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This paper presents the solutions to the spacecraft relative trajectory reconfiguration problem when a continuous
thrust profile is used, and the reference orbit is circular. Given a piecewise continuous thrust profile, the proposed
approach enables the computation of the control solution by inverting the linearized equations of relative motion
parameterized using the mean relative orbit elements. The use of mean relative orbit elements facilitates the

inclusion of the Earth's oblateness effects and offers an immediate insight into the relative motion geometry.
Several reconfiguration maneuvers are presented to show the effectiveness of the obtained control scheme.

1. Introduction

Spacecraft formation flying concepts have become a topic of interest
in recent years given the associated benefits in terms of cost, mission
flexibility/robustness, and enhanced performance [1,2] Replacing a
complex, monolithic spacecraft with an array of simpler and highly co-
ordinated satellites increases the performance of interferometric in-
struments through the aperture synthesis. The configuration of
formations can also be adjusted to compensate for malfunctioning vehi-
cles without forcing a mission abort or be reconfigured to accomplish
new tasks.

Among the various technical challenges involved in spacecraft for-
mation flying, the reconfiguration problem represents a key aspect that
has been intensively studied over the last years [2] Formation reconfi-
guration pertains to the achievement of a specific relative orbit in a
defined time interval given an initial formation configuration. So far,
many methods have been proposed to solve the aforementioned problem,
ranging from impulsive to continuous control techniques. Impulsive
strategies have been widely investigated since they provide a closed-form
solution to the relative motion control problem. Such solutions are
generally based on 1) the use of the Gauss variational equations (GVE) to
determine the control influence matrix, and 2) on the inversion of the
state transition matrix (STM) associated with a set of linear equations of
relative motion. In Ref. [1] the authors addressed the issues of
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establishing and reconfiguring a multi-spacecraft formation consisting of
a central chief satellite surrounded by four deputy spacecraft using
impulsive control under the assumption of two-body orbital mechanics.
They proposed an analytical two-impulse control scheme for transferring
a deputy spacecraft from a given location in the initial configuration to
any given final configuration using the GVE and a linear relative dy-
namics model characterized in terms of nonsingular orbital element
differences. Ichimura and Ichikawa developed an analytical open-time
minimum  fuel impulsive strategy  associated with  the
Hill-Clohessy-Wiltshire equations of relative motion. The approach in-
volves three in-plane impulses to achieve the optimal in-plane reconfi-
guration [2]. Chernick et al. addressed the computation of fuel-optimal
control solutions for formation reconfiguration using impulsive maneu-
vers [3]. They developed semi-analytical solutions for in-plane and
out-of-plane reconfigurations in near-circular J,-perturbed and eccentric
unperturbed orbits, using the relative orbit elements (ROE) to parame-
terize the equations of relative motion. More recently, Lawn et al. pro-
posed a continuous low-thrust strategy based on the input-shaping
technique for the short-distance planar spacecraft rephasing and
rendezvous maneuvering problems [4]. The analytical solution was ob-
tained by exploiting the Schweighart and Sedwick (SS) linear dynamics
model.

Additionally, the growing use of small spacecraft for formation flying
missions poses new challenges for reconfiguration maneuvering. Due to
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the vehicles' limited size, small spacecraft are typically equipped with
small thrusters which only operate in continuous mode to deliver low
thrust. Many numerical methods have been investigated for the compu-
tation of the minimum-fuel reconfiguration maneuver using continuous
low-thrust propulsion system. Steindorf et al. proposed a continuous
control strategy for formations operating in perturbed orbits of arbitrary
eccentricity [5]. They derived a control law based on the Lyapunov
theory and ROE dynamics parameterization, and implemented guidance
algorithms based on potential fields. This approach allowed time con-
straints, thrust level constraints, wall constraints, and passive collision
avoidance constraints to be included in the guidance strategy. Richards
et al. proposed fuel-optimal control algorithm by using the linear
time-varying Hill-Clohessy-Wiltshire relative dynamics model. The tra-
jectory optimization approach were based on the solution of a
mixed-integer linear programming (MILP) problem [6]. Huntington et al.
developed a nonlinear fuel-optimal configuration method for tetrahedral
formation based on Gauss variational equations. The associated optimi-
zation problem is solved using Gauss pseudospectral method [7]. Massari
et al. proposed a nonlinear low-thrust trajectory optimization method
using a combination of parallel multiple shooting direct transcription and
a barrier interior point method. They exploited a nonlinear dynamics
model to describe the relative motion considering any kind of positional
force field [8].

Ultimately, future formation flying missions will need to operate
autonomously to enhance the mission performance, increase the mission
robustness/flexibility, and reduce the overall costs. The achievement of
such on-board autonomy requires the development of formation control
algorithms that are able to efficiently provide a solution on-board
without scarifying the maneuvering accuracy, [9].

In light of the above challenges, this work addresses the design of a
computationally efficient strategy for the reconfiguration of a formation
in Jy-perturbed near-circular orbits using a finite number of finite-time
maneuvers. The main contributions of this work are:

e the development of a linearized relative dynamics model and the
derivation of the corresponding closed-form solution. In further de-
tails, the results previously published in Ref. [10] are extended by
computing the input matrix and the corresponding convolution ma-
trix. In the framework of spacecraft relative motion, different dy-
namics models have been developed over the years, based on
different state representation and subject to a multitude of constraints
and limitations on the intersatellite range of applicability, the ec-
centricity of the satellite orbits, and the type of modeled perturbation
forces, [11,12]. In this study the relative motion is parameterized in
terms of relative orbit elements (ROE) taking into account the J
perturbation and the control accelerations.

the derivation of the analytical and semi-analytical control solutions
for the in-plane and out-of-plane formation reconfiguration problems,
respectively, using a continuous acceleration profile.

The rest of the paper is organized as follows. In the first section, the
differential equations (and their associated linearization) describing the
relative motion of two Earth orbiting spacecraft under the effects of J,
and continuous external accelerations are presented. A closed-form so-
lution for the linearized relative motion is derived for near-circular orbit
cases, i.e. for very small or zero eccentricity. The subsequent section is
devoted to the derivation of control solutions for the in-plane, out-of-
plane, and full spacecraft formation reconfiguration problems. Analytical
and numerical approaches are proposed to efficiently compute a feasible
reconfiguration maneuver. The final section shows the relative trajec-
tories obtained using the developed control solutions, pointing out their
performances in terms of maneuver cost and accuracy. In the same sec-
tion a comparison with the minimum-fuel maneuver obtained using a
global optimizer is also presented.
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2. Relative dynamics model

In this section the dynamics model used to describe the relative mo-
tion between two spacecraft orbiting the Earth is presented. The model is
formalized by using the ROE state as defined by D'Amico in Refs. [13,14],
and allows for the inclusion of Earth oblateness J> and external constant
acceleration effects.

2.1. Relative orbit elements

The absolute orbit of a satellite can be expressed by the set of classical
Keplerian orbit elements, & = [a, e,i,w, 2, M]". The relative motion of a
deputy spacecraft with respect to another one, referred to as chief, can be
parameterized using the dimensionless relative orbit elements defined in
Ref. [13] and here recalled for completeness,

aq

da_
ae
da
My —M,) + (0g — o) + (24 — 2c)c;, Si
_ ey
St = €rd — €xc = | s e}
€yd ~ Cye 5iy
ig — I By
L (R4 — Qo). i

In Eq. (1) the subscripts “c” and “d” label the chief and deputy sat-
ellites respectively, whereass.) = sin(e) and c,) = cos(e). Moreover,
€x(e) = €(e)Cuy, and e, ) = €(e)Spy,, are defined as the components of the
eccentricity vector and w is the argument of perigee. The first two
components of the relative state e, are the relative semi-major axis, 5a,
and the relative mean longitude §1, whereas the remaining components
constitute the coordinates of the relative eccentricity vector, de, and
relative inclination vector, 6&i. It is worth remarking that the use of the
ROE parameterization facilitates the inclusion of perturbing accelera-
tions, such as Earth oblateness J, effects or atmospheric drag, into the
dynamical model and offers an immediate insight into the relative mo-
tion geometry [14]. In addition, the above relative state is non-singular
for circular orbits (e, = 0), whereas it is still singular for strictly equa-
torial orbits (i, = 0).

