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A B S T R A C T

As large numbers of increasingly smaller spacecraft continue to be launched, means of efficient and reliable
orbital maneuvering and orbit disposal have become increasingly necessary. For spacecraft that do not contain
thrusters, aerodynamic drag modulation using a retractable drag device or attitude changes presents itself as an
efficient way to perform orbital maneuvers and control the re-entry location.

This paper introduces an aerodynamically based re-entry guidance generation algorithm for low Earth orbit
spacecraft that exhibits significant accuracy, robustness, and efficiency. The paper also presents a novel guidance
tracking algorithm whereby the drag device of a spacecraft is deployed or retracted relative to a nominal de-
ployment profile (given in the guidance) based on the difference between the actual and desired state of the
spacecraft. A full state feedback linear-quadratic-regulator control scheme is utilized with the Schweighart
Sedgwick equations of relative motion to drive the relative position and velocity between the spacecraft and the
guidance trajectory to zero. A problem-specific Extended Kalman Filter implementation is also introduced to
remove noise from the GPS-derived relative motion estimate.

One thousand Monte Carlo simulations of the guidance generation algorithm with randomized initial con-
ditions and desired re-entry locations are conducted, resulting in an average guidance error of 12.5 km and a
maximum error below 106 km. The tracking of these aerodynamic decay guidances with the aforementioned
algorithms is also simulated with drag force uncertainties up to a factor of two and navigation errors (noise and
bias) comparable to that expected from a CubeSat GPS unit. Despite these simulated errors and uncertainties,
this approach provides guidance tracking down to a re-entry altitude of 120 km with a final position error under
6 km for all cases. The algorithms detailed in this paper provide a way for any spacecraft capable of modulating
its drag area to autonomously perform orbital maneuvers and execute a precise re-entry.

1. Introduction

Spacecraft orbit and re-entry control is traditionally conducted
using powerful chemical engines capable of producing a nearly in-
stantaneous change in velocity [1]. The advent of small spacecraft such
as CubeSats [2] with minimal or no propulsion systems has fueled the
development of creative orbit control methods including the use of
aerodynamic drag. The concept of orbit control using aerodynamic drag
has been considered for decades [3] and a number of researchers in-
cluding the authors of this paper have worked on this problem [4–10].
Recently, Planet Labs was able to control a constellation of over 100
CubeSats using aerodynamic drag [11]. However, many of these aero-
dynamic orbit control algorithms are designed for bang-bang control
(min or max drag only), only work with small initial spacecraft

separations, do not employ feedback control to correct for un-
certainties, or result in long maneuver completion times. Given the
increasing number of spacecraft in LEO, there is a concern about orbital
debris mitigation, especially since most small satellites cannot perform
propulsive de-orbit burns. Several teams have developed drag devices
that increase the cross-sectional area of a satellite to expedite de-orbit
[12–14], but these devices do not control the re-entry location of the
host satellite.

Satellites containing components such as tungsten or titanium that
may survive re-entry and pose a hazard to ground assets [1] need a way
to control their de-orbit location in order to obtain a launch [15,16].
NASA debris mitigation guidelines [15] require that the casualty risk
from re-entering debris must be less than 1 in 10,000 and the Inter-
Agency Space Debris Coordination Committee (IADC)1 has stated that
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debris surviving re-entry must not cause an undue risk to persons or
property. Debris risk mitigation requirements are only expected to be-
come stricter and it will become increasingly necessary for satellite
operators to implement controlled re-entry capabilities. If a satellite
cannot contain a propulsion system due to volume, mass, or power
constraints, modulation of the aerodynamic drag experienced by the
satellite can be utilized to control the de-orbit location. This drag
modulation could be achieved using a retractable drag device [17,18]
or by changes in the spacecraft's cross-sectional area. Prior works by
Virgili [19] and Dutta [20] discuss algorithms for aerodynamically-
based re-entry control, but these algorithms have some limitations
(further elaborated on in Ref. [21]). Virgili's algorithm provides only an
initial guess of a satellite ballistic coefficient profile that must be fol-
lowed to de-orbit in the desired location. This initial guess must be used
in a numerical optimizer that is computationally intensive and has no
convergence guarantees. Dutta proposes directly using NASA's Program
to Optimize Simulated Trajectories (POST2) numerical optimizer to
calculate the desired ballistic coefficient profile. These algorithms are
not suitable to run onboard a spacecraft due to the lack of convergence
guarantees and Virgili and Dutta have not fully investigated the ability
of a spacecraft with a retractable drag device to track the generated
guidances in a realistic environment with model uncertainty and sensor
noise.

The guidance generation algorithm introduced in this paper is based
on the authors’ previous work [21,22] but offers substantial novelties
and improvements. The shortcomings of the previous algorithm and the
new improvements are discussed in Sections 2 and 3. This work also
introduces a high performance LQR (Linear Quadratic Regulator)
[23,24] based guidance tracking algorithm (Section 4) that enables a
spacecraft capable of active drag modulation to follow the guidance
despite sensor noise and drag force uncertainties. While many feedback
control algorithms in prior literature were designed for bang-bang
control (drag device fully deployed or fully retracted), the presented
tracking algorithm allows intermediate deployment levels, resulting in
significant power savings. These bang-bang approaches could not be
generalized for continuous control so a fundamentally different control
architecture was required for this algorithm. The tracking algorithm
utilizes the in-plane relative position and velocity (four states) through
the Schweighart Sedgwick relative motion dynamics [25], resulting in
improved performance over prior algorithms which only account for
two states (generally mean anomaly and semi major axis) and do not
consider J2 perturbations in the dynamics. A means of analytically
calculating the Q and R matrices for the LQR controller based on the
desired system performance (a topic often neglected) is also presented.
Section 5 presents a unique version of an EKF (Extended Kalman Filter)
[26] to filter GPS measurement noise. Instead of filtering on the inertial
satellite position and velocity, the EKF filters directly on the position

and velocity relative to the guidance. This allows the error covariance
to become smaller in the radial direction, leading to more accurate state
estimates. This formulation also helps to smooth out noise-like errors
that result from the guidance being an imperfect representation of
reality. By keeping guidance tracking in mind when designing the EKF,
a more accurate state estimate and superior controller performance can
be obtained than if the noise filter and the controller were developed in
a completely decoupled manner. Finally, Section 6 discusses the results
of simulations to validate various aspects of the tracking controller
performance including the cases of actuator saturation, sensor noise,
bias errors, model uncertainties, and actuation delays. A Monte Carlo
campaign consisting of 1000 guidance generation and guidance
tracking simulations was also conducted with randomized initial con-
ditions and realistic models of sensor noise and drag estimation errors.
The results of these simulations are shown in Section 6.4 and provide a
complete validation of the guidance, navigation, and control algorithms
needed for spacecraft de-orbit point targeting using aerodynamic drag.
Such a comprehensive development and detailed validation of all GNC
algorithms relevant to this problem is not available in prior literature.

