~er, while the second is perpendicular to
the position vector along the �~e/ direction:

~g ¼ �gr~er � g/~e/ ð10Þ
The two components are given by:

gr ¼
l
r2

1� 3

2
J 2

R�
r

� �2

ð3 sin2 /� 1Þ
" #

ð11Þ

g/ ¼ 3lJ 2

r2
R�
r

� �2

cos/ sin/ ð12Þ



Fig. 2. Inertial and Planet-Fixed Reference Frames (a), Vehicle Pointing Reference Frame (b).

Fig. 3. Geocentric and Geodetic Reference Frames.

Fig. 4. Body Reference Frame.
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Comparing these two components, gr (or zg considering the
vehicle-pointing frame) is considerably larger than g/ (or

xg).
The Earth-related constants used inside the simulation

are listed in Table 1.
2.2.3. Aerodynamic Forces

Aerodynamic forces can be decomposed into three main
components: drag (D), lift (L) and side force (Y). Drag acts
opposite the direction of the velocity vector. Lift is perpen-
dicular to the velocity vector, in the symmetry plane of the
vehicle. Side force acts in the horizontal plane. While only
drag is considered during the orbital simulation, all three
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aerodynamic force components are significant during the
re-entry and are therefore considered.

The aerodynamic forces can be defined as:

D ¼ 1

2
qðhÞV 2SCDða; b;MÞ ð13aÞ

L ¼ 1

2
qðhÞV 2SCLða; b;MÞ ð13bÞ

Y ¼ 1

2
qðhÞV 2SCY ða; b;MÞ ð13cÞ
where CD;CL and CY are the non-dimensional drag, lift and
side force coefficients while a and b are the spacecraft angle



Fig. 5. NRMLSISE-00 derived Temperature and Air Density Models.

Table 1
Planet Earth Constants.

x� 7:292115 � 10�5 rad=s

R� 6378137 m

l 3986004:418 � 108 m3=s2

J2 1:082629 � 10�3

A. Fedele et al. Advances in Space Research 68 (2021) 4336–4358
of attack and sideslip angles respectively. S represents the
spacecraft reference surface area.

2.2.4. Equations of Motion

A set of first order nonlinear ordinary differential equa-
tions is needed to simulate vehicle’s 3DOF dynamics
Hankey, 1988.

A set of 3 dynamic equations is needed to take into
account forces acting on the spacecraft. Velocity, flight
path angle, and heading angle are the variables which
describe vehicle’s dynamic as:

dV
dt ¼ � D

m � zg sin cþ xg cos c

þrx2
� cos/ðcos/ sin c� sin/ sinw cos cÞ ð14aÞ

V dc
dt ¼ L

m � zg cos cþ xg sin c sinwþ V 2

r cos c

þ2V x� cos/ cosw

þrrx2
� cos/ðcos/ cos c� sin/ sinw sin cÞ

ð14bÞ

V dw
dt ¼ Y

m cos c � V 2

r cos c cosw tan/þ xg
cosw
cos c

þ2V x�ðsinw cos/ tan c� sin/Þ
� rx2

�
cos c sin/ cos/ cosw

ð14cÞ

where m is the spacecraft’s mass.
A set of 3 kinematic equations is needed to compute

vehicle’s position. Geocentric altitude, latitude, and longi-
tude describe the spacecraft’s position over time as:
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dr
dt

¼ V sin c ð15aÞ
d/
dt

¼ V cos c sinw
r

ð15bÞ
dh
dt

¼ V cos c cosw
r cos/

ð15cÞ

This system of equations is numerically integrated over
time using a 4th order Runge–Kutta solver.

3. Guidance Trajectory Generation Algorithm for Ground

Targeting

3.1. Algorithm Overview

The goal of this algorithm is to compute a trajectory and
corresponding ballistic coefficient profile, subject to con-
straints, that if followed leads a spacecraft to impact the
ground in a desired location. For any given spacecraft
geometry and drag modulation capability, the minimum
and maximum ballistic coefficient can be calculated a priori
based on drag coefficient, mass, and cross-sectional area
and provided as inputs to the targeting algorithm. The drag
coefficient is the most challenging to compute and uncer-
tain of the parameters in the ballistic coefficient formula,
and a detailed analysis of drag coefficient computation
for each regime (free molecular, transitional, continuum)
used in this work can be found in Fedele and
Mungiguerra, 2018. The algorithm will compute a guid-
ance trajectory with ballistic coefficients within the speci-
fied range. This makes the algorithm agnostic to the
specific spacecraft design and facilitates the propellant-
free landing and recovery of an arbitrary spacecraft in a
precise location provided that there is some known ballistic
coefficient modulation capability. The methods discussed
in this section build on prior work by the authors on space-
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craft de-orbit point targeting (Omar and Bevilacqua, 2019;
Omar et al., 2017; Omar and Bevilacqua, 2019). The previ-
ous work only provided a guidance trajectory to a specified
de-orbit latitude and longitude at 100–120 km altitude but
did not provide means of generating a trajectory from the
initial conditions to a specified ground impact point. It also
did not consider requirements on the velocity and flight
path angle at the re-entry interface. The key contribution
of this work is the ability to generate and track a trajectory
all the way to a ground impact point.