2.2. Non-linear equations of relative motion

The averaged variations of mean ROE (i.e. without short- and long-
periodic terms) caused by the Earth's oblateness J, effects can be
derived from the differentiation of chief and deputy mean classical ele-

ments, a;= [amec,imwm-QCaMc]T and ag= [advedvidedagded]T
respectively [15,16],
d, g
éc O3t €a O3x1
A — iz‘ _ Qc . _ id Qd
®e2 = @, | 7| —2cos(i.) Qa2 = wg | T K —2cos(ig)
L 1P £ N4Pa
M, M,
()]
where
i u
K= m=\1-¢ m=|=
a4h; 4 3)
N2 N2 3.5,
Qj =5 COS(lj) —1 P/‘ =3 COS(Zj) -1 Yy = ZJZRI:

e

In Eq. (3) the subscript *” stands for “c” and “d”. J, indicates the
second spherical harmonic of the Earth's geopotential, Ry the Earth's
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equatorial radius and u the Earth gravitational parameter. Computing the
time derivative of mean ROE as defined in Eq. (1) and substituting Eq. (2)
yields

0
(Md - Mc) + (g — @) + (-Qd - Qc)ci(
— €480, Wq + €cSo, e

oy, = ey g — €uCop (00 =opn(a;,a,) “4)
(.Qd - Ql.)S[‘_
with
on(a,a;) =
0
(MaPaKy —n.P.K.) + (K4Qu — K.Q.) — 2(Kyc;, — Kcci.)c,
— _eyAdeQd + ey,cKch
e aKyQu — e K.Q,
0
—2(Kyci, — K.ci,)s;,
%)

In this study only the deputy is assumed to be maneuverable and
capable of providing continuous thrust along x, y, and z directions of its
own Radial-Tangential-Normal (RTN) reference frame (also known as
Local Vertical Local Horizontal (LVLH)). The RTN frame consists of
orthogonal basis vectors with x pointing along the deputy absolute radius
vector, z pointing along the angular momentum vector of the deputy
absolute orbit, and y =z x x completing the triad and pointing in the
along-track direction. The change of mean ROE caused by a continuous
control acceleration vector f can be determined through the well-known
Gauss variational equations (GVE) [17,18]. In fact, as widely discussed in
Ref. [18], the mean orbit elements can be reasonably approximated by
the corresponding osculating elements since the Jacobian of the
osculating-to-mean transformation is approximately a 6x6 identity ma-
trix, with the off-diagonal terms being of order J, or smaller. In other
words, the variations of osculating elements are directly reflected in
corresponding mean orbit elements changes. In light of the above, the
variation of mean ROE induced by the external force is

- Gy -

a.
My + @4 + Qqc;,

edcmd - edswd wWq

dayp = = or(as.f) = Te(a)f, (6)
€4Sw, T €aCuy Dy
iq

L .QdS,‘( m

where the control acceleration vector f is expressed in the deputy RTN
frame components as f = [fy, fy, f)". The individual terms of the control
influence matrix I'r are reported in Appendix A.

The relative motion between the deputy and chief satellites is given
by adding the contributions from Keplerian gravity, the J, perturbation,
and the external force vector f. The final set of nonlinear differential
equations is

0
ng — Nn;
0
0
0
0

S = + sz(amad) + GF(adyf) = g(acvad(am (Sa)f) (7)

Note that the function (e, @4(a, 6a), f) can be reformulated in terms
of a. and éa using the following identities [16],
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a; =ada+a., e;= \/(eccw( + (58)-)2 + (e[sw( + 5ey)2

Qg =i+ iy, My=M,+81— (04 — ) — (24 — Q.)c;, 5y ®)
Sa, + Oey 5i,
0, = tan"! (u) Q,—q +%
e.Cp, + 0e, Si,

such that éa = &(a.,da,f).
2.3. Linearized equations of relative motion

In order to obtain the linearized equations of relative motion, Sa in
Eq. (7) can be expanded about the chief orbit (i.e., 5a = 0 and f = 0) to
first order using a Taylor expansion,

3 o€

da(t) = %oa 505:05“(1)4‘? sa = of =A(a(1)) sa(r) + Bla.(1))f .
f=0 f=0
©)

The matrices A and B represent the plant and input matrices,
respectively. Under the assumption of near-circular chief orbit (i.e.,
e.—0), these matrices are given by

[0 0 0 0 0 07
-A, 0 O 0 ~K.F.S. 0
0 0 0 —K.Q, 0 0
Anc = (10)
0 0 K.OQ. 0 0 0
0 0 0 0 0 0
TK.S.
T‘S‘ 0 0 0 2K.T, O
[0 2 0]
-2 0 0
1 Sue 2, 0O
Bye = — ; an
Nede | —c,, 2s,, 0
0 0 ¢
L O 0 s |

where u. = w, + M, denotes the mean argument of latitude of chief orbit
and the following substitutions are applied for clarity

F.=4+3y, E. =1+n, S =sin(2i),

12)

s SN2 _ 3 7
T, =sin(i.)”, A.= Zn( + 2ECKCPC.
For an analysis of the applicability range of the linear relative dy-
namics model (9)—(11) we address the reader to [14].

2.4. Analytical solution for near-circular linear dynamics model

The solution of the linear system (9), da(t), can be expressed as a
function of the initial ROE state vector da(ty), and the constant forcing
vector, f, i.e. as

da(1) = @(1,10)80x(to) + ¥ (1, 10)f a3
where @(t, ty) and ¥(t,tp) indicate the STM and the convolution matrix,
respectively. As widely discussed in Refs. [10,16], Floquet theory can be
exploited to derive the STM. The STM associated with near-circular linear
relative dynamics model is reported here for completeness
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1 0 0 0 0 0
ANA 1 0 0 —KFSAt 0
0 0 Caw —Stw 0 0
Pretl) =1 o 0 g cu 0 0 a4
0o 0 0 o0 1 0
_%KCSCAt 0 0 0 2KTaA 1

where At =t —tp and Aw = K.Q.At. According to linear dynamics sys-
tem theory [19], the convolution matrix, ¥(t, ty), can be computed by
solving the following integral,

Pre(t,io) = [} Prc(t,7)Bc(@(z))dz

Note that the integrand of the integral (15) does not include the
control vector since f is assumed to be constant over the interval [ty, t].
Substituting the STM and the By matrices reported in Egs. (14) and (10),
respectively, into Eq. (15) yields

(15)

2Au
0 0
nea.We
2Au A Au?
neacWe neacW? Ve
Cuy — Cupp+Chu Sue; ™ Sucg+CAu 0
nea.(1—C)W, n.a.(1 — C)W,
et 1) = ) 16)
Sue; = Sucg+CAu _ Cuey = Cupg+Chu 0
nea.(1 — C)W, nea.(1 — C)W.
0 0 Suc; — Suco
n.a.W,
0 7 K.S.Au?
2 n(,a(,WC2 Ve
F.K.S, (Cuu — Cugy t Sm.oAu)
Vi = W2 Y3
o (We+2K.T)(cu, —Cuy)  2KcTos,, JAu
- n‘«aCWC2 nCaCWC2

where u., and u. o are the mean argument of latitude of chief orbit at the
instant t and ty, respectively, and Au = uc¢ — uco. In Eq. (16) the terms C
and W, are constant coefficients that depend on the mean semi-major
axis, eccentricity, and inclination of the chief orbit as follows
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Note that the mean argument of the latitude can be written as a
function of time using the relationships reported in Eq. (2), i.e., u., =
Uco + Wc(t — to).