2. Previous guidance generation algorithm

2.1. Previous algorithm overview

The algorithm discussed in this paper is based on the guidance
generation procedure discussed in the authors’ prior work [21,22] but
offers significant improvements. The algorithm in Ref. [21] calculates
an initial ballistic coefficient (Cb1), second ballistic coefficient (Cb2), and
time value tswap. The spacecraft maintains Cb1 until time tswap, Cb2 until a
specified orbit semi major axis aterm is reached, and a predefined bal-
listic coefficient Cbterm until the de-orbit altitude. If the proper control
parameters (Cb1, Cb2, and tswap) are chosen, the spacecraft will arrive at
the desired latitude and longitude at the de-orbit altitude. Note that in
Refs. [21] and [22] and in this paper, Cb is defined as

=C C A
m2b
d

(1)

where Cd is the drag coefficient, A is a reference area (often the cross-
wind surface area), and m is the mass of the spacecraft. In Ref. [22], an
analytical solution is developed where, if given a numerically propa-
gated spacecraft trajectory with some Cb profile, the de-orbit location of
a spacecraft with the same initial conditions but a different Cb profile
can be calculated. Using this analytical solution and an initial nu-
merically propagated trajectory with some control parameters Cb1, Cb2,
and tswap, a means of calculating the Cb adjustments needed for proper
targeting is developed. In this method, the tswap value is first adjusted to
achieve the increase in true anomaly necessary for latitude targeting

Nomenclature

a Semi-major axis km( )
Cb Ballistic coefficient m kg( / )2

e Eccentricity
ECI Earth centered inertial
EKF Extended Kalman Filter
i Inclination (radians)
J2 Constant that describes Earth's oblateness
K LQR gain matrix
LEO Low Earth Orbit
LQR Linear quadratic regulator
n Mean motion radians s( / )
Q LQR weighting matrix for state error
R LQR weighting matrix for actuator effort
Re Radius of Earth

r Spacecraft position vector km( )
SS Schweighart Sedwick relative motion model
sd Ballistic coefficient scaling factor
T Period of orbit or sinusoidal noise term s( )
t Time s( )
tc Time controllability of analytical solution (s)
u Argument of latitude (radians)
v Spacecraft velocity vector km s( / )
Wd Work done by aerodynamic drag per unit mass km s( / )2 2

θ True anomaly (radians)
μ Earth's gravitational parameter km s( / )3 2

ρ Density kg m( / )3

Right ascension of ascending node (radians)
ω Argument of perigee (radians)

e Earth rotation rate (radians/s)
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with the minimum possible longitude error. Next all three control
parameters are adjusted using an analytical solution to yield proper
longitude targeting. The trajectory is propagated with these new control
parameters, and the control parameters are once again adjusted via the
analytical solution based on the de-orbit location of the new simulated
trajectory. This process continues as shown in Fig. 1 until a maximum
number of iterations is reached or a numerically propagated trajectory
is achieved with targeting error below a specified threshold.

While the prior guidance generation algorithm is extremely effec-
tive in many scenarios, there are some limitations. For one, there must
be some difference between Cb1 and Cb2 for changes in tswap to induce
any change in orbital behavior. In the beginning of the simulation, Cb1
and Cb2 are set as far apart as possible to maximize the effectiveness of
changes in tswap, but over the course of several targeting iterations, it is
possible to have Cb1 and Cb2 very close together, making latitude tar-
geting impossible. This issue also hinders the ability to re-generate a
new guidance with the initial guidance control parameters as an initial
guess. If the spacecraft is following an initial guidance and is beyond
the swap point (tswap), the remainder of the guidance until the terminal
point can be characterized by =C Cb b1 2 and an arbitrary tswap. This
means latitude targeting via tswap variations will not be possible.
Guidance re-generation must begin from scratch with Cb1 and Cb2 as far
apart as possible which increases computation time and provides no
convergence guarantee.

Another limitation of the prior algorithm is due to the trade-off
between controllability and sensitivity. If targeting begins with in-
sufficient time remaining before the de-orbit, it may not be possible to
find a Cb profile that yields a desired de-orbit point (insufficient con-
trollability). However, if maneuvering begins too early, the dis-
crepancies between the analytical and numerical solutions will become
large because the errors introduced by the assumptions made in the
analytical solution will grow over time. If the remaining orbit lifetime is
above a certain threshold, the analytical and numerical solutions will
become so inconsistent with each other that the algorithm will not
converge. In Ref. [21], guidance generation simulations using a high
fidelity orbit model were set to begin when the spacecraft had roughly
one week of orbit lifetime remaining. This allowed the algorithm to
converge, but resulted in longitude errors of up to 1250 km due to the
limited controllability.

3. Improved Guidance Generation Algorithm

3.1. Algorithm general form

The new guidance generation algorithm in this paper address all the
shortcomings discussed in Sec. 2 using an improved analytical solution
and a shrinking horizon strategy. As in the prior algorithm, the analy-
tical solution calculates the control parameters (Cb1, C t,b swap2 ) needed
for de-orbit point targeting. However, both latitude and longitude tar-
geting are handled in the same calculation and the only restriction on
the initial Cb values is that they must lie between the minimum and
maximum allowable satellite ballistic coefficients (Cbmin and Cbmax). This
eliminates the issue of insufficient latitude controllability discussed
previously and allows for a more complete exploration of the available
control space, yielding more accurate solutions. The shrinking horizon

strategy capitalizes on the benefits of high controllability at high initial
altitudes and the reduced sensitivity to drag force perturbations and
errors in the analytical solution assumptions at low altitudes. The use of
mean argument of latitude instead of true anomaly in the analytical
solution as well as the implementation of the drag-work enforcement
method help reduce the discrepancies between the analytical and nu-
merical solutions and lead to an improved accuracy and higher con-
vergence rates.

The general form of the shrinking horizon strategy is as follows. A
trajectory is first propagated with a set of control parameters analyti-
cally calculated for proper targeting. Because of the high sensitivity, it
is unlikely that the de-orbit point in the numerically propagated tra-
jectory will correspond to the one predicted by the analytical solution.
A predefined percentage of the beginning of the newly propagated
trajectory (time tg) is saved as the initial part of the guidance. The rest
of the trajectory is then utilized to analytically calculate a new set of
control parameters. Another trajectory is propagated with these para-
meters using the state of the prior trajectory at tg as an initial condition
and a predefined percentage of that trajectory is appended to the first
part of the guidance. The process continues until a trajectory is pro-
pagated that has less than a specified amount of orbit lifetime re-
maining or lands within a specified distance of the target point. That
entire trajectory is then appended to the previously calculated initial
components of the guidance. At this point, the guidance generation
algorithm is complete and a reference trajectory corresponding to a
desired Cb profile has been created. The logic behind this algorithm is
depicted graphically in Fig. 2. Fig. 3 illustrates the case of a general
shrinking horizon problem where each computation of the problem
solution (in this case the Cb profile) represents a steadily decreasing
time between the initial condition and the solution horizon (in this case
the de-orbit point). Fig. 4 illustrates how each numerical simulation
begins at a lower semi major axis than the previous one, hence
shrinking the horizon (remaining semi major axis) with each propa-
gation. In Fig. 4, each thin, colored line represents a trajectory simu-
lated all the way to the de-orbit point with some drag profile. The line
sections with the thick black outlines represent the portions of the
trajectories that are included in the guidance and to which the drag-
work enforcement method is applied. In other words, the final guidance
consists of the trajectory defined by the thick black outlines.

The drag-work enforcement method involves iteratively modifying
the Cb during the first tg seconds of the propagation of each trajectory to
ensure that the total work done by aerodynamic drag at tg is equal to the
work that should be done by this point according to the analytical so-
lution. Recall that the portion of the trajectory before time tg will be
added to the guidance and is represented by the thick black outlines in
Fig. 4. Because the analytical and numerical solution experience the
same total work done by drag at tg, the discrepancy between them is
reduced and the accuracy and convergence rate of the algorithm are
significantly increased.

3.2. Analytical solution for control parameters

The goal of the analytical solution is to estimate the ballistic coef-
ficient profile necessary to de-orbit in a desired location. The solution is
developed by first deriving a mapping between the changes in the Cb

Fig. 1. Prior Targeting Algorithm Schematic [21].

S. Omar, R. Bevilacqua Acta Astronautica 155 (2019) 389–405

391



profile and the changes in the final orbital elements of a trajectory. This
mapping is then inverted to compute the Cb profile changes necessary to
induce the changes in the final orbital elements necessary to de-orbit in
the desired location.

3.2.1. Mapping from initial conditions and drag profile to de-orbit location
The analytical re-entry point targeting solution is based on the re-

lation [22] that the time and argument of latitude required for a
spacecraft to decay from an initial to final semi major axis due to
aerodynamic drag increase linearly with decreasing ballistic coefficient.
As an example, assume satellite “A″ with ballistic coefficient CbA takes
time tA to achieve some change in semi major axis a and undergoes
an argument of latitude change uA during this drop. The time and
argument of latitude change a satellite “B” with the same initial con-
ditions and some different CbB will undergo to achieve the same a is
given by

=t
C t

CB
b A

b

A

B (2)

=u
C u

CB
b A

b

A

B (3)

Though this is completely true only if the satellites are in a circular
orbit around a spherical Earth and density is a function of only semi-

Fig. 2. Basic form of the improved guidance generation algorithm.

