
Contents lists available at ScienceDirect

Acta Astronautica

journal homepage: www.elsevier.com/locate/actaastro

Safety analysis for shallow controlled re-entries through reduced order
modeling and inputs' statistics method
S.F. Rafano Carná, S. Omar, D. Guglielmo, R. Bevilacqua∗

University of Florida, MAE-A 211, 939 Sweet Water Drive, Gainesville, FL, 32611, USA

A R T I C L E I N F O

Keywords:
Ground population risk assessment
Re-entry safety analysis
Safety boxes
Inputs' statistics
Reduced order model
Drag de-orbit device

A B S T R A C T

In recent years, the interest and demand for small satellites have grown exponentially. While in the past the end-
of-life design for this type of spacecraft was often approximated or totally neglected, it has recently become
increasingly important. Indeed, small spacecraft able to achieve advanced mission objectives are more fre-
quently on the worldwide space agenda. They may contain components which might withstand the re-entry
conditions and reach the ground. In addition, these spacecraft are usually limited to shallow re-entries which are
more sensitive to atmospheric model uncertainties and thus have larger debris fields. The objective of this work
is to provide a reliable and efficient statistical analysis to estimate the risk to aeronautic and maritime traffic as
well as to ground based populations. A simple geometric safety assessment is proposed, based on the safety boxes
concept introduced in the ESA Space Debris Mitigation Compliance Verification Guidelines. Correctly estimating
the dimensions of a safety box and locating it over uninhabited regions, such as the oceans, guarantees a casualty
risk below a prescribed value. Furthermore, by estimating the probability of debris landing outside the largest
possible safety box within which there is a zero casualty risk, the maximum probability of control failure ad-
missible for the mission can be estimated. This proposed safety analysis is achieved using two re-entry models of
differing complexity. The high fidelity model includes both the aerodynamic and aerothermodynamic effects
that occur during re-entry and is used to statistically characterize “high level’’ uncertain variables such as the
ballistic coefficient and the demise altitude. The reduced order model is based on these high level variables and
captures the spacecraft fragmentation behavior and its re-entry dynamics with significantly less computation
time than the high fidelity model. Coupled with advanced statistical techniques designed to estimate very low
probabilities such as the Inputs' Statistics Method, a reliable safety analysis can be conducted with a limited
overall computational burden. The proposed safety analysis is applied to a fictitious 2U CubeSat mission that
performs a controlled re-entry using the Drag De-orbit Device developed by the ADAMUS laboratory at the
University of Florida.

1. Introduction

Whenever a spacecraft mission is launched where the satellite will
re-enter the atmosphere at the end of the mission, it is necessary to
asses the risk that re-entering debris will pose to persons or property on
the ground [1]. For satellites launched in the United States, NASA's
Debris Assessment Software (DAS) [2] is frequently utilized to estimate
an upper bound on the probability of human casualty associated with
an uncontrolled satellite re-entry. Other countries have different soft-
ware packages and regulations [3], but in any case, the casualty risk
associated with the re-entering debris of a given mission must not ex-
ceed a specified value.

While most small satellites such as CubeSats [4] do not exceed the

maximum casualty risk when re-entering without control, the ad-
vancement and miniaturization of technology has resulted in satellites
too small to contain thrusters but containing instruments made of
materials such as tungsten or titanium that will survive re-entry. In
addition, the increasing number of satellites being launched will likely
lead to a decrease in the acceptable casualty probability per satellite.
For satellite missions that exceed the acceptable casualty risk associated
with an un-controlled re-entry, it is necessary to control the de-orbit
point of the satellite to ensure that the debris land in an unpopulated
are such as the South Pacific Ocean Uninhabited Area (SPOUA) [5].

When a controlled re-entry is required, a detailed analysis of the
spacecraft re-entry profile is necessary to assess compliance with the
debris mitigation guidelines. To do this, object oriented analysis
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software such as NASA's ORSAT [6,7] and spacecraft oriented analysis
software such as ESA's SCARAB [8] have traditionally been used.
Spacecraft oriented approaches require a detailed computer model of
the satellite where the behavior of each specific spacecraft component
during the re-entry is considered. Object oriented approaches model the
satellite as a combination of simple objects (cubes, spheres, etc.) that
when simulated along a re-entry trajectory, yield a debris profile similar
to that of the real satellite. Often, the spacecraft behavior simulated
using the spacecraft oriented approach is utilized to determine the set of
parameters (e.g. demise altitude) and their statistical characterizations
that should be utilized in the more computationally efficient object
oriented simulation [9]. By conducting Monte Carlo simulations with
the object oriented tool, a statistical characterization of the debris field
generated by the satellite can be determined. This debris field will be
dependent on the physical properties of the satellite, the expected in-
itial conditions of the re-entry trajectory, and the uncertainties of the
environmental conditions.

Unfortunately, software packages such as ORSAT and SCARAB are
tightly controlled by NASA and ESA and can generally be used by
spacecraft builders only as analysis tools rather than design tools. That
is, the mission designer would specify to NASA or ESA the character-
istics of their spacecraft and the expected re-entry initial conditions,
and they would be told whether the spacecraft is compliant with the
debris guidelines or not without receiving detailed information about
the inner workings or numerical results of SCARAB or ORSAT. For large
satellite missions, a propulsive de-orbit burn is generally conducted, so
the re-entry trajectory will be steep, the debris footprint will be much
smaller than for a shallow re-entry [10], and the satellite operator will
be confident that the satellite is compliant with debris guidelines prior
to running any analysis. SCARAB or ORSAT can then be used to verify
that the spacecraft is indeed compliant. However, for some missions, an
iterative analysis of the re-entry profile may be an important part of the
design process.

Recent studies have shown that controlling the de-orbit location of a
spacecraft using solely aerodynamic drag is feasible [11–14] and sev-
eral retractable drag devices are in development to enable a spacecraft
to perform this controlled re-entry [15,16]. This paper specifically in-
vestigates the case of a 2U CubeSat attached to the Drag De-orbit Device
(D3) being developed by the University of Florida Adavanced Autono-
mous Multiple Spacecraft Lab [15], but the approaches discussed can be
generalized to any satellite. Drag-controlled re-entries, in general, will
be much shallower than propulsive re-entries, so the debris footprints
will be much larger. For this reason, the debris profile must be carefully
analyzed, and the targeted de-orbit point must be optimized to mini-
mize the casualty risk associated with the debris profile. While there is
published information on modeling the aerothermodynamic properties
of re-entering spacecraft [17,18], the existing literature, aside from Ref.
[19], does not contain a comprehensive study of the relations required
to implement a high fidelity spacecraft re-entry model. In addition,
there is no existing publicly available analysis of the debris profile of a
satellite that is based on both the re-entry aerothermodynamics and the
expected initial condition errors resulting from de-orbit point targeting
using aerodynamic drag. There is also not a well defined methodology
of selecting the optimal de-orbit point and determining the performance
of a drag controlled satellite required to meet the debris mitigation
guidelines.