The first novel component of the ground targeting
algorithm involves the selection of the de-orbit point.
The desired de-orbit state is defined such that a numerical
orbit propagation of the spacecraft from this state results
in a ground impact in a desired location. The de-orbit
point is the latitude, longitude, and altitude at the de-
orbit state which in this work is at 100 km geocentric alti-
tude. The next phase of the algorithm involves computing
a trajectory that guides the satellite to the de-orbit point
from the initial conditions utilizing the range of ballistic
coefficient modulation achievable by the satellite. Finally,
while a guidance trajectory to the de-orbit point may be
achieved, the final velocity, flight path angle, and atmo-
spheric conditions may vary slightly from those in the
originally selected de-orbit state. This may result in some
along-track error in the landing location. For this reason,
the last novel component of the ground targeting algo-
rithm performs a correction to the portion of the gener-
ated guidance trajectory between 140 km and the de-
orbit point at 100 km to correct for this error and ensure
that the desired landing point is achieved. After this cor-
rection, the complete guidance trajectory consists of a bal-
listic coefficient, position, and velocity time-series from
the spacecraft initial conditions to the ground impact
point, though the tracking of this trajectory can be termi-
nated at any point prior to the ground impact point if
desired.
3.2. De-Orbit Point Selection

The first novel component of the ground targeting algo-
rithm involves computing the de-orbit location at 100 km
altitude that the satellite must pass through to achieve a
desired ground impact location. This is accomplished by
initializing a simulation in a 140 km circular orbit defined
by initial mean orbital elements x140 = ða; e; i;X;x; hÞ =
(6518 km, 0, iinit, 0, 0) where a is semi-major axis, e is eccen-
tricity, i is inclination, X is right ascension of the ascending
node, x is argument of the perigee, and h is true anomaly.
The time is set equal to the approximate expected time of
de-orbit. A satellite trajectory is simulated from this initial
state using an orbit propagator until a geocentric altitude
of 100 km and a re-entry simulator from 100 km until
ground impact. Initiating the trajectory at an altitude of
140 km instead of at 100 km directly helps ensure that
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the velocity and flight path angle as the satellite passes
through 100 km accurately reflect the appropriate values
for a re-entry trajectory. This is important as velocity
and flight path angle at the re-entry interface are the pri-
mary parameters that affect landing location. After trajec-
tory simulation, the increases in X and h at x140 necessary
to achieve a desired impact location are computed. This
is done as follows.

3.2.1. Ground Impact Latitude Targeting

First, the argument of latitude (sum of argument of peri-
gee and true anomaly) at both the desired and actual (from
numerical simulation) ground impact locations can be
computed based on the orbital inclination and the latitude
of each location. During the ascending (northbound) phase
of the orbit, the argument of latitude u at a given latitude l
is computed by

uasc ¼ sin�1 sinðlÞ
sinðiÞ
� �

ð16Þ

The argument of latitude during the descending portion of
the orbit is given by

udesc ¼ p� uasc ð17Þ
To compute the desired argument of latitude udes, the user
must specify whether they want the re-entry trajectory to
occur during the ascending or descending portion of the
orbit. To determine the actual argument of latitude uact
after a re-entry trajectory propagation, it is necessary to
utilize the impact latitude in Eq. (16) and determine
whether the trajectory is ascending or descending by exam-
ining trajectory points before the impact point to determine
whether the latitude of each point is increasing or decreas-
ing. The true anomaly increase necessary in x140 is to arrive
at an impact point of the correct latitude is

Du ¼ udes � uact ð18Þ
3.2.2. Ground Impact Longitude Targeting
The change in right ascension (DX) necessary to correct

for the longitude error can be computed by first calculating
the longitude increase Dku that occurs when a satellite trav-
els from an argument of latitude uact to udes. This is most
easily done by setting h ¼ udes in x140 and computing the
longitude associated with the orbital element set. h ¼ uact
can then be set in x140 and the longitude can be once again
computed. The longitude at uact can be subtracted from the
longitude at udes to get the longitude increase that occurs as
the satellite traverses a true anomaly increase of Du. The
right ascension change in x140 necessary to correct the lon-
gitude error is then

DX ¼ kdes � kact � Dku ð19Þ
where kdes is the longitude of the desired ground impact
location and kact is the impact-point longitude after the tra-
jectory simulation.
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3.2.3. Initial Conditions Update

The desired orbital element increases DX and Dh ¼ Du
can be applied to the initial state at x140 and the trajectory
re-propagated. The process of computing the change in x140

necessary for a desired landing location and re-propagating
the trajectory can be continued until a x140 is found that
results in a trajectory that impacts that ground in the
desired location. When the proper x140 is found, the lati-
tude, longitude, and altitude where the trajectory crosses
100 km geocentric altitude is returned as the target de-
orbit point. The negative flight path angle that is seen for
a passive de-orbit trajectory at 100 km is caused by aerody-
namic drag. If trajectory propagation is initiated from a
high enough altitude so that aerodynamic forces have suf-
ficient time to shape the trajectory, the drag-induced flight
path angle at 100 km will be nearly the same regardless of
the precise initial conditions. For this reason, trajectory
propagation is initiated at 140 km geocentric altitude with
zero flight path angle to ensure that the trajectory has
approximately the correct flight path angle at 100 km.

Note that in some cases, directly applying the desired Du
to x140 and propagating the trajectory results in a conver-
gence failure. On one trajectory simulation, an overshoot
of the desired landing location may occur, but on the next
an undershoot occurs. This overshoot-undershoot cycle
continues indefinitely in some cases. To remedy this, a
change in argument of latitude of kDu instead of Du can
applied to x140 where k is a scaling factor initially set to
1. Each time the sign of the desired Du changes between
iterations of trajectory propagation, k is reduced by a fac-
tor of two. This reduction in k breaks the undershoot-
overshoot cycle and helps ensure convergence.