Fig. 3. Shrinking horizon control general form.

Fig. 4. Semi major axis over time for all trajectories in shrinking horizon guidance generation example.
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major axis, it is a reasonable approximation for analytically char-
acterizing the effect that a Cb change will have on an orbit. Note that
even though u is an angle and can be defined between 0 and 2 , the
cumulative value of u since the initial state must be used in Eq. (3).
For example, if satellite “A” has made 5 complete orbits since the initial
conditions, then =u 10A , not 0. One may notice that in Ref. [22],
true anomaly is used instead of argument of latitude in Eq. (3). Though
the theoretical results are the same, using argument of latitude provides
some implementation benefits. First, the argument of the perigee is not
well defined for circular orbits and in a high fidelity numerical simu-
lation, will oscillate wildly due to J2 perturbations. This makes it dif-
ficult to accurately compute the true anomaly. Because argument of
latitude is the sum of true anomaly and argument of perigee however, it
is well defined even in circular orbits and does not exhibit erratic be-
havior in a high fidelity simulation environment. Additionally, the
mean argument of latitude, defined as the sum of the mean anomaly
and argument of the perigee with the J2-induced short periodic oscil-
lations subtracted out, can be utilized when processing the results of
numerical simulations. This ultimately leads to more accurate analy-
tical solutions, justifying the use of argument of latitude instead of true
anomaly in this paper.

Eq. (2) and Eq. (3) are proven formally in Ref. [22] using the Gauss
Variation of Parameters for a circular orbit around a spherical Earth,
but they can also be understood intuitively using the work energy
theorem. Because the only force that does work on the satellite in a
circular, two-body orbit is drag, the total change in orbital energy over
a period of time is equal to the work done by drag. Because the drag
force is directly proportional to the ballistic coefficient, a factor x in-
crease in Cb will result in a factor x increase in the rate of energy
change. Because orbital energy can be defined in terms of semi major
axis =( )E µ

a2 , this results in a factor x reduction in the time required
to achieve a desired semi major axis change. Similarly, because the rate
of change of argument of latitude in a circular orbit is equal to mean
motion which is directly related to the semi major axis =( )n µ

a3 , a
factor of x reduction in the time spent decaying from some ai to af will
lead to a factor x reduction in the total change in argument of latitude
experienced during that time.

Since the average rate of change of right ascension ( avg) is in-
dependent of Cb, the change in experienced during the orbital decay
can be calculated by

= tavg (4)

Inclination is assumed not to change significantly during the orbital
decay, and eccentricity and argument of the perigee are both zero in a
circular orbit.

As shown in Fig. 5, if the trajectory of a satellite with some initial set
of control parameters has been numerically propagated, the de-orbit
location of a new trajectory corresponding to the same initial conditions
but a different set of control parameters can be analytically estimated
by dividing the trajectories into regions of semi major axes where the Cb
is not changing in either trajectory. Note that in Fig. 5, the solid line
represents an initial numerically propagated trajectory and the dashed
line represents a new trajectory whose de-orbit location we would like
to calculate without numerically propagating the trajectory. Define
phase i as the region between some initial and final semi major axis
where the satellite in the numerically propagated trajectory maintains a
fixed ballistic coefficient Cbi0. Define the changes in time, argument of
latitude, and right ascension during region i of this trajectory as ti0,

ui0, and i0. Eqs. (2)–(4) can be utilized to solve for the ti, ui, and
i that would have occurred in phase i had the ballistic coefficient

instead been Cbi as

=t C t
Ci

bi i

bi

0 0

(5)

=u C u
Ci

bi i

bi

0 0

(6)

=
t

ti
i

i
i

0

0 (7)

In Fig. 5, phase 1 occurs between t0 and tsold in the initial numeri-
cally propagated trajectory, phase 2 occurs between tsold and teqold, phase
3 occurs between teqold and ttermold, and phase 4 occurs between ttermold and
the de-orbit point. Note that in each phase, the ballistic coefficient is
unchanging in both the new and initial trajectories, so Eqs. (5)–(7) can
be used to find the changes in time, , and u in each phase of the new
trajectory. If ti for only the new trajectory is known during phase i, Eq.
(5) can be solved for ti0 and this value can be used to find ui0 and

i0. Such a case occurs in phase 2 of Fig. 5 where t20 cannot be
calculated explicitly because teqold is not known, but =t t ts eq2 new new
can be calculated once =t teq1 new has been found using Eq. (5). Given a
set of initial orbit elements at time t0, the time and orbital elements of
the new trajectory at the de-orbit point can be found by

Fig. 5. Dividing orbits into phases for analytical de-orbit point calculation [21].
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= +
=

t t C t
C

4
f

i

bi i

bi
0

1

0 0

(8)

= +
=

u u C u
C

4
f init

i

bi i

bi1

0 0

(9)

= +
= t

t
4

f init
i

i

i
i

1

0

0 (10)

= =e 0f f (11)

=i if init (12)

The final semi-major axis of the new trajectory will be assumed
identical to that of the numerically propagated trajectory because de-
orbit occurs at a fixed altitude. These orbital elements can be converted
to an ECI position and velocity and with knowledge of tf , to a de-orbit
latitude and longitude. Observe that during phase 4, both trajectories
have the same Cb so they experience the same changes in orbital ele-
ments.

3.2.2. Computing the ballistic coefficient needed for Re-Entry point targeting
The analytical solution framework can be utilized to determine the

ballistic coefficient changes necessary to achieve a desired change in
the de-orbit location. The argument of latitude required to de-orbit at
the desired latitude is calculated based on the transformation matrix
between the perifocal and ECI frames given by eq. 4.49 in Ref. [27]. In
the perifocal frame, the origin is at the orbit focus (center of Earth), the
x-axis points toward the perigee, the z-axis is aligned with the orbit
angular momentum vector, and the y-axis completes the right-handed
coordinate system. The z-component of the ECI position vector is equal
to the last row of the perifocal to ECI frame direction cosine matrix
multiplied by the perifocal position vector.

=r lat r i i isin( ) [sin( )sin( ) cos( )sin( ) cos( )]
cos( )
sin( )

0 (13)

Recognizing the trigonometric identity

= + = +usin( ) sin( ) (sin( )cos( ) cos( )sin( )) (14)

Eq. (13) can be simplified to

=u lat
i

sin sin( )
sin( )1

1

(15)

Because the sin 1 function only returns values between /2 and
/2, u1 represents passage of the desired latitude on the ascending

(northbound) portion of the orbit. The u value that yields latitude tar-
geting on the descending (southbound) portion of the orbit can be
calculated by

=u u2 1 (16)

For either selected value of u, the total necessary change in argu-
ment of latitude from t0 to the de-orbit point necessary for proper la-
titude targeting can be defined as

= +u u k2f (17)

where k is an integer. Selection of the proper value of k will be dis-
cussed later, but an initial k can be selected to yield uf as close as
possible to (the total argument of latitude change in the numerically
propagated trajectory). This selection maximizes the accuracy of the
analytical solution by minimizing the deviation from the propagated
trajectory.

The longitude error that would result if uf were achieved but the
orbit lifetime remained the same can be calculated by determining the
orbital elements of the numerically propagated trajectory at the de-
orbit point, setting the argument of latitude to uf , and calculating the

impact latitude and longitude using the original de-orbit time. For a
given longitude error between this impact location and the desired
impact location denoted by

=e imp des (18)

the increase in orbit lifetime necessary to correct for this longitude error
is calculated by

=td
e

e avg (19)

where e is the rotation rate of Earth and avg is the average rate of
change of right ascension in the numerically propagated trajectory.
Note that ( )e avg is the angular rate at which the Earth rotates re-
lative to the orbital plane.