Section 2 of this paper begins by briefly describing the high fidelity
re-entry model that is detailed in Ref. [19]. This model accurately
computes the behavior and thermal profile during the re-entry of a
rectangular-shaped satellite possibly equipped with the D3 device. In
sec. 3, the statistical distributions of the variables used in the high fi-
delity model are discussed. This includes the aerodynamic and aero-
thermodynamic variables (sec. 3.2) as well as the expected distributions
on the orbital conditions at de-orbit point achieved through the tar-
geting algorithm in Ref. [11] (sec. 3.1). A reduced order model dis-
cussed in sec. 4 is derived which contains far fewer input variables than

the high fidelity model. This model can be utilized to rapidly run many
simulations that capture the spacecraft re-entry profile specified by the
high fidelity model with a significantly lower computational burden.
Once the reduced order model is developed, the detailed debris miti-
gation requirements are discussed in sec. 5 along with a method of
ensuring compliance with the requirements. The compliance method
involves the calculation of safety boxes (sec. 6) using the novel and
computationally efficient Inputs' Statistics Method such that the prob-
ability that a spacecraft fragment lands outside the safety box is below a
prescribed value. Next, sec. 7 provides a method of selecting the op-
timal de-orbit point such that the safety box lies in the middle of the
SPOUA and is as far away as possible from land, minimizing the risk
from falling debris. Finally, given the nominal casualty risk from un-
controlled re-entry and a desired altitude below which the spacecraft
decay trajectory will be uncontrolled, sec. 8 provides a method of cal-
culating the maximum allowable probability of failure of the controlled
re-entry process such that the spacecraft remains compliant with a
given debris mitigation requirement. Overall, this paper provides a
comprehensive method for analyzing the expected debris profile from a
drag-controlled satellite mission and provides tools that allow satellite
builders to design the end-of-life mission plan such that the risk from re-
entering debris is minimized.

2. High fidelity model of the re-entry

Three necessary building blocks have to be implemented to char-
acterize the evolution of the spacecraft dynamics to a potential ground
impact: the aerodynamic model, the aerothermodynamic model, and
the dynamic model of the spacecraft [20]. The aerodynamic model
gives an estimation of the drag force acting on the vehicle, character-
ized as the exchange of momentum between it and the surrounding flow
[17]. The aerothermodynamic model calculates the heat power that
enters into the structure due to the fact that air flows at high speed
around the spacecraft [21]. The aerodynamic model and the aero-
thermodynamic model are nested inside the dynamic model and ulti-
mately provide it with the estimation of two key parameters: the drag
coefficient and the heat power at the outside of the spacecraft, re-
spectively. Finally, the dynamic model provides the trajectory followed
by the spacecraft as position and velocity values over time through the
integration of the equations of motion [22].

The choice of the specific mathematical law to characterize the key
parameters depends on 1) the flowfield regime, determined through the
Knudsen number and the Mach number, 2) the assumption and un-
derlying hypothesis selected for the specific problem, and 3) by the
spacecraft nose geometry. Semi-analytical laws and correlations, de-
veloped in the literature [18,21,23–29], can be used in order to avoid
time-consuming CFD-based calculations. Unfortunately, most of these
models are derived in dated and difficult-to-access papers and technical
reports, each using a completely different nomenclature and notation.
They are based on specific assumptions, which are often not mutually
compatible. Therefore, we decided to develop a comprehensive work
[19], recently accepted for publication, that includes all the necessary
and sufficient laws, data, and correlations to describe the re-entry of
small satellites. The selected laws are consistent in their assumptions
and approximations. They are presented in an organized fashion and
with a uniform nomenclature in order to provide the reader with a tool
that is easy to understand and implement. We encourage the reader to
refer to ref. [19] for all the details. Here, we include only the tables that
specify the correlations for the modeled 2U CubeSat (Table 1) and the
attached drag device (Table 2). This Drag De-Orbit Device (D3) consists
of four repeatedly retractable tape-spring booms that deploy to a length
of m3.7 to expedite orbital decay and facilitate orbital maneuvering
and controlled re-entry using the algorithms in ref.[ 12, 11]. The details
of the D3 are discussed in Ref. [30]. The CubeSat is assumed to re-enter
the atmosphere with the D3 booms deployed to a specified level ( m0.5 2

in this paper), and at some point during the re-entry, the D3 booms will
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melt, bend due to the aerodynamic force, or both.
The simulation of the re-entry of the CubeSat equipped with the D3

device is set up as illustrated in Fig. 1. The numerical propagation starts
from a prescribed de-orbit point (DEO point) at the geodetic altitude
hDEO. Since the D3 provides 3-axis stabilization with the 1U face of the
CubeSat pointing in the velocity direction (named HW face pointing
mode in Ref. [19]), the spacecraft is assumed to maintain this attitude
during the initial part of the re-entry. The D3 booms are deployed with
a predetermined length of m0.5 . Their bending stiffness has been de-
signed in order to withstand a maximum torque CMax of about Nm0.35 .
Therefore, the booms are expected to bend at an altitude of about

km95 , as estimated in Ref. [19]. When the aerodynamic force is large
enough that the boom bending torque is exceeded, the D3 booms are
considered fully bent and parallel to the flow, contributing to the drag
force only through shear stress with the surrounding flow. When the D3
booms melt, the trajectory of the sole CubeSat is propagated in a
tumbling mode. The numerical simulation proceeds until the spacecraft
melting condition is reached.

In the re-entry scenario, two possible situations may occur:

• if the D3 booms bend before melting (Fig. 1a), the geodetic altitude
at which this event occurs is recorded as bending altitude hBend.
Then, the D3 booms are considered aligned with the flow. Since the
center of pressure is still behind the center of mass, they continue to
provide stabilization in the HW face pointing mode. The integration
proceeds up to the CubeSat structure demise altitude hDem.

• If the D3 booms melt before bending (Fig. 1b), the geodetic altitude
at which this event occurs is recorded as the D3 demise altitude
hD3Dem. Then, the integration proceeds considering the CubeSat only,
in tumbling mode, up to its demise at hDem.

From the spacecraft demise altitude to the ground impact point, the
trajectory of a single debris fragment is propagated with a specified

Table 1
Summary of all the correlations used in the aerodynamic and aerothermodynamic models.

Aero-dynamic model Aerothermo-dynamicmodel

Free molecular regime >Kn 10 Schaaf and Chambre's analytic model [26]

Transition regime < <Kn0.01 10 Wilmoth's bridging law
[37]

Legge's bridging law [24]

Continuum regime <Kn 0.01 Hypersonic regime >Ma 10 Blunt nose Modified Newton Law [27] Fay and Riddel's correl [28].
Sharp nose Newton Law [17,57] Eckert's model [29]

Hypersonic-supersonic transition
< <Ma2 10

Blunt nose Sigmoid bridging formula Fay and Riddel's correl [28]. if >Ma 6 or else no heat
[8]

Sharp nose Sigmoid bridging formula Eckert's model [29] if >Ma 6 or else no heat [8]
Low Mach number <Ma 2 Hulburt's data [58] No heat [8]

Table 2
Summary of all the correlations used in the aerodynamic and aerothermodynamic models of the D3 system.