3.3. De-Orbit Point Targeting

Once the desired de-orbit point at 100 km geocentric
altitude is selected, a trajectory and corresponding drag
profile can be computed to guide the satellite to this de-
orbit point using the techniques detailed in (Omar and
Fig. 6. De-Orbit Point Target
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Bevilacqua, 2019). A flow chart of this de-orbit point tar-
geting algorithm is shown in Fig. 6. Note that a geocentric
instead of geodetic altitude is used to define the de-orbit
point since the targeting algorithm is designed to work with
geocentric altitude. The details of the de-orbit point target-
ing algorithm are summarized for the reader as follows.

Define the spacecraft ballistic coefficient as in Eq. 5. In
this work, the reference area is assumed to be the projected
area perpendicular to velocity. In the case of calculation
with the heat shield deployed, this area is equal to the
diameter of the open heat shield. In the case of calculation
with the heat shield in a folded configuration, this area is
equal to the frontal area of the satellite (see Fig. 1). It
can be shown that given the ability to vary an initial Cb1,
a second ballistic coefficient Cb2, and the time tswap at which
the ballistic coefficient is changed from Cb1 to Cb2, it is pos-
sible to target any point on the Earth with latitude below
the orbit inclination if maneuvering is initiated early
enough. We will define (Cb1;Cb2; tswap) as the control
parameters. Note that Cb2 is maintained until some termi-
nal semi-major axis at which point some pre-set ballistic
coefficient ðCbtermÞ is maintained until de-orbit.

To determine the control parameters needed to target a
desired de-orbit location, a trajectory is first numerically
propagated in a high fidelity simulation environment using
initial guesses for the control parameters denoted by
Cb10;Cb20, and ts0. An effective initial guess is to set Cb10

and Cb20 equal to the average achievable spacecraft ballistic
coefficient and to set ts0 equal to half the expected orbit life-
time remaining with this drag configuration. The resulting
trajectory can then be characterized by two sections. Sec-
tion one is from the initial conditions to the Cb swap point
and section two is from the swap point to the terminal
point. Cb10;Dt10, and Du10 are the ballistic coefficient, time
change, and argument of latitude change during Sec-
tion one and Cb20;Dt20, and Du20 apply during Section two.

A closed form analytical solution is then derived to com-
pute the control parameters (Cb1;Cb2, and tswap) needed to
achieve a desired total time (Dtt) and total change in argu-
ing Algorithm Flowchart.
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ment of latitude (Dut) from the initial conditions to the ter-
minal point based on Cb10;Cb20;Dt10;Dt20;Du10, and Du20
from the original numerically propagated trajectory.

This analytical solution can be summarized as follows.
Assume a satellite with ballistic coefficient Cb1 takes time
Dt1 to achieve some drag-induced change in semi major
axis Da and undergoes argument of latitude change Du1
while achieving this Da. The time and argument of latitude
change a satellite with the same initial conditions and some
different Cb2 will undergo to achieve the same Da (same
orbital decay) are given by

Dt2 ¼ Cb1Dt1
Cb2

ð20Þ

Du2 ¼ Cb1Du1
Cb2

ð21Þ

Since the average rate of change of right ascension ( _Xavg) is
independent of Cb, the change in X experienced during the
orbital decay can be calculated by

DX ¼ _XavgDt ð22Þ
As shown in Fig. 7, if the trajectory of a satellite with some
initial set of control parameters has been numerically prop-
agated (initial trajectory), the de-orbit location of a new
trajectory corresponding to the same initial conditions
but a different set of control parameters can be analytically
estimated by dividing the trajectories into phases where the
Cb is not changing in either trajectory. In each trajectory,
the phases are demarcated by the ballistic coefficient swap
point (tswap), the point at which the semi major axis (orbit
energy level) is the same as at the swap point of the other
Fig. 7. Characterizing Behavior of New
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trajectory (teq), and the terminal point (tterm). For the three
phases before the terminal point, Eqs. (20)–(22) can be uti-
lized to calculate the changes in time and orbital elements
experienced in each phase of the new trajectory. All
changes in time and orbital elements can be added to calcu-
late the final time and orbital elements, and hence the lat-
itude and longitude, at the de-orbit point.

Through an algebraic manipulation of these same equa-
tions, the control parameters (Cb1;Cb2, and tswap) needed to
achieve a desired total time (Dtt) and total change in argu-
ment of latitude (Dut) to the terminal point can be com-
puted based on Cb10;Cb20;Dt10;Dt20;Du10, and u20 from
the original numerically propagated trajectory via the fol-
lowing equations

Cb2 ¼ Cb20 Dt20Du10 � Dt10Du20ð Þ
DttDu10 � Dt10Dut

ð23Þ

Cb1 ¼ Du10Cb10Cb2

DutCb2 � Du20Cb20
ð24Þ

ts ¼ ts0Cb10

Cb1
ð25Þ

The total argument of latitude udes required to de-orbit at
the desired latitude can be calculated by Eq. (16) if the
orbit is ascending and Eq. (17) if the orbit is descending.
The total argument of latitude increase for the trajectory
to land at the correct latitude is then

Dut ¼ udes � uact þ 2pk ð26Þ
where k is an integer. The total time to the terminal point
required to achieve the correct longitude can be computed
by
Trajectory Based on Old Trajectory.
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Dtt ¼ Dtt0 þ kdeo � kdes
xe

ð27Þ

Where Dtt0 is the time to the terminal point in the original
numerically propagated trajectory, kdeo is longitude of the
de-orbit trajectory at the appropriate latitude, kdes is the
desired de-orbit point longitude, and Xe is the rotation rate
of the Earth. If the optimal Dtt cannot be achieved within
the drag control capability of the satellite, Dtt can be
adjusted to ensure that the minimum targeting error is
achieved within the range of feasible satellite ballistic
coefficients.