3. Reconfiguration control problem

This section presents the derivation of a control solution for the
reconfiguration problem, using a finite number of finite-time maneuvers.
Recall that the trajectory reconfiguration problem denotes the achieve-
ment of a certain user-defined set of ROE after a given time interval.
Again, only the deputy is assumed to be maneuverable and capable of
providing a piecewise continuous thrust along the x, y, and z directions of
its own RTN reference frame.

3.1. General approach

Let us consider N, continuous maneuvers along x direction of
magnitude f,; and duration Atjx = tjxs — tixo, With j = 1, ...Ny, as
illustrated in Fig. 1. Using the near-circular linearized model discussed in
section 2.3, the relative state at the end of each j-th maneuvers da(t; )
can be expressed as a function of se(tj o), the maneuver duration At,,
and maneuver magnitude, f,;, as follows (see Eq. (13)),

f(,/’
Sty = 6a(tjs) = Dby, 120)0(t00) + ¥ (72 110) g

18

tixo and t; ¢ indicate the initial and the final times of the j-th maneuver
along x direction respectively. Note that the instant time t;,s can be
expressed as a function of the maneuver duration Aty as tj,s = tjxo +
At; . According to Eq. (18), the mean ROE at the end of the maneuvering
interval, éa(ty), depend on the mean ROE at the initial maneuver time
da(ty), on the N, maneuvers' durations, Atj,, and on the maneuvers'
magnitudes, f,

8019 = 80(t1.10) = D(t1x0,10)0a(ty) = P(t11.0, 1) 50 (19)
fr,l
Say s = D(t155,10) 0t + ¥ (tixp. tivo) | O (20)
0
Sty = ‘p(lz.x,m tl.xf) oo ¢
S
= D(t2.0,10)8% + P (12,50, 1157)¥ (155, 11x0) | O 21
0

Fig. 1. Continuous control profile (i = x,Yy, 2).

Wc =n.+ Kch + ”l-KcPcv C= K‘:VQ{ . (17)
fi A
fi,Ni “““““““““““““““““““““““““““““““““““““““““““““
i,1
At, ;
>
tz,i,o A 'tz,i,f N N
1,i,0 Lif i N;,i,0
+—> i
Aty |
fi,z “““““““““““““ -
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fea
S0ty = ‘p(lz,x,p fz.x,o)&xz.o + Y’(tlx,[; 12.,,(.0) 0
0
S
= D(tp0, 1)y + (D(tZ.x,/7tl,xf)yl(tl.,x,/'7tlx.0) 0|+ q’(t2.xf7t2,x,0)
0
Sz
x| 0
0
(22)
Ny Suij
801, = Dby, 10)5 + Y P (b, tjag) ¥ (b bico) | O (23)
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When the control thrust has a component along each RTN reference
frame axis, the change of mean ROE vector at the end of the maneuvering
interval is given by,

o, = D(tw, 10)00 +6, +6, +6, (24)
where
s fx,/'
- Z D(tn, by ) ¥ (bnss lic0) | O
Jj=1 0
Ny 0
& = Zd)(tmvt/y-f) Liyss /\0) Svi (25)
= 5
0
Z 4 (t/-,z,f ) tj‘z,()) 0
= s

ip .
with ¢; = L%Dp} €R5, ¢ eRY ¢! € R?, and i = x,y, 2. The reconfi-
guration problem is described by the following expression

A8 jes = 80ges — D (b, 10)000) =G, +6, +6,, (26)
where the term dag, is the desired mean ROE vector at the end of the
maneuvering interval. Eq. (26) represents a set of 6 nonlinear equations
in 3Ny + 3Ny + 3N; unknowns, i.e. the maneuvers' magnitudes f;;, their
application times, t;; o (or alternatively the time of the middle point of the
maneuver, i.e. (o + tis)/2), and the maneuvers' durations, At;;, with
i =,x,Y, 2 Note that the maneuvers-locations and durations will be
expressed in terms of mean argument of latitude throughout the paper,
since the linear relationship that exists between the time and mean
argument of latitude, i.e. u,, = u.o+ Wc(t— to). The vector day is
assumed to be known. According to Eq. (26), at least two maneuvers are
needed to obtain a finite number of analytical solutions.

In Ref. [3] the authors derived the semi-analytical solutions for the
in-plane and out-of-plane reconfiguration problems in near-circular
perturbed orbits using an impulsive maneuver scheme. This paper pre-
sents the analytical and semi-analytical solutions for the same class of
problems using continuous thrust maneuvers, and addresses the problem
of full spacecraft formation reconfiguration. More specifically, the
following reconfiguration problems are considered:

e In-plane reconfiguration:

Sl = {A(saz;\ [A(Sade.x;A(sldva(sex‘dm;A(sey,dm }T g A(sadm };

e Out-of-plane reconfiguration:

= {4sa, =

des

= [A8i s, ASiaes | C Aduey )5
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e Full reconfiguration:

~full
ties

= {A6@)y; = [A8ayes, A tes, ASEes, Adigey]" }

The control solutions are obtained using the STM and convolution
matrices associated with the near-circular dynamics model (see Eq. (14)
and Eq. (16)).

3.2. In-plane reconfiguration

In this section the in-plane reconfiguration problem is addressed. Let
us consider that only three tangential maneuvers are performed by the
deputy spacecraft f} 1, f, 2, and f, 3. This choice allows an analytical so-
lution to be computed. Moreover, as discussed by Chernick et al. in
Ref. [3], the use of three tangential impulses allows finding a minimum
delta-V solution when the reconfiguration cost is driven by the variation
of relative eccentricity vector. For this reason, the approach in this paper
focuses on a similar tangential maneuvering scheme.

According to Eq. (24), the equations governing the evolution of the in-
plane mean ROE are

WC c“c
o + afy2 + s = — 2 Adaas @7
— (27w, — Uy )iy )fin — (2A(uy, — Ty )itny )fy2 — (2Ac (s,
— T3y )lisy )i
2
= Wenede s @8)
(cos(Cu,, + O)iy,)sin((1 — C)ityy))fy1 + (cos(Cus,
+(1- C)uz‘)sm(( — O)itzy) )fy2 + (cos(Cuy, + (1 — C)iis,)sin(
x (1= C)itzy) )fya
_ (L= OWencde s 29
4
(sin(Cu,, + (1 — C)aiy,)sin((1 — C)iy,) )fy1 + (sin(Cuy,
+ (1 = O)iiay)sin((1 — C)iiay) )fyz + (sin(Cuy, + (1 — C)ids,)sin(
X (1= C)itay) )fya
- U= OWente g, 30)
where
ﬁjy.v_ujf;ujo iy =“jf;“j-0 =1,.3 (€29

and u;o and uj; denote the chief mean argument of latitude at times t; o
and t;, ¢, respectively. Defining the variables

Ujoy = (1 = Oujo, + Cuyyy Upyy = (1 = Cluyyy + Cuy, (32)
=~ Uyy— Uy, o
U/-}‘:%:(lfc)uﬁy i=1..3
_ _ (33)
= Uisy + Ui, ~
iy = e Cuy, + (1 = C)u,