Aero-dynamic model Aerothermo-dynamicmodel

Free molecular regime >Kn 10 Schaaf and Chambre's analytic model [26]

Transition regime < <Kn0.01 10 Wilmoth's bridging law [37]

Continuum regime <Kn 0.01 Hypersonic and supersonic regime
>Ma 2

Deployed Modified Newton Law [27] Fay and Riddel's correl [28]. if >Ma 6 or else no heat
[8]

Bent Li and Nagamatsu theory [38] Fay and Riddel's correl [28]. if >Ma 6 or else no heat
[8]

Low Mach number <Ma 2 Not of interest No heat [8]

Fig. 1. Different phases of the simulation.

S.F.R. Carná et al. Acta Astronautica 155 (2019) 426–447

428



ballistic coefficient. This represents the re-entry of a CubeSat containing
an instrument made of a material such as tungsten or titanium that does
not melt on re-entry.

3. Statistical characterization of the high fidelity model

As suggested by Renaud and Martin in Ref. [5], the uncertain
variables for atmospheric re-entry may be grouped into three cate-
gories:

• spacecraft re-entry performances and initial conditions;
• environmental factors;
• break-up/explosion model.

In the first category, we include the guidance navigation and control
(GNC) errors that inevitably result during the drag-controlled orbital
decay of the spacecraft. Environmental uncertainties result from the
imperfect nature of the selected atmospheric model and the inability to
precisely predict future solar activity which influences the atmospheric
density. Finally, in the case of a CubeSat re-entry, we do not expect a
catastrophic explosion of the spacecraft due to the small amount of fuel
on board. Rather, a slow and progressive fragmentation process is more
likely to occur. This process is approximately captured by the aero-
themodynamic model and thermal model of the spacecraft, as described
in Ref. [19]. Nevertheless, there is always significant uncertainty in any
model or correlation used. In the rest of this section, the choices of the
statistical distributions for each uncertain variable are discussed.

3.1. GNC dispersions

The D3 system allows a host spacecraft to control its orbital decay
and can be utilized with the algorithm in ref.[ 12, 11], hereafter called
targeting algorithm, to reach a specific DEO point. In the targeting al-
gorithm, the DEO point is defined as a longitude and geocentric latitude
when the spacecraft crosses a specific geocentric altitude. Two sources
of error result from the targeting algorithm: a tracking error and a
guidance error. The guidance specifies a nominal trajectory that the
spacecraft must follow to de-orbit in a desired location. Often, however,
the algorithm is unable to calculate a guidance that brings the satellite
precisely to the desired DEO point (guidance error). The tracking al-
gorithm continuously modulates the spacecraft ballistic coefficient to
ensure that the satellite remains on the guidance despite uncertainties
in the estimated drag force. This tracker is not perfect however, and
there will always be some discrepancy (tracking error) between the
actual and desired satellite positions at a given point in time. The error
between the desired DEO point and the actual DEO point obtained at
the final point of the tracking trajectory is the overall (combined gui-
dance and tracking) GNC error.

The DEO point becomes the initial condition for the propagation of
the re-entry dynamics with the high fidelity model introduced in
Section 2. Because of the GNC errors described above, the DEO point is
not perfectly known, but it can be statistically characterized through a
MC analysis. This analysis consists of a significant number of simula-
tions of the guidance and the tracking of the targeting algorithm. The
number of runs must be high enough to guarantee a specified con-
fidence level and relative error [31]. To compute it, based on our ex-
perience with the targeting algorithm, the a priori assumption of having
normally distributed errors is introduced. The Kolmogrov-Smirnov test
[32] is used to justify a posteriori this choice and fails to reject to null
hypothesis of normality with a confidence of = .05. Thus, with this
assumption, we can estimate the confidence levels for the standard
deviations σ of various uncertain variables as ([33]):

N N( 1) ˆ ( 1) ˆ

N N

2

( /2, 1)
2

2
2

(1 /2, 1)
2

(1)

where N is the number of samples, 1 is the confidence level we
want to achieve, ˆ is the sample standard deviation and N(1 /2, 1)

2 is
the (1 /2)-quantile of the chi square distribution with N 1 degrees
of freedom. Therefore, setting the half-width of the confidence level
equal to the desired relative error RE and solving eq. (1) for N, we get
the minimum required number of runs as:

= +N RE1 2
1 1

2

N N(1 /2, 1)
2

( /2, 1)
2 (2)

Eq. (2) is a non linear equation that can be solved with a classical
root solver. In this case, relative error is defined as a percentage of the
standard deviation. For consistency throughout the paper, we require a
confidence level of 95% and a relative error of 10% and consequently we
need to run at least 200 simulations. This confidence level means that if
the 200-run MC campaign were repeated, there would be a 95% prob-
ability that the true standard deviation is within 10% of the standard
deviation associated with the new MC runs.

Each simulation begins from the same typical ISS orbit (400 km
altitude circular orbit inclined at 51.9°), but with a different initial
epoch (and hence different density profile). The epoch is randomly
varied between November 2003 and November 2014 to capture the
density variations throughout the 11-year solar cycle. The same DEO
point ( = 99DEO

o longitude, = 0DEO
o geodetic latitude) is targeted in

order to characterize the errors for a specific de-orbit scenario. Since
the estimation of the on-ground dispersion of the fragments surviving
the re-entry is driven by the number of uncertainties on the problem,
these uncertainties must be reduced as much as possible. A large source
of uncertainty exists on the altitude at which the D3 will be unable to
modulate the booms due to heat-induced failures of the internal me-
chanisms. If the D3 booms fail in an unknown configuration, there will
be significant uncertainty on the ballistic coefficient during re-entry
resulting in large ground dispersions. Furthermore, a potential asym-
metric failure condition may occur, giving rise to unforeseen aero-
dynamic stabilization conditions which cause the fragments to fall very
far from expected. To eliminate this issue, the D3 device operations are
shut down at a predetermined altitude high enough that heat-induced
failure of the D3 is not a concern. The selected DEO altitude is km120
(geodetic) and the D3 booms are set to deploy with length of m0.5 at
this altitude.