To solve for the Cb profile needed to achieve a desired orbit beha-
vior, consider the case where tswap occurs at the same semi-major axis in
both the new and initial trajectories. In this case, phase 2 in Fig. 5
ceases to exist, and there are only two phases between t0 and the
terminal point (tterm). We will call phase 1 the region between t0 and
tswap in both trajectories and phase 2 the region between tswap and tterm.
Furthermore, because both trajectories experience the same time ( t i4 )
and argument of latitude ( u i4 ) change during the terminal phase
(phase 4 discussed earlier), the desired time ( tt) and argument of la-
titude ( ut) at the terminal point can be calculated as

= = +u u u u ut f i t d4 0 (20)

= +t t tt t d0 (21)

where tt0 and ut0 represent the time and change in argument of la-
titude to the terminal point in the initial numerically propagated tra-
jectory. ud is the increase in total change in argument of latitude
needed for proper targeting. Eq. (20) and Eq. (21) allow us to modify
only Cb1, Cb2, and tswap to attempt to achieve the desired ut and tt . ut
and tt are related to Cb1 and Cb2 by

= +u C u
C

C u
Ct

b

b

b

b

10 10

1

20 20

2 (22)

= +t C t
C

C t
Ct

b

b

b

b

10 10

1

20 20

2 (23)

Solving Eq. (22) for Cb1 yields

=C u C C
u C u Cb

b b

t b b
1

10 10 2

2 20 20 (24)

Substituting Eq. (24) for Cb1 in Eq. (23) and solving for Cb2 yields

=C C t u t u
t u t u

( )
b

b

t t
2

20 20 10 10 20

10 10 (25)

Finally, tswap must be updated to enforce the condition that the swap
point occurs at the same semi major axis in both trajectories. This is
achieved by setting

=t
t C

Cs
s b

b

10

1
new

old

(26)

Note that variables with subscript “0” correspond to the initial nu-
merically propagated trajectory.

3.2.3. Ensuring feasible parameter ranges
Applying the aforementioned method directly causes issues when

there is insufficient ballistic coefficient controllability available to
achieve the desired ut and tt . In such a case, because it is easier to
control the along-track position than the cross-track position with
aerodynamic drag, a set of control parameters should be selected that
precisely achieve the desired ut and achieve a tt as close as possible
to the desired value. With ut calculated using Eq. (20), the minimum
and maximum achievable tt for this ut can be calculated by first sol-
ving Eq. (25) for tt to get
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= +t C t u t u C t u
C u

( )
t

b b t

b

20 20 10 10 20 2 10

2 10 (27)

For a maximum tt , the largest Cb2 and smallest Cb1 that yield the
correct ut must be used. This allows the satellite to spend as much of
its orbit as possible at higher altitudes where the orbital period is longer
and hence the time required to achieve a given u is also longer.
Substituting Cbmax for Cb2 in Eq. (24) gives the Cb1 needed to achieve the
desired ut if =C Cb b2 max . If the required Cb1 is greater than Cbmin, then
the combination of Cb1 and Cb2 is valid. If not, Cb2 is too large and the
greatest Cb2 that yields a feasible Cb1 can be calculated by solving Eq.
(24) for Cb2 and substituting Cbmin for Cb1 to get

=C
C u C

C u u Cb
b b

b t b
2

20 20

10 10

min

min (28)

The maximum tt can be found by substituting the calculated values
of Cb1 and Cb2 into Eq. (27). Similarly, the minimum tt requires the
maximum valid Cb1 and the minimum valid Cb2 that yield the correct ut
so that the satellite can spend the greatest amount of time at low alti-
tudes where the orbital period is shorter. These Cb values can be found
as explained earlier by substituting Cbmin for Cb2 in Eq. (24) and in-
creasing Cb2 as necessary to ensure < <C C Cb b b1min max .

If the desired tt is within the feasible range for the given ut , then
the control parameters required for proper targeting can be calculated
using Eqs. (24)–(26). If not, tt should be set to either the minimum or
maximum feasible value to minimize the magnitude of the difference
between the desired tt and the best achievable tt .

It follows from Eq. (17) that proper latitude targeting is achieved by
any ut satisfying

= +u u k2t ti (29)

where k is an integer and uti is the ut initially calculated for proper
latitude targeting. In each analytical targeting iteration, a range of ut
values to test should be calculated. Based on the value of td, a range of

ut values that give proper latitude targeting can be calculated that will
contain the ut that minimizes the longitude targeting error. If td is
positive, orbit lifetime must be increased and more orbits are needed,
while if it is negative, lifetime must be decreased and fewer orbits are
needed. The lower bound for the increase in orbit lifetime per orbit (Tl)
is given by the orbital period of a satellite with zero altitude while the
upper bound (Tu) applies to a satellite with a equal to the initial semi
major axis of the guidance trajectory (ai).

=T R
µ

2l
e
3

(30)

=T a
µ

2u
i
3

(31)

From Eq. (30) and Eq. (31), the range of ut values to test can be
calculated as follows where each ut must satisfy Eq. (29). If t 0d

+ + +u u floor t
T

u ceil t
T

2 1 , 2 1t t
d

l
t

d

u
i i

(32)

while if >t 0d

+ + +u u floor t
T

u ceil t
T

2 1 , 2 1t t
d

u
t

d

l
i i

(33)

The floor function rounds its argument down to the nearest integer
while the ceil function rounds its argument up to the nearest integer.
The ut limits specified by Eq. (32) and Eq. (33) should always be
updated if necessary to ensure that they are within the absolute ut
limits. The greatest orbit lifetime and hence the maximum ut occurs
when = =C C Cb b b1 2 min and is calculated using Eq. (22) as

= +u C u C u
Ct

b b

b

10 10 20 20
max

min (34)

By similar reasoning, the minimum ut occurs when
= =C C Cb b b1 2 max and is calculated by

= +u C u C u
Ct

b b

b

10 10 20 20
min

max (35)

To fully explore the control space, all tt values that are between the
minimum and maximum orbit life and satisfy the equation

= +t t n2
t t

e avg
i

(36)

where n is an integer should be tested with each ut value in the range
given by Eq. (32) and Eq. (33). Note that the maximum and minimum

tt can be calculated via a similar method using Eq. (23) as

= +t C t C t
Ct

b b

b

10 10 20 20
max

min (37)

= +t C t C t
Ct

b b

b

10 10 20 20
min

max (38)

For each tested combination of tt and ut , the time controllability
(tc) should be recorded. tc characterizes the available orbit lifetime
control margin and is defined as follows where ttmin and ttmax are the
minimum and maximum terminal times for the desired ut , and ttdes is
the desired tt :

• If ttdes cannot be achieved for the desired ut

= ( )t min t t t t,c t t t tmin des max des (39)

• If ttdes can be achieved for desired ut

= ( )t min t t t t,c t t t tmin des max des (40)

As mentioned previously, a limitation of this analytical theory is
that it requires the swap point to occur at the same semi major axis in
the new and initial numerically propagated trajectories. To circumvent
this limitation, analytical control parameter solutions for initial tswap
values between the minimum and maximum feasible tswap in increments
of ti seconds can be tested. The minimum tswap is 0 and the maximum
tswap occurs if Cb1 is maintained all the way to the terminal point and is
given by

= +t t C t
Cs

b

b
10

20 20

10
max (41)

The t1, t2, u1, and u2 values corresponding to a trajectory with
this new tswap can be analytically calculated as described previously by
dividing this new trajectory and the initial numerically propagated
trajectory into three phases before the terminal point as shown in Fig. 5
and calculating the time and change in argument of latitude in each
phase using Eq. (5) and Eq. (6). These newly calculated t and u
values can be used directly as the t t u, ,10 20 10, and u20 in the
aforementioned analytical control solution. The testing of the full range
of tswap values implicitly allows the swap point to occur at all semi-major
axes below the initial semi-major axis, facilitating a full exploration of
the control space. Among all tested scenarios, the combination of
parameters that yields the largest tc should be chosen and the Cb1, Cb2,
and tswap corresponding to these parameters should be returned.