2

allows for rearranging Egs. (27)—(31) into a more convenient form, given
by

(1 =-C)W,.n.a,

Uiyfyn + Usyfyr + Usyfys = 1

AdUges (34
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(@A (i, = 0101, oo = (2 (1, = TUs,) s, Mz
~ - —_ OV w2
—(2A (s, — Ts,)Usy Vo3 = WMAM (35)
(cos (61‘),) sin (ﬁh> )];\, + (cos <ﬁz‘) sin <ﬁ2‘> )fv_z
+ (cos (ﬁh) sin <ﬁh> ) /.3
= (1 — CA)‘WL‘"CQC Aﬁex,des (36)
<sm (ﬁ, y ) sin (5, ‘> > for + (sin (ﬁz‘) sin (ﬁZ.y> )fv.z
(sm(U3 )sm<U3)> >fy3
— (I_C‘A)‘Mmﬁe}‘m (37)

It is worth noting that Egs. (34)—(37) match the expressions obtained
for three tangential impulses maneuver in Ref. [3]. Accordingly, the so-
lution of the above system will have the same structure. In light of this,
the locations (expressed as mean argument of latitude) of the maneuver
middle points, i, are given by

Uiy Cuy,

YwEiscTioc IT e
7 Ade, des (38)
U = at -
e <Aaex,de.\>
Ul.)’ = U + klﬂ' Uz,_v = U],y + kzﬂ' U;Ay = Ul.y + k37T
where k; must be an integer number. The thrust magnitudes are
{000 - owans)
fi= : (39)

D

where the quantities 5; and D are detailed in Appendix B. It is worth
remarking that the solution (38)—(39) is determined by assuming that the

maneuvers' locations, ij,, (or Uj,) withj = 1,...,3, are user-defined pa-
rameters, i.e. by reducing the number of unknowns from 9 to 6. Other-
wise, a numerical approach should be used to solve nonlinear system
(38)-(39).

3.3. Out-of-plane reconfiguration

In this section the out-of-plane control solution is presented. In order
to achieve the desired x and y components of the relative inclination
vector at the end of the maneuver, the control solution must include a
component in the cross-track (z) direction. In fact, the only way to modify
the difference in chief and deputy orbit inclination (i.e., §iy) is to provide
a control acceleration along the z-axis of deputy RTN frame. This is
immediately evident from inspection of the linearized equations of
relative motion (see Eq. (10)). If only a single cross-track maneuver is
performed by the deputy satellite, the equations governing the change of
relative inclination vector are (see Eq. (24))

COS(a1)Sin i Vs =5 A (40)
ZKCTC(M,W — /I,Zlqz — l:tl )C ( )S ( ) W2n.a.
(W, + 2K.T,)sin(a, . )sin(ii. fo = =5 Al (41)
—2K.T. sin(u,, — ity )it

The magnitude of the maneuver can be computed by inverting Eq.
(40),
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Wen.a,

2[cos (i, )sin(in..)] +

faa= Abiy ges-

If the maneuver duration, i, 5, is a user-defined parameter, the loca-
tion of the maneuver, U, ,, can be found by substituting Eq. (42) into Eq.
(41) to obtain the following transcendental expression,

2K.T.sin(u, , — ity )il .

2K(TC o~ . ~
(1 cos(7, . )sin(it, ;)

T ul,z) + (Wc +2KrTc)tg(ﬁl<:) -

— U,

Abiy, ey
CAaix.dcx ’

(43

Eq. (43) can be numerically solved by using an iterative algorithm
such as the bisection or Newton-Raphson methods [20]. In this study the
Brent's method [20] implemented in fzero Matlab routine is used for the
solution of Eq. (43). The single out-of-plane maneuver solution for un-
perturbed orbits provides useful insight into choosing a good initial guess
for quick convergence of the iterative approach. Alternatively, a para-
metric analysis of the error function,

J =2K.T.(u, — U, — it1)
2K T. sin(uy, — i)
cos(ﬁl_z)sin(ul_ﬂ)

(W, + 2K.T)tg (i)
A‘Sl‘dcx
- W=,
A(Six,desr

+
i,

(44)

is needed to determine the initial guess for the iterative algorithm.

It is worth pointing out that, under the assumptions of using a single
finite-time maneuver with a given duration, the out-of-plane reconfigu-
ration problem is reduced to the solution of a nonlinear equation (see Eq.
(43)) for the determination of the maneuver location. In fact, the ma-
neuver magnitude is analytically computed through the expression (42).
It must be remarked, however, that the proposed approach only gua-
rantees the achievement of the final desired relative configuration.

3.4. Full reconfiguration

In this section the solution of the full reconfiguration problem is
presented. Without loss of generality, the full reconfiguration is achieved
through three tangential finite-time maneuvers and one single out-of-
plane maneuver. At least one cross-track maneuver is needed to change
the relative inclination vector. Moreover, no radial maneuvers are
considered since they are more demanding in terms of delta-V than
tangential ones for the in-plane motion control, [13]. Assuming that the
maneuvers' durations are user-defined parameters, the following set of
six equations must be solved with respect to the unknowns magnitudes
and locations, f,;, f;1, Ujy and U1, (j = 1,...3), respectively

~ ~ ~ W cYce
vy +lanfyo + i3 fys = R Ada 0 des (45)
—(2/\1: (Mzm - ﬁl.y)l}l,y )f)l - (2/\(, (Mrﬂ, - /M\Z.y)i‘tz‘y) v2 (2/\(-(%,,,

— sy )it )fy

_Sin(ﬁl-z)Sin(ﬁl,Z) + Sil‘l(’u\]‘z - ﬁl.z)ﬁ
+F CKfo< e (i, — iy — . )cOS(@y.)sin (it ) o
2

_W ;CGCAMM (46)
(cos(Cuy, + (1 = C)thry)sin((1 — C)itry))fya + (cos(Cuy,

+ (1 = C)idzy)sin((1 — Ciiay) )fi2 + (cos(Cuy,

+ (1 = C)iizy)sin((1 — C)iisy) ) fya

_UmOWades, )
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(sin(Cu,,, + (1 — C)iiy,)sin((1 —
+ (1 = C)i,)sin((1
+ (1 = C)iiz,)sin((1
(1 - C)Wenea,
4

C)itny) )fy1 + (sin(Cus,
— CO)ity))fyz + (sin(Cuy,
= O)itzy) )fys

ned

Abey, g (48)

W.n.a,

cos(Uy . )sin(iy . )fy 1 = ———— Abix des (49)

(7K£Sr: (ulm - 7"\],y)l:‘l,v)f;",l + (7K¢Sr. (Ml,,( - /I;Z.y)ﬁz,y)f;ﬂ + (7KCSL‘ (Mlm

2K, T.(uw,, — Uy, — ity ;)cos(u ;)sin(i ;) +
+(W, + 2K.T,)sin(u; . )sin(i; .)+
—2K.T. sin(u,; — ity ;)

—Us,)it3,)f5 + fat

2
_ Wina,

= ASiy e (50)

The system (45)—(50) of 6 equations in 8 unknowns can be solved
numerically using a nonlinear least-squares problem method [21]. In this
work, the Levenberg-Marquardt algorithm [22] implemented in the
fsolve Matlab routine is used. Note that the proposed numerical approach
only guarantees the achievement of the desired relative configuration in
a computationally efficient way. However, it does not enable the mini-
mization of the fuel consumption. Ultimately, it is worth remarking that
the obtained solution takes into account the dynamics coupling between
the in-plane and out-of-plane motion.

4. Numerical validation of the control solutions

In this section the relative trajectories obtained using the developed
control solutions are presented, pointing out their performances in terms
of maneuver cost and accuracy. Fig. 2 illustrates the simulation setup
exploited for the validation of the proposed maneuvering solutions.