Using the final inertial state vector R V{ , } of the tracking trajectory,
the GNC error at the DEO point can be expressed in terms of four key
parameters which strongly affect the subsequent propagation of the re-
entry dynamics: the along-track error //, the cross-track error , the
relative flight path angle γ, and the error on the magnitude of the re-
lative velocity vector v . More specifically, the relative velocity vector v
is the velocity relative to the rotating atmosphere as defined in Vinh
et al. [22] and computed as:

= ×v V R (3)

where is the rotational angular velocity vector of Earth. The relative
flight path angle γ is the angle within the local vertical plane between v
and the horizontal plane. It can be computed introducing two common
reference frames (Fig. 2):

The Earth-centred local (ECL) reference frame, indicated by the three
unit vectors i j k{ , , }, and the Vehicle-centred intrinsic (VCI) reference
frame, indicated by the three unit vectors i j k{ , , } [19,22]. They are
defined as:

= = ×
×

= ×i r
r

j k i
k i

k i j; ; (4)

for the ECL frame and:

= = ×
×

= ×j v
v

k i j
i j

i j k; ;
(5)
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for the VCI frame. The vector k is the north pole direction and r is the
position vector direction, all expressed in the same reference frame as
the relative velocity vector v. Thus, the flight path angle is computed as:

= v i
v i

i i
| |

cos ( )1
(6)

The along track and cross track angle are introduced in order to
reduce the correlation that actually exists in the data if they are directly
dealt with in terms of latitude and longitude. They are computed pro-
jecting the position on a reference frame tangent to the ground track.
The rotation angle θ between the tangent to the ground track at the
DEO point and West-East direction of the normal Mercator projection is
computed as:

= tan (tan cos )1 (7)

where φ is the geocentric latitude and ψ is the relative heading angle.
The heading angle is the angle in the local horizontal plane between the
local parallel and the projection of the relative velocity vector v in the
local horizontal plane, positively in the direction of motion (see Fig. 2).
It can be computed as:

= v k
v k

k k
| |

cos ( )1
(8)

So, the along track // and cross track errors are computed as:

= +cos ( ) sin ( )// DEO DEO (9)

= +sin ( ) cos ( )DEO DEO (10)

The numerical distributions of these four selected variables for the
200-run MC simulation are shown in Fig. 3. They are all approximated
as normally distributed, with the exception of the cross track angular
error. We find that a truncated Student's-t location scale distribution
[33,34] is a better fit for cross-track error, as is also verified by the
Kolmogrov-Smirnov test (Fig. 4). This is due to the outliers points that
come from the more limited longitude controllability of the targeting
algorithm [11]. In the targeting algorithm, the system will always try to
correct latitude error through a modification of the total argument of
latitude experienced during the decay trajectory and use any remaining
drag controllability to correct longitude error to the extent possible. As
a result, if targeting does not begin with sufficient orbit lifetime re-
maining, there may be some residual longitude error that the algorithm

cannot correct. If control is performed only by modifying the argument
of latitude of the decay trajectory, the maximum distance between any
point on Earth (below the orbital inclination) and the closest reachable
target location is limited. The maximum angular error will be less than
the amount that Earth rotates in half an orbital period. Considering a
90 min orbital period, a given point will move 11.3deg in half an orbital
period due to the rotation of the Earth. For this reason, the guidance
longitude errors will not be greater than 11.3deg due to insufficient
controllability, and the t-distribution is truncated at a maximum error
of 11.3deg. With the normal or t-distributions assumed, the mean value,
standard deviation (st. dev.), and degrees of freedom (d.o.f.) (for t-
distribution) collected in Table 3, are sufficient to characterize the
distributions of the aforementioned variables.

Finally, in addition to these four variables that account for the errors
in the position and velocity at the DEO point, we add the uncertainty on
the initial temperature of both the CubeSat structure and the D3 booms.
Both temperatures are also considered normally distributed having
mean values equal to the steady state temperatures and standard de-
viations of 10°.

3.2. High fidelity model dispersions

Even if a great effort is made to accurately model all the environ-
mental factors affecting the dynamics, uncertainties always exist. For
instance the solar activity which strongly influences the expansion/
contraction of the top layers of the atmosphere cannot be predicted
precisely very far in advance [35]. Therefore, we have to consider the
atmospheric model, regardless of its complexity and accuracy, with
some degree of uncertainty. For a full characterization of the flow field,
we need to know the upstream state variables: density , temperature
T , and pressure P . As suggested in Ref. [3], a uniform distribution can
be used to model the uncertain density within ± 20% the value provided
by the selected atmospheric model. This choice is due to the high en-
tropy of the uniform distribution, making it the most conservative ap-
proximation when limited other modeling information is available
[31]. We use the same characterization for T and P as well. In addi-
tion, we consider uncertainties on the dynamic viscosity µ and the free
stream velocity magnitude V . The former includes the uncertainties in
the Sutherland law [18] and is modeled by a uniform distribution
within ± 20% of the expected value, while the latter takes into account
the movement of the atmosphere, which especially significant for the
upper layers [36]. The approximation introduced in the equations of
motion, derived in Refs. [19,22], considers an atmosphere that simply
follows Earth in its rotation. Thus, V is taken equal to the magnitude of
the relative velocity v. To model the uncertainty on V , we consider an
additional random term V̂ , uniformly distributed between ± m s200 /

= +V v V̂ (11)

Furthermore, describing the phenomena of aerodynamic and aero-
thermodynamic interactions between the spacecraft body and the flow
field through algebraic correlations introduces approximations, sim-
plifying assumptions, and modeling errors. To take them into account,
all variables that are inputs to the correlations are considered uncertain.

In the Free molecular regime, we include the wall temperature and
the Schaaf and Chambre's accommodation coefficients, N , T and ac
[26]. The wall temperature includes two variables: the first one for the
CubeSat structure temperature Tw and the second one for the D3 booms
temperature Tw

D3B. They are uniformly distributed within ± 50% with
respect to the value provided by the integration of the thermal equa-
tions [19]. Accommodation coefficients are considered for the inter-
action of both the CubeSat structure material (Aluminum) with air, N

Al,
T
Al and ac

Al, and the D3 booms material (stainless steel) with air, N
ss, T

ss

and ac
ss. They are modeled as normally distributed with the parameters

reported in Table 3.
In the Transition regime, the Free molecular-Transition and the

Transition-Continuum Knudsen boundaries, KnFM and KnCR

Fig. 2. Reference frames illustrations: Earth Centred Earth Fixed (ECEF) frame
in red, Earth Centred Local (ECL) frame in blue and Vehicle centred Intrinsic
(VCI) frame in green. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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respectively, are regarded as random variables and are used both in the
Wilmoth's and in the Legge's bridging formulas [24,37]. Their loga-
rithms are normally distributed with mean values equal to the limits
suggested by Wilmoth et al. in Ref. [37]: 1 for the Free molecular-
Transition boundary and −2 for the Transition-Continuum boundary.
The standard deviations are taken equal to 0.33 so that the three-sigma
errors differ from the suggested values by one order of magnitude.