The analytically computed ballistic coefficient profile is
then refined via a shrinking horizon and drag-work-
enforcement method until a Cb profile is found whose cor-
responding trajectory leads to the desired de-orbit location.
In the shrinking horizon approach, when the trajectory is
propagated to the de-orbit point with the ballistic coeffi-
cient profile dictated by the analytical solution, the first tg
seconds of this trajectory are stored as a part of the guid-
ance solution and the trajectory after tg is utilized to com-
pute another analytical ballistic coefficient profile that will
be numerically propagated and will be approximately tg
seconds shorter than the previously propagated trajectory.
This process continues until a certain error threshold is
reached or a trajectory is propagated that has less than a
certain amount of orbit lifetime remaining. With the
drag-work-enforcement enhancement, the work done by
aerodynamic drag is recorded during the trajectory propa-
gation, and the ballistic coefficient of the satellite during
the first tg seconds of propagation is varied so that the total
work done by drag at tg is equal to the work that should
have been done by this time according to the analytical
solution.
3.4. Terminal Orbit Adjustment

Once a guidance trajectory that leads from the space-
craft initial conditions to the desired de-orbit point is com-
puted, propagation of this trajectory from the de-orbit
point to the ground impact point may not necessarily result
in a ground impact at the desired location. This is because
the final velocity and flight path angle at the de-orbit point
as well as the density profile may not be identical to those
at the initially calculated de-orbit state, even if the latitude,
longitude, and altitude are the same. Fortunately, the
impact-point errors that result from this are almost entirely
in the along track direction and can be corrected by mod-
ifying the ballistic coefficient during the final portion of the
guidance trajectory before the de-orbit point. This ballistic
coefficient adjustment allows for control of the along-track
impact location without the need to control re-entry veloc-
ity or flight path angle directly.

To determine the necessary Cb adjustment, the argument
of latitude increase Dudes needed to achieve the desired
ground impact location must first be computed using the
4345
same novel procedure introduced in Section 3.2.1. Consider
for example the desire to de-orbit at latitude ld in the
ascending portion of an orbit with inclination i. Given an
actual ground impact latitude after numerical simulation,
the effective argument of latitude uimp at ground impact
can be computed using Eq. 16 or Eq. 17 depending whether
the orbit was ascending or descending at the time of
impact. Dudes can then be computed as

Dudes ¼ sin�1 sinðldÞ
sinðiÞ

� �
� uimp ð28Þ

To achieve this desired Dudes, all ballistic coefficient values
between time tadj and the de-orbit point (tdeo) can be mod-
ified according to

Cb ¼ Cb0
Du0

Du0 þ Dudes
ð29Þ

where Cb0 is the original ballistic coefficient and Du0 is the
argument of latitude change between tadj and the de-orbit
point in the initially propagated trajectory. To compute
the tadj that should be used to ensure that the ballistic coef-
ficient change is not excessive, the user can first define the
maximum allowable percentage of ballistic coefficient
change q. In this work q ¼ :04 was used. If T is the approx-
imate orbital period at the semi-major axis of the de-orbit
point, tadj can be computed by

tadj ¼ Dudes
2pq

T ð30Þ

where the orbital period T is given by (Curtis, 2009)

T ¼ 2p

ffiffiffiffiffi
a3

l

s
ð31Þ

This ensures that the percentage change in ballistic coeffi-
cient associated with Eq. (29) will be less than q. A new tra-
jectory from tadj to the ground is simulated with the
modified Cb profile prescribed by Eq. (29). The process of
updating the Cb profile and numerically propagating to
the ground continues until a trajectory is found with an
impact latitude error below a specified tolerance. Note that
the novel process explained in the second paragraph of Sec-
tion 3.2.3 can be utilized to reduce Dudes by a shrinking
scaling factor k to aid in the convergence to a trajectory
with the desired impact latitude. If a certain number of ter-
minal Cb computation iterations take place without conver-
gence to the desired impact latitude, the ballistic coefficient
in the next iteration can be computed by

Cb ¼ Cb0
kðDu0Þ

Du0 þ Dudes
ð32Þ

where k < 1. The trajectory and Cb profile after tadj are
appended to the trajectory and Cb profile before tadj to
obtain a complete guidance trajectory and Cb profile from
the spacecraft initial conditions to the desired ground



Fig. 8. Terminal Orbit Adjustment Algorithm Flowchart.

Fig. 9. Local Vertical Local Horizontal (LVLH) Frame (Curtis, 2009).
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impact point. Fig. 8 contains a flowchart of the terminal
orbit adjustment algorithm.

4. Guidance Trajectory Tracking

4.1. LQR Feedback Control

Due to uncertainties in the drag force, the spacecraft will
eventually drift from the guidance trajectory if the desired
ballistic coefficient profile is applied open loop. While it is
possible to re-generate the guidance trajectory once the
drift exceeds a given threshold, guidance trajectory genera-
tion is computationally expensive and there is no guarantee
that a new guidance trajectory with equally low error will
be found from the new spacecraft initial conditions. For
this reason, feedback control techniques must be utilized
to vary the commanded spacecraft Cb based on the differ-
ence between the actual and desired state to ensure that
the computed guidance trajectory is followed. While the
spacecraft is tracking an initial guidance trajectory, new
guidance trajectories can be periodically generated and
tracked to take into account updated density forecasts.