First, the initial mean orbit elements of the chief and the mean ROE
state are set. Then, the initial mean orbit elements of the deputy are
computed using the identities in Eq. (8). A numerical propagator
including the Earth's oblateness J, effects is used to obtain the history of
position and velocity of chief and deputy spacecraft expressed in Earth
Centered Inertial (ECI) reference frame (J2000). The initial Cartesian
state of both satellites are derived using the linear mapping developed by
Brouwer and Lyddane to transform the mean orbit elements into oscu-
lating and the nonlinear relations between Cartesian state and osculating
elements [23-25]. The control thrust profile is projected into the ECI
frame and added as external accelerations to the deputy's motion. Note
that 100 (kg) class of spacecraft are considered in this work, equipped
with cold gas propulsion system [26] for the relative maneuvering. After
the simulation, the absolute position and velocity of the spacecraft are
converted into the mean orbit elements to compute the accuracy at the
end of the maneuvering interval, defined as
|60 () — S es|ac(to) k=1, ...,6. (51)

Esqy =

In order to verify the effectiveness of the continuous thrust maneuvers
discussed in section 3, three test cases are carried out, involving the in-
plane, out-of-plane, and full reconfiguration maneuvers defined in
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section 3.1. Moreover, a comparison with the corresponding impulsive
control scheme reported in Ref. [3] is presented for in-plane and
out-of-plane reconfiguration problems. A numerical optimizer is also
used to verify the cost efficiency of the proposed solutions. However, it
must be said that a detailed study of the optimality of the solution is not
carried out in the frame of this work. The following minimum-fuel
reconfiguration problems are investigated in the next sections:

e In-plane minimum-fuel reconfiguration. Find f;, i, and i, withj =1,

., Ny, that minimize Avror = Zliyl 2f, jlij, /W, subject to

J

ip

Aé&‘jﬁq gl

- - N N . (52)
lfw| <fmax’ Ujr1y > Uy, |“j+l-,v Jr“j-y} < ""le -

2.

e Out-of-plane minimum-fuel reconfiguration. Find fj;, @, and u;, that
minimize Avror = Z}i’l 2f, jll ;/ We subject to
A(S/\OOP oop

lf }<f;rlar7 Uji1z > Uy, ‘”ﬁrl + i, 3

Ujz| -

< }u]Jr]" -

o Full minimum-fuel reconfiguration. Find fj, i, and u;, withj =1, ...,
Ny, and f;;, @, and iU, that minimize Avror = Ef’glzfy iliy/We +
Z}le 2f, jlij ; / W, subject to

A6l =6, +6.
lfv,/| <fmm= U1y > Uy, |"‘/+1) +"‘/}} < ""/H»
lf } <ffu” ﬁj+] > u]",

where the term fnq. in Egs. (52)-(54) denotes the maximum available
acceleration at the beginning of the maneuvering interval and ranges
from 5x10~* (m/s?) for the in-plane simulated scenario to 5x10~3 (m/s?)
for the out-of-plane and full test cases. In this study, the global optimizer
MultiStart provided by the Global Optimization Toolbox [27] is exploited
to solve the above optimization problems. MultiStart implements sto-
chastic search methods to find the global minimum. It uses multiple
random start points (including the user-defined initial guess) to sample
multiple basins of attraction and starts a local solver, such as fmincon,
from those starting points, [28]. In the presented test cases 400 start
points are used.

(54)

“/y|
‘Mﬁrl +Mj~ < |M]+]4—Mj~

4.1. In-plane reconfiguration control problem

This section presents the trajectories obtained using the analytical

Table 1

Initial mean chief orbit.
a. (km) ey (dim) e, (dim) i. (deg) Q. (deg) u, (deg)
6578 0 0 8 0 0

at(ta),&t(to)

S~ Conversion from

Osculating Element
to ECI
@g,05c(to) = T,V
& 0sc(to) = Te, Vg

Brouwer Linear
Mapping
ay(ty) = @y osc(to)
ac(to) = @c,osc(to)

ra(toitm), va(to:

Conversion from ECI to Osculating

Elements
tm) = @q,05c (to:tm)
Te(tortm), ve(to:tm) = @ osc(to: tm)

Fig. 2. Numerical validation scheme.
Brouwer Linear Mapping
A o5c(to: tm)
= ag(to:ty)

e osc(to: tm)
= a.(to:ty)

.

Orbital
Propagator

Control Solution
{Fy,Fy. Fy }
{1y, 25}

|

Compute the Mean ROE
History
Sa(ty:ty)
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Table 2
Initial and desired relative orbit.
a.sa a.54 (m) a.sey acoey, a,Siy a.biy
(m) (m) (m) (m) (m)
Initial relative 30 —11e3 0 - 50 0 0
orbit, dag
Desired relative 0 - 45 70 - -
orbit, Setges 10.5e3

control solution reported in Egs. (38) and (39) and the numerical solution
given by MultiStart solver. The initial conditions used in the simulations
are listed in Tables 1 and 2 (see first row), along with the desired mean
ROE vector. The initial mean state is expressed in terms of quasi-
nonsingular orbital elements [17] in Table 1. Note that the values of
day and Sages lead to

A&zda
A ges
Aéex.des
A(sey.dex

aAsl g, = a =[—0.03, 1.9172,0.0403, 0.1198]" (km).  (55)

The reconfiguration maneuver lasts 5 orbits, i.e. uf =10z (rad),
corresponding to t, = 439.92 (min). In this simulation a maximum ac-
celeration of 5e — 4 (m/s?) is considered, compatible with the maximum
thrust provided by the cold gas propulsion system [26]. The analytical
solution is obtained by choosing the parameters k = [k;, k», k3] = [0, 1, 6]

(see Eq. (38)), corresponding to the maneuvers' locations, U,;y, listed in
Table 3. This choice derive from the analysis conducted in Ref. [3],
wherein an impulsive solution is computed considering three tangential
impulses placed at the same instants. In addition, the analytical solution
is computed assuming the maneuvers durations At, = [11.01, 22.02,
22.02] (min), corresponding to i, = /4 (rad) and iy = iy, = 7/2
(rad). The maneuvers' magnitudes given by Eq. (39) are f,; =
1.865x107° (m/s%), f,2=-3774x10"5 (m/s?), and fy5=
1.499x 105 (m/s%) (see Fig. 3), corresponding to a total delta-V of
0.0820 (m/s). As discussed in previous section, the MultiStart solver al-
lows the computation of the maneuvers' magnitudes, locations, and du-
rations that minimize the total delta-V. As illustrated in Fig. 3 and
confirmed by the results reported in Table 3, the numerical approach
based on the global optimizer MultiStart reduces the maneuvers' dura-
tions and increases the maneuvers' magnitudes in order to decrease the
fuel consumption. In further details, the MultiStart algorithm provides a
control profile consisting of three maneuvers of magnitude fy"f’ls =—
2.62x10°* (m/s?), 5 = 3.563 x 10~* (m/s?), and f* = 4509x10~*
(m/s?) and duration ARS = [2.94, 0.48, 0.67] (min), with a total ma-
neuver cost of about 0.0749 m/s (AvYs; = 0.07489 (m/s)). In other
words, the MultiStart solution tends to the impulsive optimal one,
decreasing the maneuver delta-V of 8.6% with respect to the analytical

Table 3
Comparison between the analytical and numerical control solution for the in-
plane maneuver.