In the Continuum regime, we distinguish between blunt and sharp
nosed objects. A blunt nose is considered when the D3 booms have not
yet melted and provide attitude stabilization in face pointing mode. In
this case, we include in the list of uncertainties all the thermodynamic
variables of interest (Lewis number, density, pressure, specific en-
thalpy, dynamic viscosity, velocity gradient, and dissociation enthalpy)
both at the edge of the boundary layer of the stagnation point (in-
dicated with the subscript t2 in Ref. [19]) and at the wall, that appear in
the Fay and Riddel's correlation [28] and in the Modified Newton Law
[27]. All the selected statistical characteristics are provided in Table 3.
To compute the average heat power on the different faces of the Cu-
beSat from the estimated stagnation heat, the Koppenwallner's formula
is utilized [8]. An uncertain coefficient Kopp is considered in this

formula to account for the error in the percentage of stagnation heat
(qs) that reaches the other surfaces (qwi), making the final formula as:

= +q q [ (1 )sin ]w s Kopp Kopp ii (12)

i is the inclination angle between the i-th surface and the freestream:
= n Varccos( ˆ ˆ ) /2i i . Kopp is normally distributed with a mean of

0.1 as prescribed by the Koppenwallner's formula and 0.02 as the
standard deviation. The sharp nose model is used for both the edge and
the corner pointing modes, which are necessary to characterize the
tumbling mode of the spacecraft after the D3 booms melt. In light of
this, we have to consider the Eckert solution [29] and Newton law [17]
for sharp nosed objects (see Table 1). Using the Eckert solution adds to
the list of uncertainties all the thermodynamic variables of interest
(Prandtl number, density, dynamic viscosity, velocity magnitude and
specific enthalpy) both at the reference condition (indicated with su-
perscript ∗) and at the edge of the boundary layer (indicated with
subscript e). In addition, the pressure coefficient given by the Newton
law can be modified to account for uncertainties as:

=c sinP Newt i
2

i (13)

Fig. 3. Statistical distribution of GNC errors.
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where Newt is a normally distributed random variable with a mean
value of two as prescribed by the Newton's law itself and 0.2 as stan-
dard deviation. When the D3 booms bend before melting, the Li and
Nagamatsu theory is introduced to estimate the drag produced by the
booms [38]. This approximated model takes as inputs most of the
thermodynamic variables introduced so far, with the addition of the
temperature at the stagnation point Tt2, which must also be added to the
list of uncertainties.

The contribution to the heat power due to radiation with the air
flow is estimated with the Hamilton correlation [39]. An additional
multiplying coefficient Ham is added here to include some uncertainty
in this correlation and is uniformly distributed between ± 50%. In ad-
dition, part of the heat power entering into the structure by thermal
exchange with the air flow is dissipated by radiation with the en-
vironment. The amount of dissipated heat over time depends on the
body emissivity which we assume is not perfectly known. The emis-
sivities are considered normally distributed with mean values of 0.18
for Aluminum and 0.38 for stainless steel with standard deviations
equal to 0.02.

Another important source of uncertainty is in the fragmentation
process of the spacecraft due to the severe aerothermodynamic condi-
tions it is subjected to all along the re-entry trajectory. The demise of
the spacecraft occurs when the melting temperature is reached and the
thermal mass approaches zero because of the melting process. This
process is very complex to predict with high accuracy. Therefore, we
include here some uncertainties on the thermal model described in Ref.
[19]. First, the thermal mass of the CubeSat is assumed to be the one
prescribed by the model plus a uniformly distributed random variable
between 0% and + 80% of the nominal thermal mass to account for some
heat dispersion into the payload and into the D3 shells and motors. The

thermal mass of the D3 booms is uniformly distributed between ± 20%
of the nominal value. The external surface area where the heat ex-
change with the air flow and environment occurs may also change
during the melting and fragmentation process. To account for this, the
external surface area of the CubeSat structure as well as the surface
areas of the D3 booms vary uniformly between ± 20% the estimated
values.

After the demise of the spacecraft, we continue to follow the tra-
jectory of a specific fragment that may survive and reach the ground. In
this study case, we imagine the spacecraft is equipped with a compo-
nent that can be approximated as a g300 sphere of titanium. Its ballistic
coefficient is kg m163 / 2, normally distributed about the nominal value
with kg m10 / 2 as the standard deviation.

Finally, the spacecraft configuration and the D3 bending stiffness
are not perfectly known and may change during the re-entry. Therefore,
we set a normal distribution both for the inclination angle of the D3
booms and for the maximum torque they can withstand. The former has
mean value of 20° with respect to the rear face of the CubeSat and 1° as
the standard deviation. The latter has Nm0.35 as the mean value and

Nm0.0167 as the standard deviation [15].
To summarize, a total of 50 uncertain variables are considered: 4 in

the initial state vector given by the GNC controlled orbital decay, 2 for
the initial temperature at the DEO point, 5 for the upstream flow con-
ditions, 8 in the Free molecular regime, 2 in the Transition regime, 19
in the Continuum regime, 4 for the melting model, 2 for the radiation
with the environment, 1 for the radiation with the air flow, 2 for the
spacecraft configuration, and 1 for the fragment's ballistic coefficient
after the spacecraft demises. All these variables and their statistical
characterizations are collected in Table 3.

Fig. 4. Comparing of CDF resulting from the statistical fitting of the GNC errors.
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4. Reduced order model of the re-entry

4.1. Purpose

The large number of uncertain variables in the high fidelity model
may strongly hinder the estimation of low probabilities, especially
when a reliability based approach [31] such as the Inputs' Statistics
method is employed. This issue is known in the literature as the Curse of
dimensionality [40]. In this section, we describe a computationally ef-
ficient reduced order model that is able to capture the effects of the
high fidelity model using a smaller number of specially selected

variables, named hereafter “high level” variables.
For instance, the ballistic coefficient is a very useful parameter be-

cause it entirely includes the effects of the variation in time of both the
drag coefficient and the spacecraft mass. Another example is the demise
altitude of the spacecraft. It is the conclusive event of a progressive
process, caused firstly by the temperature increase due to the thermal
exchange with the flow and then by the decrease of the thermal mass of
the spacecraft when the temperature reaches the melting point. Hence,
if the demise altitude and the ballistic coefficient were known a priori,
the computation of the drag coefficient and convective heat power into
the structure would not be necessary. In other words, the aerodynamic

Table 3
Collection of all the uncertain variables in the high fidelity model.

Variable name Symbol Dist. type Uniform bounds Gaussian/Students t params

Left Right Mean St. dev. D.o.f.