3.3. Drag-work enforcement method

The drag-work enforcement method minimizes the discrepancies
between the analytical and numerical solutions by ensuring that the
work done by drag in the numerical solution at time tg matches the
expected work done by drag at that time in the analytical solution. The
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rate at which work (per unit mass) is done by drag (Wd) is defined as

= =W C va v v vd d b (42)

To use this method, the total work done by aerodynamic drag is
treated as a state variable (in addition to ECI position and velocity) in
the orbit propagation and is found by numerically integrating Eq. (42)
along the orbit. To analytically calculate the expected Wd at some point
in time tw for a new trajectory with the same initial conditions as an
initial numerically propagated trajectory but a different Cb profile, the
trajectories can be divided into phases defined by initial and final semi
major axes where the Cb does not change in either trajectory as shown
in Fig. 5. The times required for each phase of the new and old tra-
jectories ( ti and ti0 values) can be determined using Eq. (5). From
these times, one can determine the phase of the new trajectory that the
satellite would be located in at tw. If tw is in phase i, the time between
the beginning of phase i and tw in the new trajectory can be calculated
by

=
=

t t ti w
k

i

i
1

1

w
(43)

From tiw, the time since the start of phase i in the initial trajectory
( ti0w) at which the satellite is at the same energy state (same semi
major axis) as the satellite in the initial trajectory at tw can be calculated
by

=t
C t

Ci
bi i

bi
0

0
w

w

(44)

The time since t0 at which the old trajectory is at the same energy
state as the new trajectory at tw can then be calculated by

= +
=

t t tw i
k

i

i0
1

1

0eq w
(45)

Because the analytical solution assumes that drag force is the only
effect that can reduce a satellite's orbital energy, Wd at tweq in the initial
numerically propagated will be equal to the expected Wd at tw in the
new trajectory.

Once, the desired work done by drag at tg is determined, Cb is
iteratively adjusted to ensure that this desired Wd is achieved. This is
done by first numerically propagating the satellite's orbit for tg seconds
with the prescribed Cb profile and recording the Wd at the end of the
propagation. A drag scaling factor, sd, is defined based on the difference
between the desired and actual Wd at tg as

=s
W
Wd

d

d

des

act (46)

All Cb values between t0 and tg are multiplied by sd and that portion
of the trajectory is re-propagated with the updated Cb profile. The
process continues until the actual Wd is within a specified tolerance of
the desired Wd.

Note that sometimes, if the nominal Cb is already at Cbmin or Cbmax,
multiplication by sd may result in <C Cb bmin or >C Cb bmax . However,
because the developed algorithms assume that some Cb margin will
remain for guidance tracking, minor violations of the Cb constraints can
be allowed and will only serve to slightly reduce this margin. These
minor Cb control margin reductions did not adversely affect the ability
to track guidances in the tested scenarios.

3.4. Back-stepping method

With the shrinking horizon strategy, a percentage (tg seconds) of the
beginning of each trajectory propagated with the analytically calcu-
lated set of control parameters is retained and used for the guidance.
The remainder of the trajectory is utilized to analytically calculate a
new set of control parameters which are then propagated to create the
next portion of the guidance. If tc is a small positive number when using

the full numerically propagated trajectory, using this smaller portion of
the trajectory may results in insufficient controllability remaining to
target the desired de-orbit point using aerodynamic drag (negative tc).
In such a case, tg may have been too large. Such cases can be handled by
reducing tg by a certain factor and continuing to do this until there is
sufficient controllability in the remainder of the numerical trajectory or
a maximum number of such “back-steps” is reached. The maximum
number of back-steps and the reduction in tg per back-step are up to the
user based on the required guidance accuracy and available computa-
tional power. In this study, sufficient accuracy was achieved with the
drag-work enforcement method in the tested cases and back-stepping
was not needed.

3.5. Latitude targeting for error reduction and terminal orbit
characterization

In the analytical solution, it is assumed that the new trajectory to be
analyzed experiences the same changes in orbital elements as the initial
trajectory after the terminal point since both trajectories maintain the
same Cb after this point. However, the oblateness of Earth, the rotating
atmosphere, and the temporal and spatial variations in density (even at
the same altitude) can render this assumption invalid and result in di-
vergences between analytical and numerical solutions. To remedy this,
after each numerically propagated trajectory, the spacecraft's Cb just a
few hours before the terminal point (time tmod) is modified to ensure
proper latitude targeting. This ensures that the spacecraft is flying
through the correct region of the atmosphere at the end of the trajectory
and provides a more accurate characterization of the terminal behavior
of the satellite that can be utilized in future analytical solutions. If the
modified Cb is within the range of feasible spacecraft Cb values and the
resulting total guidance error is less than some predefined threshold,
the guidance generation algorithm is considered complete and this final
modification of Cb and the change in the final trajectory that results
from it is included in the guidance.

Once the increase in argument of latitude ( ud) required to achieve
proper latitude targeting has been calculated, the change in Cb needed
to achieve this (without regard to the total orbit lifetime) can be cal-
culated based on the initial uinit that occurs between tmod and the
terminal point. The ratio of the initial to the required u during this
period is given by

=
+

r u
u u

init

init d (47)

To achieve the desired ud, all Cb values after tmod must be multi-
plied by r and tswap must be adjusted using Eq. (26) to ensure that the Cb
swap point (if applicable) occurs at the same semi major axis as in the
initial trajectory. In this case, it is permissible if some of the resulting Cb
values exceed the feasible range because the goal is to better char-
acterize the behavior of the satellite after the terminal point, not before.
Note that the satellite always maintains the same Cbterm after the term-
inal point.

In the final shrinking horizon guidance generation step, making a
few final attempts to correct only the latitude error through variations
in Cb reduces the overall guidance error in a number of cases. In such a
scenario, it is desirable to maintain Cb values within the acceptable
range while attempting to achieve a desired ud. To do this, r can be
calculated as before using Eq. (47) and multiplied by all Cb values after
tmod to get the new desired Cb values. No matter what, the trajectory
after tmod will have at most one swap in Cb and can be decomposed into
the familiar Cb10, Cb20, u10, u20, t10, and t20. For the final latitude
targeting attempt, tmod can be set to zero to take advantage of the full Cb
controllability of the trajectory. Note that if only one Cb is maintained
between tmod and tterm, then = =t u 010 10 and =C Cb b10 20. If the de-
sired Cb1 is greater than Cbmax, Cb1 can be reduced to Cbmax and the re-
sulting change in orbit lifetime can be calculated by Eq. (3) assuming
the swap point occurs at the same semi major axis. Cb2 can then be
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modified according to Eq. (3) to ensure that the desired ud is main-
tained. tswap can then also be modified according to Eq. (26) to ensure
that the swap point occurs at the same semi major axis. If both Cb1 and
Cb2 exceed Cbmax, then both Cb values should be reduced to Cbmax to
achieve as close to the desired ud as possible. If >C Cb b2 max, then Cb2
must be reduced to Cbmax and Cb1 increased to ensure that the desired

ud is achieved. A similar procedure applies if either Cb value is below
Cbmin.

4. Guidance tracking algorithm

Due to uncertainties in the drag force, the spacecraft will eventually
drift from the guidance if the desired ballistic coefficient profile is ap-
plied open loop. While it is possible to re-generate the guidance once
the drift exceeds a given threshold, guidance generation is computa-
tionally expensive and there is no guarantee that a new guidance with
equally low error will exist from the new spacecraft initial conditions.
For this reason, feedback control techniques must be utilized to vary the
commanded spacecraft Cb based on the difference between the actual
and desired position and velocity to ensure that the computed guidance
is followed. While the spacecraft is tracking an initial guidance, new
guidances can be periodically generated and tracked to take into ac-
count updated density forecasts.

4.1. Schweighart Sedwick relative motion dynamics for feedback control

The Schweighart Sedwick (SS) equations of relative motion [25] can
be utilized to specify the evolution of the position and velocity of the
spacecraft relative to the guidance at any given time when the se-
paration between the spacecraft and the guidance is small compared to
the radius of Earth. The relative position and velocity are specified in
the non-inertial Local-Vertical-Local-Horizontal (LVLH) frame centered
on a fictitious satellite that is following the guidance trajectory with the
x-axis pointing along the zenith vector (up), the z-axis aligned with the
angular momentum vector, and the y-axis completing the right-handed
coordinate system [27] as shown in Fig. 6. Note that the LVLH frame
can be specified entirely based on the guidance position and velocity (rg
and vg) at the relevant point in time. The basis vectors of the LVLH
frame expressed in the Earth Centered Inertial (ECI) frame are

=
r

i
rˆ gE

E

g (48)

=
×
×

r
k

v
r v

ˆ g g

g g

E
E E

E E (49)

= ×j k iˆ ˆ ˆE E E
(50)

The direction cosine matrix that transforms vectors from the ECI
frame to the LVLH frame can be written in terms of the LVLH basis
vectors expressed in the ECI frame as

=R
i
j

k

ˆ
ˆ

ˆ

E L

E T

E T

E T

2

(51)

The position and velocity of the spacecraft relative to the guidance
as seen by an observer in the LVLH frame are given by Ref. [27].