Man. Loc.Uj, Avjy (m/s) Avyor (m/
(rad) s)
Analytical Continuous Solution [1.245 ] [ 0.0123 ] 0.0820
4.38 —0.0498
| 20.09 | | 0.0198 |
Numerical Continuous Solution 10.67 ] [ —0.0463 0.0749
(MultiStart) 20.14 0.0102
| 26.34 | | 00182 |
Analytical Impulsive Solution 1.245 7 [ 0.0092 ] 0.0748
(13D 438 ~0.0463
20.09 | 00194 |
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Analytical Sol. MultiStart Sol.|
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0 50 100 150 200 250 300 350 400

Time (min)

450

Fig. 3. Control profile for in-plane maneuver.

solution). It must be pointed out that the MultiStart approach provides
better performance in terms of maneuver cost even when the maneuvers'
durations are constrained to be equal to those chosen for the computation
of the analytical solution, i.e. AtyMs =At, =[11.01,22.02,22.02] (min). In
this case, the MultiStart method provides a reconfiguration strategy
requiring a delta-V of 0.0791 m/s (about the 3.5% lower than the delta-V
required by the analytical solution), and consisting of three maneuvers of
magnitude fM = —0.7331x10°* (m/s?), f% =0.1628x10* (m/s?),

y2
M5 = 0.0694x107* (m/s”) placed at Uy, = 4.356 (rad), Usy =

7.5937 (rad), and Us, = 26.4049 (rad).

Figs. 4 and 5 illustrate the mean relative semi-major axis and longi-
tude, and the x- and y-component of mean relative eccentricity vector
respectively. Both osculating and mean ROE are shown in the same plots.
From these figures, both analytical and minimum-fuel continuous control
solutions guarantee the achievement of the desired in-plane conditions in
the given interval of 5 orbits.

Table 4 shows the accuracy for the in-plane reconfiguration maneu-
vers, i.e. the difference between the mean ROE at the end of the ma-
neuver, t,, as computed by the numerical propagator, and the desired
ROE multiplied by the chief mean-semi-major axis (see Eq. (51)). The
final error is at the meter level and is mainly due to the approximations
introduced by the osculating-to-mean transformation at the end of the
simulations.

Ultimately, Fig. 6 shows the evolution of relative position in along-
track/cross-track plane of chief RTN frame. In the same figure the
finite-time maneuvers are depicted (see green markers). The initial and
the desired relative positions are indicated by the cyan and black
markers, respectively.

and

4.2. Out-of-plane reconfiguration control problem

Here, the relative motion given by the cross-track maneuver pre-
sented in section 3.3 is shown. In this scenario, a maneuver lasting 7
orbits is considered, corresponding to t,, = 655.2 (min). The initial and
desired states listed in Tables 5 and 6 are used to run the verification
simulations. The values of &y and dag.s yield the following change of
ROE

A g

_ T
Asi o | = 10:3950, 0.0497]" (km).

a Ad® g, = a, { (56)

Eq. (43) is solved using the Brent's method [20] implemented in fzero
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for the “fzero” solver. Differently, the author of [3] used the closed-form
Table 4 ) ) control solution for unperturbed orbit as initial guess for the iterative
Accuracy of control solutions for in-plane maneuver. algorithm, i.e. U, = atan(Aiy ge;/Aixqes). The semi-analytical solution is
€5q (M) €5 (m) €5e, (m) €5e, (m) computed setting a maneuver duration of about 23 (min) (corresponding
Analytical Continuous Solution ~ 0.0449  2.182 0.197 0.034 to iy, = /2 (rad)) and provides a control profile made of a maneuver of
Numerical Continuous Solution 0.0451 2.187 0.192 0.035 magnitude f,; = 3.505 x 104 (m/SZ) located at ﬁl_yz = 12.649 (rad) (see

Matlab routine (referred to as semi-analytical continuous solution from
now on). It is worth remarking that a parametric analysis of the error
function, J (see Eq. (44)), is carried out to determine a good initial guess

Table 7), corresponding to a total delta-V of 0.492 m/s. The Brent's al-
gorithm converges after 8 iterations. Table 7 shows also the maneuver
location and the delta-V associated to the continuous solution given by
the MultiStart solver and to the semi-analytical impulsive solution
computed in Ref. [3]. The numerical approach based on the MultiStart
tends to decrease the maneuver duration and increase the magnitude.
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Fig. 6. Relative orbit projected on x-y plane of chief

| In-plane Trj. Analytical Initial Pos. <l Final Pos. “ In-plane Man. RTN frame.
01 4
g of :
x
0171 g
-11.4 -11.2 -1 -10.8 -10.6 -10.4
y (km)
| In-plane Trj. MultiStart Initial Pos. <l Final Pos. “ In-plane Man.
T T T T T T T
01r 1
E
< 0f ) 1
>< V\‘—— -
01 : 1
1 1 1 1 1 1 1
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Table 5 Semi-analytical Sol. —— Sol.
Initial mean chief orbit. i
X
a. (km) e, (dim) e, (dim) i; (deg) Q. (deg) 4 (deg) 5 . : , . . .
6828 0 0 78 0 0
4
Table 6 3
Initial and desired relative orbit. g
a.éa a6k a.oey acdey a.diy acdiy f’N
m m) m  m 2
Initial relative orbit, dag 0 0 0 — 50 5 70
Desired relative orbit, - - - - 400 120 1
00 ges
N I N I A R
0 100 200 300 400 500 600 700
Table 7 Time (min)

Comparison between the semi-analytical and numerical control solutions for the
out-of-plane maneuver.

Man. Loc. Uy, Aviz (m/  Avror (m/
(rad) s) s)
Semi-analytical Continuous Solution ~ 12.649 0.492 0.492
(fzero)
Numerical Continuous Solution 0.0661 0.443 0.443
(MultiStart)
Semi-analytical Impulsive Solution 0.1275 0.443 0.443
(3D

More specifically, the MultiStart solver gives an extremal solution, i.e.
MS = fne =5%x1073 (m/s?), consisting of a maneuver of 1.47 (min)
located at the beginning of the maneuvering interval (see Fig. 7). Note
that the continuous semi-analytical solution is employed to initialize the
MultiStart optimizer in this simulation. As expected, the MultiStart
method reduces the total maneuver delta-V with respect to the

Fig. 7. Control profile for out-of-plane maneuver.

semi-analytical solution of about 12%, achieving the fuel consumption
obtained by the optimal impulsive solution (see Table 7). However, when
the maneuver duration is constrained to be equal to 23 (min), i.e. to the
value set for the computation of the semi-analytical solution, the Multi-
Start solver does not provide an improvement in terms of delta-V, i.e.
AVYS. =0.492 (m/s), even though the cross-track maneuver has a
different position and magnitude (f¥°=-3.5019x107* (m/s® and
" = 3.2119 (rad)).

Fig. 8 shows the change of mean and osculating relative vector over
the maneuvering interval. Accordingly, both the continuous semi-
analytical solution and the numerical one given by the MultiStart solver
allow the achievement of the desired formation configuration within the
7 orbits maneuvering interval. Table 8 reports the accuracy at the end of
the maneuvering interval for the designed out-of-plane maneuver. Here,



G. Di Mauro et al.

Acta Astronautica 153 (2018) 311-326

W0 9 [—b«,,, (Semi-analytical) Table 9
3001k ba_ (MultiStart) Initial mean chief orbit.
B O ba, . Des. a. (km) ey (dim) ey (dim) i. (deg) Q. (deg) u (deg)
=< 200 b (Semi-analyti
o’ sa, . (MultiStart) 6578 0 0 20 0 0
100 -
0 200 400 600 Table 10
Time (min) Initial and desired relative orbit.
r5) a.6a acoi acoex acoey adiy acdiy
e m) (m) (m) (m) (m) (m)
Initial relative orbit, sao 30 — 11e3 0 —0.05 5 70
Desired relative orbit, 0 — 45 70 400 120
OO dos 10.5e3
0 200 400 600
Time (min)

Fig. 8. x- and y-component of mean relative inclination vector due to out-of-
plane maneuver.