DEO along track error // Normal – – 0o 0.76o –
DEO cross track error2 Stud. t – – 0o 0.08o 0.95
DEO flight path angle DEO Normal – – 0.135o 0.016o –
DEO velocity magnitude vDEO Normal – – km s7.54 / m s2 / –
DEO CubeSat temperature TDEO Normal – – K546 K10 –
DEO D3 booms temperature TDEO

D3B Normal – – K588 K10 –
Upstream density Uniform 20% + 20% – – –
Upstream temperature T Uniform 20% + 20% – – –
Upstream pressure P Uniform 20% + 20% – – –
Upstream dynamic viscosity µ Uniform 20% + 20% – – –
Upstream velocity magnitude V̂ Uniform m s200 / + m s200 / – – –
Aluminum normal accom. coeff. N

Al Normal – – 0.9 0.1/3 –

Aluminum tangential accom. coeff. T
Al Normal – – 0.9 0.1/3 –

Aluminum thermal accom. coeff. ac
Al Normal – – 1 0.2/3 –

Stainless steel normal accom. coeff. N
ss Normal – – 0.9 0.1/3 –

Stainless steel tangential accom. coeff. T
ss Normal – – 0.9 0.1/3 –

Stainless steel thermal accom. coeff. ac
ss Normal – – 1 0.2/3 –

CubeSat wall temperature Tw Uniform 50% + 50% – – –
D3 booms wall temperature Tw

D3B Uniform 50% + 50% – – –
Logarithm of Free molecular-Transition Knudsen boundary Knlog10

FM Normal – – 1 1/3 –

Logarithm of Continuum-Transition Knudsen boundary Knlog10
CR Normal – – 2 1/3 –

Density at the wall w t, Uniform 20% + 20% – – –
Dynamic viscosity at the wall µw t, Uniform 20% + 20% – – –
Enthalpy at the wall hw t, Uniform 20% + 20% – – –
Prandtl number at the wall Prw t, Uniform 20% + 20% – – –
Stagnation density t2 Uniform 20% + 20% – – –
Stagnation dynamic viscosity µt2 Uniform 20% + 20% – – –
Velocity gradient at stagnation point ( )ue

x t
d
d 2

Uniform 50% + 50% – – –

Stagnation pressure Pt2 Uniform 20% + 20% – – –
Stagnation temperature Tt2 Uniform 20% + 20% – – –
Lewis number Le Uniform 1 1.4 – – –
Dissociation enthalpy hD Uniform 20% + 20% – – –
Reference Prantl number Pr* Uniform 20% + 20% – – –
Reference density * Uniform 20% + 20% – – –
Reference dynamic viscosity µ* Uniform 20% + 20% – – –
Velocity at the edge of the boundary layer ve Uniform 20% + 20% – – –
Recovery enthalpy hr Uniform 20% + 20% – – –
Enthalpy at the wall hw Uniform 20% + 20% – – –
Koppenwallner's formula coefficient Kopp Normal – – 0.1 0.02 –
Newton's formula coefficient Newt Normal – – 2 0.2 –
Hamilton's correlation coefficient Ham Uniform 50% + 50% – – –
CubeSat thermal mass mth Uniform + 0% + 80% – – –
D3 booms thermal mass mth

D3B Uniform 20% + 20% – – –

CubeSat external surface Sext Uniform 20% + 20% – – –
D3 booms external surface Sext

D3B Uniform 20% + 20% – – –

CubeSat emissivity Al Normal – – 0.18 0.02 –
D3 booms emissivity ss Normal – – 0.38 0.02 –
D3 booms deflection angle D3B Normal – – 20o 1o –
D3 booms maximum bending torque CMax Normal – – Nm0.35 Nm0.05/3 –
Fragment ballistic coefficient Frag Normal – – kg m163 / 2 kg m10 / 2 –
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and the aerothermodynamic models would not be necessary at all.
Since they include most of the uncertainties of the problem, we can
strongly reduce their number. In addition, the aero- and the aero-
thermo-dynamic models usually require the majority of the time when
numerically propagating a re-entry trajectory. Therefore, the reduced
order model has two important advantages: 1) it decreases the number
of uncertain variables and 2) it significantly speeds up the entire si-
mulation. The selected high level variables are statistically character-
ized by a MC simulation of the high fidelity model. Since in this case we
are not interested in a low probability estimate but rather on the overall
description of their distribution, the number of MC samples can be
limited to few thousands.

4.2. Description

The reduced order model contains the same dynamic model as the
high fidelity model, but includes the kinematic and dynamic equations
only [19]. They are written in the scalar form given by Vihn et al. in
Ref. [22]. They consider the spacecraft as a point mass having three
translational degrees of freedom and are used to integrate position and
velocity of the spacecraft in time. The 2001 United States Naval Re-
search Laboratory Mass Spectrometer and Incoherent Scatter Radar
Exosphere model (NRLMSISE-00) [41] is chosen as most appropriate
atmospheric model. The effect of the second zonal harmonic J2 is ac-
counted for in the gravitational force model using the procedure given
by Vallado in Ref. [42]. Therefore, to propagate the re-entry dynamics,
we need to know i) the variation of the ballistic coefficient in time and
ii) when the ballistic coefficient abruptly changes. With the ballistic
coefficient (β) known, we can express the acceleration due to the
aerodynamic drag as:

= VD j1
2

2

(14)

where the upstream density is given by the atmospheric model and
the freestream velocity V is approximated as the vehicle velocity with
respect to Earth v. j is the second unit vector of the VCI reference frame
[19]. In a typical simulation of the high fidelity model, we can re-
cognize two main events which induce a nearly instantaneous variation
of the ballistic coefficient: 1) the bending of the D3 booms or their total
demise and 2) the spacecraft demise.

Therefore, as illustrated in Fig. 5, we can divide the entire simula-
tion into four parts:

1. altitude higher than km120 , where the ballistic coefficient is ap-
proximately constant and equal to that of the spacecraft at the DEO
point DEO;

2. from km120 down until the bending altitude hBend or the D3 booms'
demise altitude hD3Dem, where the ballistic coefficient is considered
linearly varying with the logarithm of the Knudsen number. The
initial value is DEO and the slope is computed as:

=
Kn Kn Knlog log ( / )10 DeplD3

Bend DEO

10 Bend DEO (15)

where Bend is the ballistic coefficient immediately before the bending
of the booms or their demise and KnBend is the corresponding Knudsen
number.

3. From the bending/demise altitude of the D3 booms down until the
spacecraft demise altitude hDem, where the ballistic coefficient is
again considered linearly varying with the logarithm of the Knudsen
number. The initial value is +

Bend, i.e. immediately after the bending
or the demise of the booms, and the slope is computed as:

=
+

Kn Kn Knlog log ( / )10 BentD3

Dem Bend

10 Dem Bend (16)

where Dem is the ballistic coefficient of the spacecraft just before the
CubeSat structure demises and KnDem is the corresponding Knudsen
number.