An LQR-based guidance tracking algorithm can be uti-
lized to ensure the spacecraft remains on the guidance tra-
jectory despite uncertainties. In summary, this tracking
algorithm revolves around the use of the Schweighart Sed-
wick (SS) equations of relative motion (Schweighart and
Sedwick, 2002) to specify the evolution of the in-plane posi-
tion and velocity of the spacecraft relative to the guidance
trajectory in the classic state-space form

_x ¼ Axþ Bu ð33Þ
The use of relative dynamics is advantageous because it
provides an accurate linear approximation of otherwise
nonlinear absolute dynamics which facilitates the imple-
mentation of feedback control.

Considering only the in-plane relative position and
velocity (dx; dy; d _x; d _y) in the LVLH frame (Fig. 9) because
aerodynamic drag cannot be used for out-of-plane control,
and considering a relative d€y due to a difference in the Cb

between the spacecraft and the guidance trajectory, the
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SS linearization can be written as (Schweighart and
Sedwick, 2002)

d _x

d _y

d€x

d€y

2
6664

3
7775 ¼

0 0 1 0

0 0 0 1

b 0 0 d

0 0 �d 0

2
6664

3
7775

dx

dy

d _x

d _y

2
6664

3
7775þ

0

0

0

�qv2g

2
6664

3
7775DCb ð34Þ

where

DCb ¼ Cbsc � Cbg

� � ð35Þ

n ¼
ffiffiffiffiffi
l
a3

r
; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3J 2R2

e

8a2
1þ 3 cosð2iÞ½ �

s
; d ¼ 2nc; b

¼ 5c2 � 2
� �

n2 ð36Þ

With the equations of relative motion in state-space form,
it is possible to use the linear quadratic regulator (LQR)
(Franklin et al., 2002) feedback control approach

u ¼ �Kx ð37Þ
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to drive the relative position and velocity to zero with K

selected to minimize the cost functional

J ¼
Z 1

0

xTQxþ uTRu
� �

dt ð38Þ

where Q and R are square weighting matrices of appropri-
ate dimension. Because the state is four-dimensional and
the control is one-dimensional, Q and R will be 4 by 4
and 1 by 1 matrices respectively and K will be a 1 by 4 gain
matrix with the control given by

DCb ¼ � K1 K2 K3 K4½ �

dx

dy

d _x

d _y

2
6664

3
7775 ð39Þ

Recall that dx and dy are the radial and along track posi-
tion and velocity of the satellite with respect to the guid-
ance trajectory in the LVLH frame shown in Fig. 9.
Because along-track error is far greater than radial error
in general, it makes sense to consider radial error only in
terms of its contribution to along-track error. For this rea-
son, setting

Q ¼

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775 ð40Þ

yields superior tracking performance for a given value of R
than any other value of Q with a comparable matrix 2-
norm. With Q fixed, R must be set based on the desired
magnitude of the spacecraft response to deviations from
the guidance trajectory. This can be done by first defining
Drsat as the desired dy at which the magnitude of the com-
manded change in ballistic coefficient will be equal to
Cbmax

� Cbmin
. That is, the controller will be guaranteed to

saturate at dy ¼ Drsat. The LQR gain K can first be com-
puted using an arbitrary initial R (R ¼ 10; 000 used in this
work) and then recomputed after updating R based on the
initially obtained K to enforce controller saturation at
dy ¼ Drsat. The equation to update R is

Rnew ¼ R0

Cbmax
� Cbmin

K0 0 Drsat 0 0½ �T
 !2

ð41Þ
4.2. Kalman Filter for State Estimation

Because the LQR controller needs an estimate of the rel-
ative, not absolute, position and velocity, the LVLH posi-
tion and velocity relative to the guidance can be computed
for each GPS measurement and treated as the ”observa-
tion” for estimation purposes. A standard Extended Kal-
man Filter (EKF) formulation is used to remove noise
from this observation (Ljung, 1979). First, an initial rela-
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tive state estimate ðxþi�1Þ is converted to the ECI frame,
propagated to the time of the next available measurement
and converted back to a relative position and velocity
ðx�i Þ. Let this numerical propagation process be denoted by

x�i ¼ f ðti; ti�1; xþi�1Þ: ð42Þ
The estimation error covariance (P) is then updated using
the state transition matrix (U) derived from the SS dynam-
ics as

U ¼ eðA�BKÞðti�ti�1Þ ð43Þ
Such that

xi ¼ Uixi�1 ð44Þ
This is the predict phase and can be described mathemati-
cally as

x�i ¼ f ðti; ti�1; xþi�1Þ
P�
i ¼ UiPþ

i�1U
T
i þ Q

ð45Þ

where Q is a user-defined process noise covariance matrix.
The actual (noisy) GPSmeasurement converted to a relative
in-plane position and velocity (z) is finally used to update
the state and error covariance matrices as shown in Eq. 46.