=r r rsc g (52)

=
×

×
r

v v v
r v

r
g

sc g
g g

2
(53)

Note that the subscript “sc” denotes the spacecraft while “g” denotes
the guidance. If the vectors used to calculate Eqs. (52) and (53) are

expressed in the ECI frame, the relative position and velocity will also
be expressed in the ECI frame and can be converted to the LVLH frame
through a pre-multiplication by RE L2 .

If it is assumed that J2 and two-body gravity are the only pertur-
bations, Rr e, and r v 0g g at all points (approximately circular
orbit), the equations of relative motion can be linearized in a form
known as the Schweighart Sedwick equations. The SS dynamics are a
good approximation for low Earth orbit satellites because such orbits
are nearly always close to circular. Differential drag can be in-
corporated into the SS dynamics as a control input that induces a re-
lative acceleration. The SS approach can be utilized to incorporate
additional perturbations into the linearized dynamics, but such a level
of accuracy is unnecessary for this application. Considering only the in-
plane relative position and velocity ( x y x y, , , ) because aero-
dynamic drag cannot be used for out-of-plane control and considering a
relative ÿ due to a difference in the Cb between the spacecraft and the
guidance, the SS linearization can be written as [25].

= +
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(54)

where

= ( )C C Cb b bsc g (55)
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(56)

4.2. LQR control for guidance tracking

With the dynamics of the relative motion between the spacecraft
and the guidance given by Eq. (54) in the classic state-space form

= +x Ax Bu (57)

it is possible to use a linear quadratic regulator (LQR) [24] control
approach to drive the relative position and velocity to zero. An LQR
controller derives the gain K to yield the feedback control law

=u Kx (58)

that drives the state to zero and minimizes the cost functional

= +J dtx Qx u Ru( )T T
0 (59)

where Q and R are square weighting matrices of appropriate dimen-
sion. Because the state is four-dimensional and the control is one-di-
mensional, Q and R will be 4 by 4 and 1 by 1 matrices respectively and

Fig. 6. Local vertical local horizontal (LVLH) frame [27].
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K will be a 1 by 4 gain matrix with the control given by

=C K K K K

x
y
x
y

[ ]b 1 2 3 4

(60)

The LQR gain is optimal in the sense that no linear feedback control
law can be derived that yields a lower value of J as t . However, the
practical performance of the controller is heavily dependent on Q and R
which weight the relative importance of driving the state to zero as fast
as possible and executing minimal control effort. In many cases, Q and
R are selected through trial and error, but for this problem there is a
rigorous way to define these matrices. The method for determining Q
and R is a key novelty in this work and is not found in existing lit-
erature analyzing this problem. Because along-track error is far greater
than radial error in general, radial error is considered only in terms of
its contribution to along-track error. For this reason, setting

=Q
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0 (61)

yields superior guidance tracking performance for a given value of R
than any other value of Q with a comparable matrix 2-norm (as defined
in Ref. [28]). This value of Q implies that the controller should only be
concerned with errors in the along-track ( y) direction. However, if
there is any radial ( x) error or relative velocity ( x y, ) error, that will
automatically result in a y error over time. Thus the controller drives
to zero errors in x , x , and y in its attempt to drive y to zero, but
permits radial and velocity errors to increase temporarily if doing so is
necessary to drive y to zero as quickly and efficiently as possible.

With Q fixed, R must be set based on the desired magnitude of the
spacecraft response to deviations from the guidance. This can be done
by first defining rsat as the desired y at which the commanded change
in ballistic coefficient will be equal to C Cb bmax min. That is, the con-
troller will be guaranteed to saturate at =y rsat. The LQR gain K can
first be computed using an arbitrary initial R ( =R 10,000 used in this
work) and then recomputed after updating R based on the initially
obtained K to enforce controller saturation at =y rsat. The equation
to update R is

=
C C

r
R R

K [0 0 0new
b b

sat
0

0

2
max min

(62)

Note that there is no benefit to changing the magnitude of Q as all
performance variations that could result from a change in the magni-
tude of Q can be achieved through a manipulation of R for this pro-
blem.

Finally, the A and B matrices in the SS dynamics will change as the
spacecraft decays to a lower orbit and experiences a different ambient
density and semi major axis. To account for this, K can be recomputed
using the LQR strategy with new A and B matrices whenever the cur-
rent atmospheric density ( new) differs from the density used to compute
the previous gain ( old) by a factor of p or more where

=p new

old (63)

In the current work, =p 1.2 is used. Plots of the performance of this
controller in specific scenarios are included in Section 6.

4.3. Controller saturation

Controller saturation occurs when the commanded control is be-
yond what the actuator is physically capable of providing [29]. While
some systems become unstable when in a saturated state, the guidance
tracking algorithm remains stable and returns the spacecraft to the
guidance under saturation conditions. If the desired Cb is below Cbmin,

the desired Cb is simply set to Cbmin. Similarly, if the desired Cb is greater
than Cbmax, then Cb is set to Cbmax. The simulations conducted to verify
the performance of the controller under saturation are discussed in
Section 6.3.2.

4.4. Actuator deadband and performance limitations

To prevent the feedback law given in Eq. (60) from changing the
spacecraft Cb for any infinitesimal change in the state vector, an ac-
tuator deadband is utilized. With the deadband approach, the ballistic
coefficient of the spacecraft is not modulated until the difference be-
tween the current and desired ballistic coefficient is greater than a
certain percentage (5% in this work) of the current ballistic coefficient.

The finite times required to achieve desired Cb changes (through
attitude variations or drag device actuation) are also considered in this
work. The assumption that 4 min would be required to go from Cbmin to
Cbmax is made since this is an upper bound for the deployment times of
current retractable drag devices [17,18]. In all tested cases, the con-
troller was robust to non-instantaneous actuation and remained func-
tional with the Cb deadband as evidenced by the simulation results in
Section 6.

4.5. Extended Kalman Filter for relative orbit determination and noise
filtering

Spacecraft utilizing the guidance tracking algorithm would likely
receive position and velocity measurements from a GPS unit, such as
the piNAV-L1 [30], which can be converted to relative position and
velocity using the procedure in Section 4.1. Because aerodynamic drag
is such a weak force, the controller must react vigorously to any per-
ceived orbit errors, making the system very sensitive to the noise pre-
sent in GPS measurements. Fortunately, the structure of the relative
position and velocity needed for the guidance tracking algorithm lends
itself to the implementation of an Extended Kalman Filter (EKF) [26]
that provides a more accurate estimate of the spacecraft state relative to
the guidance than a direct filtering of the ECI position and velocity.

Since the linearized dynamics are already known and the control
signal has the form =u Kx, the matrix exponential of the A BK( )
matrix from Eq. (54) and the computed LQR gain can be utilized to
calculate the state transition matrix ( ) as

= e tA BK( ) (64)

where t is the time since the last state estimate. In a linear Kalman
filter (popular if computing power is limited), the state estimate xi can
be calculated by multiplying the previous state estimate by . With the
EKF, xi can be calculated more accurately (though at a higher com-
putational cost) by converting the previous state estimate +xi 1 to ECI
position and velocity, numerically propagating the orbit for time t ,
and converting the final result back to relative position and velocity
based on the guidance state at that time. Let this conversion and pro-
pagation process be denoted by the function +f t t x( , , )i i i1 1 which will
be utilized in the predict stage of the EKF. The new covariance matrix
estimate Pi can be calculated by a similarity transform using . The
state and covariance estimates for the predict stage are thus

=
= +

+

+
f t t

P P Q
x x( , , )i i i i

i i i i

1 1

1 (65)

where Q is the process noise covariance matrix.
The update stage of the EKF involves updating the a-priori state and

covariance estimates based on some measurement zi. The update stage
is described in Ref. [26] as follows

= +
= +
=

+

+
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(66)
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Where W is the measurement noise covariance matrix, is a term
greater than 1 ( = 1.02 used in this work) utilized to ensure that P does
not become too small (filter smugness [31]), and G specifies the linear
mapping between the measurement and the state as

= Gz x (67)

Note that in this scenario, z is the raw GPS measurement converted
to in-plane relative position and velocity so G is a 4 × 4 identity matrix.