4. From the spacecraft demise altitude down until ground impact,
where the ballistic coefficient is considered constant and equal to
the fragment ballistic coefficient Frag

With this piecewise linear approximation, only 7 high level vari-
ables are necessary for the full description of the ballistic coefficient all
along the re-entry propagation: DEO, Kn( / log )10 DeplD3, hBend, +

Bend,
Kn( / log )10 BentD3, hDem, Frag. In order to complete the description of

the reduced order model, the uncertainty on the atmospheric density
and the GNC errors at the DEO point ( //, , DEO and vDEO) must be
added. Thus, the number of uncertain variables is decreased from 50 in
the high fidelity model to 12 high level variables in the reduced order
model. This strongly reduces the curse of dimensionality issue of the
Inputs' Statistics method [43] and decreases the computational time for
the propagation of a single re-entry trajectory by approximately an
order of magnitude. On the same standard desktop computer, ap-
proximately 30 s were required by the high fidelity model compared to
about 0.7 s when the trajectories were evaluated using the reduced
order model.

4.3. Statistical characterization

Because the assumption of normality does not hold (except for the
GNC errors) and because the variables are generally correlated, the
statistical characterization of the reduced order model is computa-
tionally expensive compared to a model where the variables are nor-
mally distributed and uncorrelated. As a consequence, the minimum
number of MC runs to guarantee a predetermined confidence level and
relative error for a given variable has to be estimated through the more
general approach given by Rubino and Tuffin in Ref. [44]. The standard
MC estimator of the probability that the variable exceeds a given
threshold is a binomial random variable. Thus, the confidence level on
this probability estimator ˆ is given by:

z
N

z
N

(1 )
ˆ

(1 )
/2 1 /2 (17)

where N is the number of samples, 1 is the confidence level we
want to achieve, γ is probability that has to be estimated, and z1 /2 is
the (1 /2)-quantile of the standard normal distribution. Setting the
half-width of the confidence level equal to the desired relative error RE
and solving eq. (17) for N, the minimum required number of runs is

Fig. 5. Piecewise linear approximation of the ballistic coefficient in the reduced
order model.
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computed as:

=N
z
RE

11 /2
2

2 (18)

In order to have a good overall statistical description of the afore-
mentioned variables, we impose 95% confidence level and 10% relative
error on at least 10% probability estimate, which requires running 3460
samples of the high fidelity model. Considering 30 s as the average time
required for the propagation of a single re-entry trajectory, the neces-
sary time to statistically characterize the reduced order model is on the
order of 30 h. This time is however extremely small compared to the
one necessary if the high fidelity model is used to attempt to compute
directly the extremely low probabilities associated with the safety boxes
(about 2% of the time for a 99.99% safety box). The MC analysis has been
performed considering the 0deg latitude, 99deg longitude, and km120
geodetic altitude DEO point introduced in section 3.1. Examples of
numerical distributions of some of the high level variables are given in
Fig. 6.

Analysing these distributions, we note that DEO, hBend, and hDem

closely follow a normal distribution, as confirmed by the Kolmogrov-
Smirnov test [32]. Kn( / log )10 DeplD3 can be approximate as a Gamma
distribution [45]. +

Bend and Kn( / log )10 BentD3 have more complex
distributions because these variables incorporate the characteristics of
the ballistic coefficients when the D3 booms bend and when they de-
mise. Since in the second case the CubeSat keeps falling in a tumbling
mode without the D3, the ballistic coefficient is higher and increases
faster than the case where the D3 booms are still attached but bent.
Having the booms demise before bending, however, is quite unlikely
since it occurs on average during only about 4% of the simulations. To
model these two distributions, a non parametric Gaussian kernel dis-
tribution is suggested [31,46] and justified again with the Kolmogrov-
Smirnov test. All the parameters of the marginal distributions are col-
lected in Table 4. The correlation among the variables is modeled
through a Gaussian copula [31,47], but it is considered only when it is
significant. In particular, correlations are considered between hDem and

+
Bend, between Kn( / log )10 BentD3 and hBend, between and hBend or

hDem, and between +
Bend and Kn( / log )10 BentD3.

The final impact point predicted by the reduced order model is

Fig. 6. Distributions of the ballistic coefficient at the DEO point, the slope of the ballistic coefficient with deployed D3 booms, and the D3 bending (or D3 demise)
altitude.

S.F.R. Carná et al. Acta Astronautica 155 (2019) 426–447

435



slightly different from the one predicted by the high fidelity model. This
is due to both the piecewise linear approximation of the ballistic
coefficient and to the fitting of the distributions of the variables and
their correlations with specific distribution laws. It has been estimated
that the average value of this error is on the order of km50 in the down
track direction. Nevertheless, this represents only an offset in the
quantile computation, associated with a certain probability of interest.
As a consequence, subtracting the mean value of the error, the quantile
estimate is accurate with respect to the one predicted by the high fi-
delity model. Indeed, in Fig. 7, when the safety boxes dimensions, given
by the up-track range (U-range) and down-track range (D-range), are
plotted for different values of probability, the offset between high fi-
delity model and reduced order model quantiles is clearly visible (see
sec. 6.1 for more details on the safety box geometry). When the total
length of the safety box is computed by subtracting the U-range from
the D-range, the offset is eliminated and both models have similar
distributions for the total safety box length as can be confirmed by the
Kolmogrov-Smirnov test.

5. International safety requirements

The risk reduction measures required for the re-entry of a spacecraft
are regulated by requirements documented in Space Agencies' instruc-
tions and guidelines. The European guidelines [3] strictly follow the
French Space law [48]: “the operator responsible of a spacecraft controlled
re-entry shall identify and compute the impact zones of the spacecraft and its
fragments for all controlled re-entry on the Earth with a probability re-
spectively of 99% and 99.999% taking into account the uncertainties

associated to the parameters of the re-entry trajectories”.The “Safety
Boxes” definition is derived from this requirement as the containment
contours on the ground such that the probability that a fragment falls
outside is below a controlled or known value [5,49]. This controlled
value is usually called probability level and indicated by α. In parti-
cular, two safety boxes are usually of interest [3]:

• The Declared Re-entry Area (DRA) should delimit the area where
the debris should be enclosed with a probability of 99% (i.e

= 10 2) given the delivery accuracy.
• The Safety Re-entry Area (SRA) should delimit the area where the

debris should be enclosed with a probability of 99.999% (i.e
= 10 5) given the delivery accuracy.

The DRA is used to implement the procedures of warning and
alerting the maritime and aeronautic traffic authorities. The mission
operators are in fact required to provide the authorities with the
technical information in order to issue NOTAM (Notice To Airmen) and
AVURNAV/NAVAREA (Notice to Mariners) messages. The NOTAM area
is computed as the envelop of the DRAs relative to baseline and all the
back-up strategies [9]. The SRA is the indicator of a possible risk for
population and properties. It used to design the re-entry trajectory such
that the SRA does not extend over inhabited regions, does not impinge
on State territories and territorial waters without the agreement of the
relevant authorities. Usually, the re-entry trajectories are designed such
that the SRA of the baseline strategy is included within the SPOUA, or
South Pacific Ocean Uninhabited Area [5]. It is the largest uninhabited
area on Earth, bordered by the 185 East and 275 East meridians and by
the 29 South and 60 South parallels.