Table 8
Accuracy of the control solutions for the out-of-plane maneuver.
&5i, (m) &1, (m)
Semi-analytical Continuous Solution (fzero) 0.3014 0.0134
Numerical Continuous Solution (MultiStart) 0.3555 0.0165

the final error is at the centimeter level at most.

Fig. 9 illustrates the trajectory projected on the cross-track/radial
plane of the chief RTN reference frame, along with its location. The
initial and the aimed relative positions are indicated by the cyan and
black markers, respectively.

4.3. Full reconfiguration control problem

In this section the full reconfiguration results are discussed. Here, a

maneuver interval of 7 orbits is considered, i.e. ur = 14z (rad). Tables 9
and 10 report the initial and desired mean ROE respectively. In this
scenario, a simple analytical solution cannot be computed, as discussed in
section 3.4. Consequently, the Matlab built-in routine fsolve is used to
derive the continuous control solution, i.e. to solve the nonlinear system
of equations (45-(50) with respect to the variables Uiz, f;1, U1y, Uay,
Usy, and f,; with j = 1,...,3. It is worth recalling that the fsolve solver
does not minimize the fuel consumption but only guarantees the
achievement of the desired relative conditions. As discussed in section
3.4, the maneuvers' durations are known parameters and, in this studied
case, they are set equal to At, =[11.01,22.03, 22.03] (min) (corre-
sponding to i1, = /4 (rad), ttay = U2y = 7/ 2 (rad)) and At = 22.03
(min) (corresponding to ii; , = #/ 2 (rad)) for tangential and cross-track
maneuvers, respectively. The position of the second and third along-
track maneuvers are enforced to have the form iUy = Uiy + kor/
(1 -C) and U3y = Uy + ksz/(1— C), being ky = 1 and ks = 6 integer
numbers. This allows reducing the numbers of variables to 6.

Table 11 reports the maneuvers' locations and cost obtained using
both numerical approaches. The fsolve solver provides three tangential
maneuvers of magnitude f,; =0.1716x 10~* (m/s2), fya=—
0.3765 x 10~* (m/s?), andf,3 = 0.1564 x 1075 (m/s%) and a single cross-

Fig. 9. Relative orbit projected on x-z plane of RTN

frame.
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100 Jaosc (fsolve)
&yosc (MultiStart)
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g" m\_Jm\,Jm\,Jm\,J 8, on (FSOIVE)
< 0 JJ 4 o (MultiStart)
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Time (min)
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Fig. 12. x- and y-component of mean relative eccentricity vector due to full

reconfiguration maneuver.

Table 11
Comparison between the two numerical control solutions for out-of-plane
maneuver.
Man. Man. Avjy (m/s) Avy Avror
Loc.ijy Loc. U1 (m/s) (m/s)
(rad) (rad)
fsolve 1.142 12.68 0.0113 0.523 0.604
Continuous 4.29 —0.0497
Solution 20.04 0.0206
Multistart 4.279 31.54 —0.0322 0.427 0.546
Continuous 32.659 0.0285
Solution 42.078 —0.0140
x107
2 fsolve Sol.
" MultiStart Sol.
G oln =
£
=
-l
4
0 200 400 600 800
Time (min)
: %107
(\2 2
£
<
N1
0 il
0 200 400 600 800
Time (min)

Fig. 10. Control profile for full reconfiguration maneuver.
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Fig. 11. Relative mean semi-major axis and longitude due to full reconfigura-
tion maneuver.

track maneuver of magnitude f,; = 3.955x10~* (m/s?), with a total
delta-V of 0.604 (m/s) (see Fig. 10). As can be seen, MultiStart-based
approach produces an improvement of 6.6% in terms of delta-V with
respect to the fsolve solution. Again, the optimizer tends to reduce the
maneuvers' duration and raise the magnitudes to decrease the delta-V.

However, the obtained minimum-fuel solution is not extremal, i.e. ‘fy J’

with j=1,...,3 and |f;1] are lower than the maximum value fpa =

322

600 S (fsolve)
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Fig. 13. x- and y-component of mean relative inclination vector due to full
reconfiguration maneuver.

5x1073 (m/sz). It is worth remarking that the numerical continuous so-
lution obtained through the fsolve routine is exploited as initial guess of
MultiStart solver.

Figs. 11-13 illustrate the variation of the mean and osculating ROE
over the time, whereas Fig. 10 shows the component x and z of the
control thrust vector given by the two employed numerical approaches.
From these figures, both numerical approaches guarantee the achieve-
ment of the desired formation configuration within the maneuvering
interval of 7 orbits.

Figs. 14 and 15 illustrate the relative orbit projected on radial/along-
track and radial/cross-track planes of chief RTN frame, respectively.
From these plots, the dynamical coupling between the in-plane and out-
of-plane motion can be clearly observed. Thus, with reference to Fig. 15,
the out-of-plane trajectory is modified by the along-track maneuvers
(green markers).

Finally, Table 12 summarizes the accuracy of the designed maneu-
vers. Here it is shown that the proposed maneuvering scheme controls
the mean relative longitude with comparatively coarse accuracy
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Fig. 14. Relative orbit projected on x-y plane of RTN frame.
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Fig. 15. Relative orbit projected on x-z plane of RTN frame.

(e — 17 m, 45 — 6 m). However, the errors on the other components
of final ROE vector remain small (at the centimeter level).

Note that the full formation reconfiguration might be achieved by
combining the solutions detailed in sections 3.2 and 3.3. However,
considering the cross-track and along-track maneuvers separately doesn't
account for the dynamics coupling between the out-of-plane and in-plane
relative motions. For the sake of the example, let us assume to tackle the

same full reconfiguration problem here studied by solving separately the
in-plane and out-of-plane reconfiguration problems using the analytical
and semi-analytical methods described in sections 3.2 and 3.3 respec-
tively. Table 13 shows the maneuvers' location and magnitudes as well as
the corresponding delta-V, assuming the maneuvers' durations are the
same chosen to determine the maneuvering strategy through the fsolve-
based approach. In this case, a decrease of the relative longitude and
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Table 12
Accuracy of control solutions for full maneuver.
€sa €52 Ese, Esey Esiy Esiy
(m) (m) (m) (m) (m) (m)
fsolve Continuous 0.349 17.13 0.444 0.060 0.683 0.689
Solution
Multistart Continuous 0.348 6.21 0.423 0.056 0.696 0.528
Solution
Table 13

Separately computed in-plane
reconfiguration maneuver.

and out-of-plane solutions for the full-

Man. Loc. Man. Av(m/ Man. Avror
(rad) s) Magnitudex10~* (m/s)
(m/s%)
In-plane 0.1847 0.0817
Solution u = Avy = fy = {70.376}
(analytical) 0.149
1.142 0.012
4.292 —0.049
[20.040} {0.0197}
Out-of-plane Uy, = Avy, = fz1 =3.955 0.522
Solution 12.68 0.522
(fzero)
relative inclination accuracies could be observed, i.e. sg’/ %P — 25.89 (m)

ipfoop _

and 44 1.25 (m), even though the total maneuver cost remains the

b/o% _ 0 0817 + 0522 = 0.604 (m/s).