S ¼ GP�
i G

T þ W

Ki ¼ P iG
T S�1

xþi ¼ x�i þ Kiðzi � Gx�i Þ
Pþ
i ¼ ðI � KiGÞP iK

ð46Þ

In Eq. 46, G ¼ I4x4 is the mapping from the state that is
being estimated to the measurement (zi ¼ Gxi), W is a user
defined measurement noise covariance matrix, Ki is the
Kalman gain, and S is an intermediate term used in the cal-
culations. K is an anti-smugness term set slightly greater
than 1 to ensure that the process noise covariance (P) does
not become too small and lead to a lack of responsiveness
of the filter to new inputs.
5. Results

In this section, the results of Monte Carlo simulations
and case-studies conducted to verify the performances of
the algorithms are presented. The reference mission sce-
nario is a micro satellite (50 kg class) released from an
ISS orbit with the intent of a re-entry and landing in Kaza-
khstan for payload recovery. The micro satellite is
equipped with a heat shield that can be repeatedly deployed
and folded on-orbit to provide drag modulation and orbi-
tal maneuvering capabilities. The simulations discussed uti-
lized high fidelity orbit and re-entry propagators with
gravity calculated using the EGM2008 model
(Montenbruck and Gill, 2005) and atmospheric density cal-
culated using the NRLMSISE-00 model (Vallado and
Finkleman, 2014). Gravitational spherical harmonics
through degree and order 4 were used in the EGM2008



Fig. 10. Ballistic Coefficient and Guidance Trajectory Tracking Error over Time.
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model, and historic F10.7 and Ap index values were used
for the NRLMSISE-00 density model.
5.1. Case Specific Simulation Results

Once a desired de-orbit point at 100 km altitude is
selected, the guidance trajectory generation algorithm is
utilized to generate a trajectory from the satellite initial
conditions to the de-orbit point. The ballistic coefficient
during the last part of this trajectory is then adjusted such
that the satellite lands as close as possible to a desired
location after propagation to the ground. The complete
guidance trajectory is then a position, velocity, and ballis-
tic coefficient profile all the way from the spacecraft initial
conditions to the desired ground impact location. In this
study, the desired capsule landing location was a geodetic
latitude and longitude of 47.06 degrees and 58.3 degrees
respectively. In one re-entry scenario, the initial mean
orbital elements were ða; e;X;x; h; iÞ = (6795.6 km,.0007
0, 290.92 deg, 130.06 deg, 80.81 deg, 51.64 deg). The min-
imum and maximum ballistic coefficients were
0.008715 m2/kg and 0.03064 m2/kg respectively. The de-
orbit point selected by the algorithm described in Sec-
tion 3.2 was at a latitude of 30.54 degrees and a longitude
of 29.87 degrees at a 100 km geocentric altitude. This led
to a guidance trajectory with an error of under 4 km at
the ground impact location. Three sinusoidally varying
error factors were included in the simulated tracking of
this trajectory and were multiplied by the density to
model the effects of uncertainties in the aerodynamic drag
force. These error factors had periods of 26 days (solar
rotation period), 1 day (Earth rotation period), and
5400 s (approximate orbital period) and amplitudes of
1.25, 1.1, and 1.1 respectively. These density error profiles
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were selected based on prior literature showing that
NRLMSISE-00 density estimation errors have periodicity
strongly influenced by the orbital period, Earth period,
and Solar period and are on bounded by the aforemen-
tioned magnitudes (Lean et al., 2006). The tracking was
also simulated with an actuator deadband of 5% and
the assumption that the tracker could command a maxi-
mum ballistic coefficient equal to 1.5 times the maximum
guidance ballistic coefficient and a minimum ballistic coef-
ficient equal to the minimum guidance ballistic coefficient
divided by 1.5. This ensures that there is always a suffi-
cient Cb margin to correct for the simulated drag uncer-
tainties and any tracking errors are a result of
suboptimal controller performance rather than a complete
saturation of the actuator. Ballistic coefficient was main-
tained as a state variable during the numerical integration
process with the assumption that 240 s were required for
the drag device to move from the minimum to the maxi-

mum drag configuration and vice versa _Cb

		 		 ¼ Cbmax�Cbmin
240

� �
.

The deadband prevents the commanded ballistic coeffi-
cient from changing unless the desired ballistic coefficient
from the feedback controller differs from the latest com-
manded ballistic coefficient by more than 5%. This mini-
mizes actuator chattering in the face of sensor noise and
greatly reduces the total actuator run-time necessary for
tracking. Fig. 10 shows the ballistic coefficient and track-
ing error over time to the de-orbit point during the guid-
ance trajectory tracking simulation. This highlight’s the
tracker’s ability to maintain the satellite on the guidance
trajectory despite drag force uncertainties. Beyond the
de-orbit point, the satellite can be allowed to re-enter
without further control or an alternative set of tracking
algorithms can be utilized to follow the guidance trajec-
tory all the way to the desired ground impact point.



Table 2
Monte Carlo simulation parameters.

Variable Range Distribution

Semi Major Axis [6778, 6828] km Uniform
True Anomaly [0, 360] degrees Uniform
Eccentricity [0,.004] Uniform

Right Ascension [0, 360] degrees Uniform
Argument of the Perigee [0, 360-h] degrees Uniform

Inclination 51 degrees Constant
Impact Latitude 47.06 Constant
Impact Longitude 58.30 Constant

Cbmax
.03064 m2/kg Constant

Cbmin
.008715 m2/kg Constant

Epoch [11/1/2003, 11/1/2014] Uniform
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5.2. Guidance Algorithm Performance

Five hundred Monte Carlo simulations of the guidance
trajectory generation algorithm were conducted to verify
the ability to calculate an achievable drag profile and cor-
responding trajectory that if followed, will allow the space-
craft to re-enter and land in a desired location. The initial
mean orbital elements were randomly selected to represent
potential ISS initial conditions and the epoch for each run
was randomly selected from within an eleven year period
corresponding to a complete solar activity cycle. The distri-
butions from which the simulation initial conditions and
scenario parameters were selected are shown in Table 2.