5. Algorithm simulations

One thousand Monte Carlo simulations of the guidance generation
algorithm were conducted to verify the ability to calculate an achiev-
able drag profile and corresponding trajectory that if followed, will
allow the spacecraft to de-orbit in a desired location. In all cases, gui-
dance generation was set to stop if at any point a trajectory was gen-
erated with a guidance error of less than 25 km. For each of the re-
sulting guidances, a guidance tracking simulation was conducted with
realistic models of GPS sensor noise and density uncertainty to validate
the ability to follow a guidance in a realistic environment. Simulations
of specific cases were also conducted to assess particular aspects of the
algorithms’ performance.

5.1. Environmental force and uncertainty modeling

A high fidelity orbit propagator was created in MATLAB including
gravitational perturbations modeled by geopotential coefficients
through degree and order 10 using the procedure from Montenbruck's
book [32] and the EGM2008 gravity model [33]. Atmospheric density
was given by the NRLMSISE-00 model [34] with historic F10.7 and Ap
indices [35]. Because Ap is updated every 3 h and F10.7 is updated
daily, a cubic spline was utilized to interpolate between the historic
F10.7 and Ap values as suggest by Vallado [36]. This ensured con-
tinuously varying atmospheric indices and a continuously varying
density. Use of a continuous rather than discrete density profile mini-
mized the discrepancies between the numerical and analytical solutions
and significantly improved the performance and convergence rate of
the guidance generation algorithm. In each simulation, the ballistic
coefficient (defined in Eq. (1)) used at any point in time was required to
lie in a specified Cb range. Solar radiation pressure, solar gravity, and
lunar gravity were found to be insignificant in low Earth orbits and
were neglected. Optionally, a user could use the guidance generation
algorithm with a more computationally efficient but less accurate orbit
propagator such as SGP4 [34] in applications where computing power
is limited, but this will result in less realistic guidance trajectories that
are more difficult to track.

By far the greatest source of uncertainty is in the aerodynamic drag
force due to the difficulties in modeling the density and drag coeffi-
cient. For the purposes of guidance generation, NRLMSISE-00 density
was used directly with the interpolated F10.7 and Ap indices. To
characterize the effects of drag estimation errors when trying to track
the guidance, the nominal drag force was multiplied by an error coef-
ficient when simulating the guidance tracking algorithm. This error
coefficient was the combination of a bias term and three sinusoidal
terms and was calculated by

= +
=

k k k
T

tsin 2
err

i
i

i
i0

1

3

(68)

The T values were set to =T1 26 days, =T2 1 day, =T s54003 based on
observed density variations on real satellite missions [36–38]. These
corresponded to the synodic period (sun rotation), Earth day, and ap-
proximate orbital period. ϕ values were randomly selected from a
uniform distribution between 0 and 2 . k0 values were randomly se-
lected from a uniform distribution between 0.77 and 1.3 and the other k
values were set to =k .251 , =k .12 , =k .13 based on historically observed

drag estimation errors [38]. All guidance tracking algorithms were run
assuming that the maximum Cb achievable by the spacecraft was a
factor of two greater than the maximum allowable guidance Cb and the
minimum achievable Cb was a factor of two less than the smallest al-
lowable guidance Cb. This ensured that there would always be a suffi-
cient Cb margin to correct for the simulated drag uncertainty errors, and
any tracking errors would be a result of suboptimal controller perfor-
mance rather than a complete saturation of the actuator. Ballistic
coefficient modifications resulting from the drag-work enforcement
methods were allowed to exceed the minimum and maximum guidance
Cb values by a factor of up to 1.05. In the rare cases where this hap-
pened, the margins between the ranges of achievable tracker Cb values
and the range of guidance Cb values were slightly reduced, but this did
not have an adverse effect on tracker performance.

5.2. Sensor noise model

Because drag is weaker and takes far longer to achieve a desired
orbit change than conventional space propulsion systems, the control
system must respond vigorously to any small difference between the
current and desired spacecraft state. Unfortunately, this makes the
controller much more sensitive to navigation noise than a propulsive
orbit control algorithm would be, making it crucial to verify that the
controller is still functional in a noisy environment. The noise model
used in this work is based on the error in position and velocity mea-
surements applicable to the piNAV-L1 CubeSat GPS unit [30]. The
manufacturer claims that the piNAV's position and velocity errors have
a standard deviation of not more than 5 m and 5 cm s/ respectively with
simulated position estimation errors shown in Fig. 7 [30].

As Fig. 7 shows, the errors are not always zero mean. To simulate
this, Gaussian noise terms with the specified standard deviations were
added to the true ECI position and velocity along with sinusoidally
varying position and velocity bias errors given by

= =t m t m sr v
. 001
. 005

. 002
sin 2

5400
,

. 00005

. 00005
. 000025

sin 2
5400

/bias bias

(69)

5.3. Case-specific simulation results

Simulations were conducted with different effects included to assess
the performance of the guidance generation, guidance tracking, and
state estimation algorithms under a variety of different circumstances.
The results of these simulations are discussed below.

5.3.1. Guidance generation and noise-free tracking with drag bias error
A sample guidance that lasted 11.7 days and resulted in 12.3 km

total targeting error was generated for the following scenario:

Fig. 7. piNAV-L1 simulated position errors for ISS orbit [30].
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• epoch = January 24, 2004, 6:48:29.48 UTC
• initial osculating orbital elements: ( = =a km e6715.97 , .000471,

= = = =i214.24 , .1790 , 359.77 , 70.67 )
• =C m kg.0059 /b

2
min , =C m kg.0386 /b

2
max , =C m kg.0222 /b

2
term

• target de-orbit location: −54.54° latitude, 160.85° longitude at a 70
km geocentric altitude

• Targeting set to begin at 6500 s of longitude controllability as de-
fined Ref. [22].

The guidance tracking algorithm was run with perfect knowledge of
the state, a 5% actuator dead-band, the assumption that the drag device
takes 4 min to fully deploy, and a constant bias error of 0.7 (nominal
drag force values all multiplied by .7). Tracking was continued down to
a geodetic altitude of 90 km. As shown in Fig. 8, the tracking algorithm
was able to maintain the spacecraft on the guidance with an error of
less than 2 km by automatically adjusting the Cb to compensate for the

difference in the drag properties between the guidance and the tracking
simulations. The drag actuator needed to run for only 0.13% of the orbit
lifetime to produce the indicated Cb fluctuations.

5.3.2. Tracker performance under actuator saturation
If the along-track separation between the satellite and the guidance

is greater than rsat, the controller will saturate, meaning that the
commanded Cb will be greater than that achievable by the satellite.
Fortunately, this controller performs well under saturation and will
return the satellite back to the guidance as long as the separation is not
so great that the SS relative motion equations become invalid. Fig. 9
illustrates the ability of the controller to return the satellite to the
guidance used in Section 6.3.1 given an initial true anomaly error of
0.02 radians (about 132 km) and a density bias of 0.7 as before.

To further verify the operation of the tracker under saturation, one
hundred tracking simulations were conducted for different guidances

Fig. 8. Tracking position error and Cb over time with drag bias error of 0.7.

Fig. 9. Tracking position error and Cb over time with 132 km initial error and actuator saturation.
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with an initial tracking true anomaly error of 0.02 radians with
=r km5sat and in all cases, the tracker was able to return to the gui-

dance.