same, i.e. Avpor

4.4. Accuracy comparison between continuous and impulsive approaches

The impulsive scheme implies an instantaneous variation of the
deputy velocity with no change of position, i.e. an instantaneous change
of mean ROE ([3]). In fact, an impulsive maneuver is only a mathematical
model that doesn't allow accounting for the effects due to finite duration
thrust on the relative dynamics. In light of this, the impulsive approach
can be adopted only when the firing interval is small as compared with
the orbital period, otherwise it might fail in achieving the desired level of
accuracy. Many real applications might require a long time maneuver in
order to meet some specific constraints, e.g. the maximum thrust pro-
vided by onboard actuators. The proposed continuous approach over-
comes this problem by including the input matrix, Byc, in the derivation
of control solution. To show the increased maneuver accuracy of the
continuous approach over the impulsive one, let consider the same sce-
nario described in section 4.1 (see Tables 1 and 2). Without loss of
generality, the in-plane reconfiguration is assumed to be performed by

three tangential maneuvers located at ﬁjy = [4.39,16.96,26.38] (rad)
(i.e., k = [ki, ka2, k3] = [1,4,7]). Note that the instantaneous velocity
change computed by the impulsive approach is transformed into a con-
stant acceleration dividing the delta-V by firing duration, i.e.

ang _awWe s,
ity

57
Atj,)’ (57)

imp __
5t =

Here, the maneuver durations are At, = [22.02,44.04,66.07] (min),

corresponding to i, = {’5’, n’,%ﬂ:| (rad). Table 14 reports the reconfigura-
tion accuracy as defined in Eq. (51) for both continuous and impulsive

schemes. As can be seen, the impulsive strategy produces a high error on

the final relative eccentricity (e; = /€2, + egey = 53.55 m), whereas it
provides the same accuracy level on the mean semi-major axis and
longitude. In fact, the equations describing the variation of de, and de,
(29)-(30) are nonlinear in terms of parameter i;, with j = 1,...3. Since

Table 14
Accuracy of control solutions for out-of-plane maneuver.
€50 (m) &5 (m) €5, (M) €5, (m)
Continuous Solution 0.045 2.459 0.189 0.039
Impulsive Solution 0.047 2.474 16.665 50.901

the mapping between the continuous thrust ;';'P and the impulse Av;"f is
linear, substituting Eq. (57) into Egs. (29) and (30) doesn't cancel the
parameter ii;,. Hence, the relationships obtained by imposing Eq. (57) to
Egs. (29) and (30) do not match the corresponding equations of impul-
sive model reported in Ref. [3]. However, the above linear map allows
reducing Egs. (27) and (28) to the corresponding equations obtained by
the impulsive scheme.

Finally, it is noteworthy that when the firing duration decreases the
accuracies of continuous and impulsive solutions tend to be the same. In
fact, sin(w;,) ~ 1, when 1;,—0 (i.e., At;,—0), reducing Eqgs. (27) and
(28) to the corresponding impulsive equations.

5. Conclusion

This paper addressed the computation of control solutions for
spacecraft formation reconfiguration problems using finite-time maneu-
vers. A fully analytical solution for in-plane reconfiguration maneuvers
was derived by inverting the relative orbit element-based linearized
equations of relative motion and considering three tangential maneuvers.
A semi-analytical approach was proposed for out-of-plane relative mo-
tion control with a single maneuver. In addition, a solution for the full
reconfiguration problem was numerically computed taking advantages of
the results obtained for the in-plane and out-of-plane problems. A
minimum-fuel solution was also derived for in-plane, out-of-plane, and
full reconfiguration problems using a global optimization algorithm.

Numerical simulations showed the performances of the proposed
control schemes in terms of maneuver cost and accuracy. The analytical
and semi-analytical solutions derived for the in-plane and out-of-plane
problems, respectively, guarantee a final accuracy at the centimeter
level, whereas the numerical solution derived for the full reconfiguration
problem provides an accuracy at the meter level. In addition, the iterative
algorithms used for solving the out-of-plane and full reconfiguration
problems could be easily implemented onboard given their proven fast
convergence capability (at most 11 iterations). The main drawback of the
proposed approaches is that they only allow finding a feasible maneu-
vering strategy, i.e. only guarantee the achievement of the desired final
relative configuration. In other words, they do not enable the minimi-
zation of the maneuvering cost. The results presented in this paper,
however, showed that the maximum increase of 12% of the total delta-V
with respect to the corresponding minimum-fuel solution can be reached.

Finally, the results showed that the use of a dynamics model taking
into account the dynamical effects of a continuous control acceleration
enables increasing the accuracy of the maneuver, with respect to the
impulsive strategy. More specifically, for the studied scenario it turned
out that the use of the developed linear dynamics model improves the
accuracy on the mean relative eccentricity vector.

Future work on the topic will include a thorough optimality assess-
ment of the solutions derived in this work, as well as the extension of the
continuous scheme to orbits of arbitrary eccentricity.
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Appendix A. Control influence matrix I’
The elements of control influence matrix I'r (see Eq. (6)) are

Y13 =Vs1 =V52=Ye1 = V2 =0

2eqs, 2(1 + eacy,)
y = — = —
" nangae Nl de
yy = M€ _ 215
2! adnd(l + ﬂd) aqng (1 + edcfd)
gy = [(2 + eacr)sn] —— (ci. —cu)
2 agng(l + nd)(l + edcfd) 3 adnd(l + edCfu)Sid
NaSe, My (2 + ed‘fﬂz)cﬂa + Nylxa GRS
Vi =" Y=
aqng aqng (l + edcfd)
s = Ha€y.aS0,€018 (i) __MaCoy
. ad”d(l + edcﬂ,) 4 agng
_ N4(2+ eacy,)so, + Naeya __ Mgexase,cotgia)
Va2 = ) V43 =
a,,nd(l + edcﬁl) adnd(l + edcﬁ,)
Yo = NaSo, NaCo,5i.

adnd(l + edcfd) Tes = adnd(l + edc,(,)sid

where f; and 6, represent the deputy satellite's true anomaly and true argument of latitude respectively, and e, 4 = e4cos(wg) and e, 4 = egsin(wgq). The
symbols sy and ¢ denote the sin(.) and cos(.) functions respectively.

Appendix B. In-plane reconfiguration

This appendix details the quantities Z; withj = 1, ...3 and D needed to compute the analytical solution for the in-plane reconfiguration (see Eq. (39)).

8 = (=1)"(=1)*ATs, sin <ﬁ27).> (u,m - ﬁh)Aéaqu

= _(_l)kl (_l)kgAt’ﬁZ‘y sin (ﬁ'%v) (ur,,, - 62,y>46ade.\'+
= — A ASess(ky — k) Us, Us,+ (B.1)
= +(=1)"(=1)(1 — C)W.Us, sin (ﬁz,_‘)Azdﬁ

= (=" (=1)*(1 — C)W. Uy, sin (i,y)mm

g = (—1)" A Us, sin (ﬁ,_y> (u,,,, - 33,y)A5adﬂ+

= 7(71)1q (71)1{3Ag51<y Sin <ﬁ37y> (ufm - ﬁlvy)Aéaer
= +ﬂ'Ao(k3)ﬁ1yﬁ3,yA5€de:+ (B.2)
=+ 1= WD sin(Tr, )t

= (=DM (=1)*(1 — C)W, U, sin (iJ,)Azdﬂ

g = (—1)k' ALﬁz,v sin (ﬁ1,> (u, — ﬁg,y)Aéam-s—

= —(~1)"(~1)*A.T,, sin (52_},) (u,,,, - ﬁl,y)Aaa,w
= +7A (k)T Us, Ay + (B.3)
= +(=1)"(1 — C)W.T, sin <5l_y>4/1dﬂ+

= (=) (=1)%(1 — C)W. U, sin (ﬁz,))Mm
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o _ o N (B.4)
D = (—1)%T,,Us ks sin(Uz,y> — (=1)"T,,Usyks sin(U;_,)}
where
Adeyes = 1| A + Ade]. (B.5)
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