In Fig. 11, a map with the landing locations of the sim-
ulated trajectories is shown. As better shown in Fig. 12, in
100% of the cases the guidance trajectory landing error is
below 20 km and in 73.2% of the cases the error is below
Fig. 11. Guidance Algorithm Perfor
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10 km. The average error is 7.146 km and the standard
deviation is 4.05 km, showcasing the innovative algo-
rithm’s ability to reliably generate highly accurate guidance
trajectories down to the ground. Previous iterations of the
guidance trajectory generation algorithm were only capable
of generating trajectories to a de-orbit point latitude and
longitude without consideration of the landing location,
leading to ground impact errors on the order of hundreds
of kilometers (Carná et al., 2019).

The overall mission duration varied between fifty and
three hundred days (see Fig. 13) depending on the simula-
tion epoch. This is because density can vary by up to two
orders of magnitude at a given location within the eleven
year solar activity cycle. These time scales are reasonable
for many potential Space Station sample return missions
and could be further reduced to less then a month using
a larger drag device or a bigger initial delta-v at the deploy-
ment from the ISS (using for example the tethered tech-
nique explained in Brunello et al., 2021). The overall
mission duration reduction is achievable because for all
the guidance trajectories generated, the drag device is gen-
erally only actuated during the last ten to twenty days of
the mission (see Fig. 14). Prior to this, the satellite is in
its maximum drag configuration (heat shield fully
deployed) to decay as fast as possible and no significant
operator inputs are required.
5.3. Tracker Algorithm Performance

In this section, the ability of the system to track a refer-
ence trajectory is analyzed. The tracking of each guidance
trajectory presented in Section 5.2 is simulated using
mance: Dispersion on Ground.



Fig. 12. Guidance Algorithm Performance: Guidance Errors on Ground for 500 MC Runs.
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sinusoidally varying drag errors during the orbital phase
and a fixed drag error during the re-entry phase. As in
the example case in Section 5.1, the sinusoidally varying
error factors have periods of 26 days, 1 day, and 5400 s
Fig. 13. Guidance Algorithm Perfo
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and amplitudes of 1.25, 1.1, and 1.1 respectively. Uncer-
tainties of 10% in the density, vehicle mass, and aerody-
namic coefficient during the re-entry phase are modeled
by a single random error term between [.9 and 1.1] that
rmance: Overall Mission Time.



Fig. 14. Guidance Algorithm Performance: Time Needed for Maneuvering.
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remains constant during each re-entry simulation and is
multiplied by the total aerodynamic drag force. This uncer-
tainty parameter has been selected based on a review of the
literature on re-entry modeling Desai et al., 1997; Desai
and Cheatwood, 2001; Desai et al., 2008. The 10% uncer-
tainty on the drag force during the re-entry phase is conser-
vative as ambient density fluctuates significantly less and is
better known at lower altitudes than at higher altitudes.
The re-entry phase is also short enough that a single
time-invariant uncertainty term can be used. It is worth
underlining that many other factors could be taken into
account for a more detailed analysis. A sensitivity analysis
could be used to identify the dominants parameters, but the
objective of the Monte Carlo analysis reported in this work
is to provide an order of magnitude for landing dispersions.
All tracking simulations are run assuming that the maxi-
mum Cb achievable by the spacecraft is a factor of 1.5
greater than the maximum allowable guidance Cb and the
minimum achievable Cb is a factor of 1.5 less than the
smallest allowable guidance Cb. Active feedback control
is terminated at the de-orbit point and the drag device is
assumed ”locked” to a predetermined Cb at this point.
However, feedback control beyond the de-orbit point
(Fedele et al., 2021) could be employed for actuators that
support it as the guidance trajectory is valid all the way
to the ground impact point.
5.3.1. Tracker Performance
Five hundred Monte Carlo simulations were conducted

to verify the ability to track a drag profile and correspond-
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ing trajectory that if followed, lead the satellite to a desired
de-orbit point. The position error at the de-orbit point is
under 1 km in most of the cases (see Fig. 15), highlighting
the robustness and performance of the tracking algorithm.

Assuming that 240 s are required to fully deploy or
retract the drag device, the actuator run time was below
0.3% of the total mission time in each simulated scenario
(see Fig. 16), indicating that power consumption is unlikely
to be a concern with the proposed aerodynamically con-
trolled re-entry approach. To give an example, the Drag
De-Orbit Device (D3) is a drag actuator for CubeSats that
uses 16.4 Watts peak power while deploying or retracting
(Omar and Bevilacqua, 2019). At a duty cycle of .3%, this
comes to 50 milliwatts of orbit-averaged power draw which
is generally well below the power generation capability of
even the smallest CubeSats.

In Fig. 17, a map with the landing location dispersion is
shown. As better shown in Figs. 18 and 19, in 99.6% of the
cases the error is below 150 km and in 66.6% of the cases
the error is below 50 km. The average error is 42.148 km
and the standard deviation is 31.314 km. Note that no con-
trol is performed beyond the 100 km altitude de-orbit point
in these cases. While such performance is sufficient for
many missions, greater landing point accuracy may be nec-
essary for the recovery of sensitive payloads. To further
increase accuracy at landing, a control system based on
aerodynamic flaps can be used beyond the 100 km altitude.
This propellantless method involves using the flaps to con-
trol the vehicle’s angle-of-attack to generate lift and side
forces (Fedele et al., 2021).



Fig. 15. Tracking Algorithm Performance: Position Error at De-Orbit Point.

Fig. 16. Tracking Algorithm Performance: Motor Run Times during Orbital Phase.
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Fig. 17. Tracking Algorithm Performance: Dispersion on Ground.