5.3.3. Tracking performance with lower order gravitational models
As described in Section 6.2, the tracking algorithm is very sensitive

to noise or un-modeled perturbations. To illustrate this, the scenario
from Section 6.3.1 was re-run with only the J2 perturbation considered
in the tracking simulation. The result is similar to a case where the
tracking algorithm is used on a real spacecraft with a guidance created
considering only J2 gravitational perturbations. As shown in Fig. 10, the
perturbations resulting from the higher order gravity terms resulted in
greater control effort (actuator running 2.8% of the time) in an attempt
to track the perceived state errors. Cases where the guidance was
generated using a point-mass gravity model were un-trackable in a
realistic environment. This demonstrates why a high fidelity orbit
propagator is necessary for guidance generation and why guidance
generation algorithms that do not incorporate the full nonlinear

dynamics such as the analytical solution in Ref. [19] will result in
guidances that are not easily trackable. Gravitational perturbations
beyond degree and order ten were found to be insignificant and not
worth the additional computational cost of including in guidance gen-
eration. To prove this and to further validate the orbit propagator, the
High Fidelity Orbit Propagator (HPOP) in AGI's Systems ToolKit (STK)
software was utilized to generate a guidance with historic NRLMS-
ISE-00 density and gravitational perturbations through degree and
order 21. The tracking of this guidance was simulated using the in-
house MATLAB orbit propagator and the satellite was able to effectively
track the guidance with minimal error and minimal actuator effort.

5.3.4. Noisy guidance tracking without filter
As shown in Fig. 11, if unfiltered GPS position and velocity mea-

surements are used, the controller will respond erratically in its attempt
to track the noise. While the tracker was able to keep the satellite on the
guidance, the actuator was running almost constantly (73% of the time)
to achieve the ballistic coefficient profile shown in Fig. 11.

Fig. 10. Tracking position error and Cb over time with low order gravity model.

Fig. 11. Tracking position error and Cb over time with noisy GPS position and velocity measurements.
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5.3.5. Noisy guidance tracking with filter
The scenario from Section 6.3.4 was re-run with an EKF as detailed

in Section 5. The controller was still able to maintain tracking within
2 km as shown in Fig. 12, but the actuator was only running 2.5% of the
time. The majority of the actuator run time was due to tracking the
sinusoidally varying bias errors on the GPS position and velocity, be-
cause a noise filter cannot remove bias errors.

The aforementioned scenario was run with zero mean GPS mea-
surement error with only Gaussian noise, and the results are plotted in
Fig. 13. Fig. 13 shows that the EKF can very effectively remove Gaus-
sian noise and simulation results were very similar to those found in the
scenario from Section 6.3.1 with the actuator running 0.68% of the
time. Additionally, by filtering on position and velocity relative to the
guidance, more accurate state estimates are made than by filtering di-
rectly on the inertial position and velocity of the satellite.

5.3.6. Noisy guidance tracking with complete drag error and EKF
Fig. 14 shows the position error and the desired, actual, and

guidance ballistic coefficients over time for the most realistic simulation
case including sensor noise and drag estimation errors with an EKF
utilized to filter the noise. Despite the sensor noise and model un-
certainties, the system still maintained tracking within 2 km but more
actuator run time (2.66% of total time) was required to correct for the
drag force prediction errors.

5.3.7. Tracking simulation with errors due to F10.7 and Ap forecasts
In addition to the errors inherent in the NRLMSISE-00 density model

itself, the F10.7 and Ap indices upon which the model depends must be
forecast and these forecasts introduce additional uncertainty. To char-
acterize the impacts of these forecasting uncertainties on the guidance
tracking, a guidance was generated with an Epoch of June 17, 2016
with the same target location, Cb range, and initial conditions as in
Section 6.3.1. In the guidance generation simulations, a set of F10.7 and
Ap data were used that were generated on June 16, 20162 and included

Fig. 12. Tracking position error and Cb over time with noisy state estimates and EKF

Fig. 13. Tracking position error and Cb over time with purely Gaussian noise and EKF

2 https://celestrak.com/SpaceData/SW-Last5Years.txt.
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historic data through June 16 and forecast F10.7 and Ap values for
dates after June 16, 2016. Because this forecast was made on June 16,
2016, this data accurately depicts the atmospheric data that would be
available to generate a guidance for a satellite that was in orbit on June
16, 2016. The tracking of this guidance was then simulated using his-
toric F10.7 and Ap data throughout the entire simulation time frame.
Sensor noise and additional density errors were not included in this
simulation to isolate the effects of F10.7 and Ap prediction errors. The
effort required by the actuator to follow the guidance and the corre-
sponding tracking error provide a good indication of the tracking per-
formance errors that would result from guidances generated with
forecast (instead of observed) F10.7 and Ap indices. As shown in
Fig. 15, the satellite is able to follow the guidance with a lower tracker
error and less actuator effort than in the case shown in Fig. 14. The
density errors resulting from the inaccurate F10.7 and Ap forecasts are
also roughly sinusoidal in nature. This shows that the sinusoidal density

Fig. 14. Tracking position error and Cb over time with drag uncertainties and GPS measurement noise.

Fig. 15. Tracking position error and Cb over time with guidance generated using forecast density.

Table 1
Monte Carlo simulation parameters.

Variable Range Distribution

Semi Major Axis [6698, 6718] km Uniform
True Anomaly [0, 360] degrees Uniform
Eccentricity [0, .004] Uniform
Right Ascension [0, 360] degrees Uniform
Argument of the Perigee [0, 360] degrees Uniform
Inclination [1, 97] degrees Uniform
Impact Latitude [min reachable lat +.1, max reachable

lat −.1]
Uniform

Impact Longitude [-180, 180] degrees Uniform
Cbmax [.033, .067] Uniform
Cbmin [.0053, .027] Uniform
Epoch [11/1/2003, 11/1/2014] Uniform
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errors utilized in previous simulations (Eq. (68)) accurately char-
acterize the nature of the expected density uncertainties and in general,
represent a greater uncertainty than would normally be associated with
the F10.7 and Ap forecasting.

5.4. Monte Carlo simulation results

One thousand simulations of the guidance generation algorithm to a
geodetic altitude of 120 km were conducted with randomized initial
conditions as shown in Table 1. The mean guidance error was 12.5 km
with a standard deviation of 7.5 km leading to a 99% confidence in-
terval for the expected average guidance error of 11.9 km to 13.2 km.
All guidance errors were below 106 km and are shown in Fig. 16. All
but three guidances converged to below the 25 km threshold at which
no further attempts to improve the guidance were made. After running
guidance tracking algorithms on all generated guidances down to a
geodetic altitude of 120 km, all final tracking errors were less than 6 km
with an average error of 1.6 km. Tracking algorithms were run for each
guidance with density uncertainties and sensor noise simulated as was
done in Section 6.3.6. Results of the tracking simulations are shown in
Fig. 17.

6. Conclusions

This paper presents novel guidance generation, guidance tracking,
and state estimation algorithms capable of guiding a spacecraft to a
desired re-entry location solely by modulating the spacecraft's aero-
dynamic drag. These algorithms offer significant improvements over
the state of the art and are able to operate effectively despite model
uncertainties, sensor noise, and actuator delays. Monte Carlo campaigns
and case-specific simulations were conducted to validate the effec-
tiveness and robustness of the presented algorithms.

The guidance and tracking errors meet NASA's debris mitigation
guidelines [15] which state that the probability of human casualty from
re-entering debris must be less than 1 in 10,000. Because the desired re-
entry location would likely be over the South Pacific Ocean Unin-
habited Area (SPOUA) where there is no inhabited land for thousands of
kilometers, it is extremely unlikely for the targeting error to be so large
that some spacecraft debris re-enters over land and poses a threat to
persons or property. As such, this re-entry point targeting algorithm
could be utilized for re-entering higher-stakes items like rocket upper
stages as long as they have a means of modulating their aerodynamic
drag, resulting in significant fuel savings. The guidance tracking algo-
rithm could also be used for spacecraft rendezvous using aerodynamic
drag or in any orbital maneuvering scenario where a satellite must track
a guidance using aerodynamic drag.
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