Fig. 18. Tracking Algorithm Performance: Latitude and Longitude Errors on Ground.
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5.3.2. Tracker Performance with Sensor Noise, Actuator

Delays, and Kalman filter

In this section, the ability of the system to track the ref-
erence trajectory simulating both sensor noise and actuator
delays is analyzed. A Kalman filter as discussed in Sec-
4353
tion 4.2 is used for this analysis. A GPS position and veloc-
ity measurement is assumed to be available every second
and is generated by adding noise terms to the true ECI
position and velocity. The noise terms consist of a Gaus-
sian component with standard deviation of 5 m for position



Fig. 19. Tracking Algorithm Performance: Tracking Errors on Ground for 500 MC Runs.
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and 5 cm/s for velocity and a sinusoidally varying bias term
consistent with expected performance for commercially
available GPS units (Kovář, 2017).The sinusoidally vary-
ing position and velocity bias errors are given by

Drbias ¼
:001
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ð47Þ

where t is the time since simulation epoch.
Fig. 20 shows the tracking error at 100 km geocentric

altitude (the re-entry interface). In Fig. 21 a map with the
relative dispersion on the ground is shown assuming track-
ing with a Kalman filter to 100 km altitude and an uncon-
trolled trajectory thereafter. Fig. 22 shows the latitudinal
and longitudinal components of the final position error
on the ground. As shown in Fig. 23, in 81.8% of the cases
the error is below 50 km. The average error is 30.5613 km
and the standard deviation is 23.6871. In simulations
including noise and Kalman filtering, the error at the de-
orbit point is slightly larger and the error on the ground
is slightly lower than for the case with no noise and no fil-
tering. This occurs because the Kalman filter acts as a sort
of low-pass filter on the error signal and prevents the feed-
back controller from ”chasing” small perceived errors
caused by either sensor noise or minor deviations from
the guidance trajectory. Near the de-orbit point where
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dynamics are changing rapidly, error is slightly larger when
the filter is included because the feedback controller does
not act as aggressively to correct for observed along-
track errors. However, this lack of rapid maneuvering min-
imizes the magnitude of the drag changes induced by the
feedback controller. This means that the commanded bal-
listic coefficient is closer to the guidance value and thus
the final flight path angle is closer to what is expected in
the guidance trajectory. Because of the sensitivity of the
re-entry trajectory to the flight path angle at the de-orbit
point, this in turn results in a smaller ground impact error
than in the scenario without the Kalman filter.

Fig. 24 shows the drag device actuation motor run
times as a percentage of total orbit lifetime during the
tracking phase with sensor noise, Kalman filtering, and
the assumption that 240 s are required for the drag device
to fully deploy or retract. Due to erroneous tracking error
signals caused by sensor noise that persists despite the
Kalman filter, actuator run time is about 3 times greater
than in the noise free case. However, average actuator
run time is still less than 1% of the total orbit lifetime
and is substantially less than for cases with sensor noise
and no Kalman filter.
6. Conclusions

This paper presents a means of targeting a precise land-
ing location on Earth for a spacecraft by modulating the
aerodynamic forces the spacecraft experiences. First, a
de-orbit point at 100 km altitude is selected such that a



Fig. 20. Tracking Algorithm Performance with Sensor Noise, Actuator Delay and Kalman Filter: Tracking Error at 100 km De-Orbit Point.

Fig. 21. Tracking Algorithm Performance with sensor noise, actuator delay and Kalman filter: Dispersion on Ground.
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re-entry trajectory propagated from this point leads to a
desired landing location. Next, a trajectory and corre-
sponding drag profile are computed that guide the satellite
from the initial conditions to this de-orbit point. Finally,
the ballistic coefficient during the last part of this trajectory
4355
is adjusted to correct for any remaining along-track error
in the landing location. During the orbital phase, the total
aerodynamic drag is modulated based on a feedback con-
trol scheme to ensure the spacecraft remains on the desired
guidance trajectory.



Fig. 22. Tracking Algorithm Performance with sensor noise, actuator delay and Kalman filter: Latitude and Longitude Errors on Ground.

Fig. 23. Tracking Algorithm Performance with Sensor Noise, Actuator Delay and Kalman Filter: Tracking Errors on Ground for 500 MC Runs.
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Fig. 24. Tracking Algorithm Performance with Sensor Noise, Actuator Delay and Kalman Filter: Actuator Run Times.
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Monte Carlo simulations were conducted to verify the
performance and robustness of the ground targeting algo-
rithms. In each of the 500 tested cases, a guidance trajec-
tory and corresponding drag profile were generated from
the initial conditions to the desired landing location. In
all cases, the guidance trajectory landing error was less
than 20 km. This represents an order of magnitude
improvement over prior algorithms that can not generate
trajectories with landing errors this low. The tracking of
each guidance trajectory was then simulated using realistic
sinusoidally varying drag errors during the orbital phase
and fixed aerodynamic force errors during the re-entry
phase. In all cases, the position error at the de-orbit point
was less than 2 km. The average position error on the
ground was 42.2 km with 99.6% of errors less than
150 km with no control beyond the de-orbit point
(100 km altitude). The average error was 30.56 km with
81.8% of errors below 50 km when trajectory tracking
was simulated with sensor noise and a Kalman filter in
the loop. Since the guidance trajectory is valid all the
way to the ground, landing accuracy can be further
improved by performing trajectory tracking beyond the
de-orbit point.

Ultimately, the work in this paper demonstrates that the
landing of a spacecraft in a desired recovery location is
indeed feasible using exclusively aerodynamic forces. The
algorithms are sufficiently robust for a flight mission and
are capable of maintaining the nominal satellite trajectory
in the face of uncertainties in the aerodynamic model.
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