The NASA safety requirements [1] state that the probability of
human casualty from surviving debris from a given mission must be less
than 0.0001 (1:10,000) where a surviving debris object with energy
greater than 15 J is considered to have a potential for casualty. For
controlled re-entry, the trajectory must be designed such that surviving
debris with an energy of 15 J or greater are more than 370 km from
foreign landmasses and more than 50 km from US territories. In addi-
tion, the product of the probability of failure to control the re-entry
location multiplied by the casualty probability from uncontrolled re-
entry must be less than 0.0001. For example, a spacecraft that nomin-
ally has a 0.001 casualty probability from uncontrolled re-entry must
have a 0.9 probability of successfully controlling the re-entry location.
While this is the general policy, some missions may have stricter re-
quirements. For example, if a satellite contains hazardous material such
as radioactive elements that may cause harm to persons or property
beyond the initial impact, or if the satellite is a member of a fleet of
spacecraft, the allowable casualty probability may be less. In fact,
during the European Space Agency's Automated Transfer Vehicle
spacecraft mission, the permissible casualty probability from re-entry
debris was only 10 7 [5]. In the current study, the permissible casualty
probability was assumed to also be 10 7.

The nominal casualty probability of the satellite assuming

Table 4
Statistical characterization of the high level variables necessary to describe the profile of the ballistic coefficient in the reduced order model.

Variable name Symbol Dist. type Gaussian params Gamma params

Mean St. dev. a b

Ballistic coefficient at DEO point DEO Normal kg m15 / 2 kg m0.79 / 2 – –
Slope of the ballistic before D3 bending or demise

Knlog10 DeplD3

Gamma – – 4.19 kg m0.346 / 2

D3 bending geodetic altitude hBend Normal km95.4 m850 – –
Ballistic coefficient immediately after bending or demise +

Bend Non parametric – – – –

Slope of the ballistic after D3 bending or demise
Knlog10 BentD3

Non parametric – – – –

Demise geodetic altitude hDem Normal km85.9 m208 – –

Fig. 7. Up-track range (U-range), down-track range (D-range) and full length of
the safety boxes versus the associated probability computed through a MC si-
mulation with the high fidelity and the reduced order models.
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uncontrolled re-entry can be calculated based on the casualty area of
the surviving orbital debris and the orbit inclination. The casualty area
(DA) in m2 associated with the mission is given by Ref. [1] as

= +
=

D A(0.6 )A
i

N

i
1

2

(19)

where N is the number of debris fragments, Ai is the maximum cross
sectional area of each fragment, and the factor of m0.6 2 accounts for the
average surface area of a person that can be struck by a fragment. The
total human casualty probability expectation associated with an un-
controlled re-entry is then calculated by

=E D Pn A d (20)

where Pd represents the average population density for the given orbit.
Fig. 8 from Ref. [50] gives Pd as a function of orbit inclination. In the
analyzed scenario, a single debris fragment is considered that is mod-
eled as a sphere with a radius of m.025 2. The spacecraft is in a 51.9°
inclined orbit and so the estimated population density of km20/ 2 for this
inclination in the year 2050 is utilized (Fig. 8). Using this value and Eq.
(20) yields an expected casualty probability of = ×E 8.3 10n

6 as-
suming an uncontrolled re-entry.

Finally, even when controlled re-entry techniques are used, the
debris will land over a region on the ground, not on a specific point. The
safety box concept is used in this work to estimate this region of debris
landing when the re-entry control process works as expected. α is the
probability of debris falling outside the safety box. If all cases where
debris lands outside the box are assumed to have the same casualty risk
as an uncontrolled re-entry (En), the casualty risk associated with the
mission can be computed as:

= +E E P P( (1 ) )n f f (21)

where Pf is the probability of the spacecraft failing to perform a con-
trolled re-entry (possibly due to hardware failures). Specifically, the
first term E Pn f is the casualty risk associated with a potential failure of
the control whereas the second term E P(1 )n f is the casualty risk
associated with a successful controlled re-entry where debris falls out-
side the safety box. For eq. (21) to hold, there must be no casualty
probability within the safety box. Therefore, the re-entry is designed
such that the safety box is fully included within the SPOUA.

To fulfill the safety requirement, E must be lower or equal than 10 7.
In sec. 7, a possible approach is described to target the optimal DEO
point to get the safety box fully within the SPOUA and optimize the
room available. In sec. 8, the maximum allowable probability of failure
Pf that still allows the mission to meet the safety requirements is

computed for different DEO altitudes.

6. Safety box calculation

6.1. Safety box geometry

The safety boxes are approximated as having a rectangular shape
and are usually described in terms of along track and cross track di-
mensions, as shown in Fig. 9. The nominal trajectory defines the ground
track. The ground track is computed assuming the spacecraft continues
on its orbit without perturbations. The Aimed Impact Point (AIP) is
defined as a reference target and is computed by deterministically
propagating the mean values of the dispersions. The along track range
(A-range) is usually divided in up-track range (U-range) if the fragment
falls before the AIP, and down-track range (D-range) if the fragment
falls after the AIP. The sign is assumed negative if up-track and positive
if down-track. They are computed as curvilinear integrations along the
ground track from the AIP to the projection of the impact point over the
ground track. The cross track range (C-range) is usually much smaller
than the A-range and often it is simply considered constant and equal to
the maximum value that it can attain as in Ref. [5]. In the D3 controlled
re-entry, however, the C-range can be significant because of the heavy
tail of the cross track GNC error at the DEO point, so it is more accu-
rately estimated. When computed, the C-range can be projected on the
ground track as in Fig. 9. Its sign is determined according to the second
axis of a reference frame tangent to the ground track, with the first axis
positive in the direction of motion and the third axis positive in the
zenith direction. In other words, for an observer sitting on the ground
track and aligned with the velocity vector, the C-range is positive if the
fragment falls on his left (L-range) and negative if it falls on his right (R-
range). The safety box associated with a given probability level is thus
fully determined when the A-range and the C-range are computed.

It is important to remark on the difference between footprint and
safety box concepts in order to not mix them up. The footprint is built
up through a MC simulation and is the collection of all the impact
points corresponding to the sample cloud. It is numerically built and a-
priori it disregards any probabilistic information. Differently, the safety
box is associated with a given probability level and can be derived from
a statistical post-processing of the footprint. The safety box dimensions
are estimated by computing the probability of a debris impact occurring
outside the box itself. The smaller the probability, the larger the safety
box must be.

6.2. Input-output formulation

All the variables needed to propagate the re-entry dynamics of the
CubeSat equipped with the D3 device through the reduced order model
have been defined in section 4 and their associated dispersion are dis-
cussed in sections 3 and 4. Therefore, the problem can be now set up
with a suitable input-output formulation to apply a statistical method
for the computation of the safety boxes. This formulation is schemati-
cally illustrated in Fig. 10.

Fig. 8. Average Population Density vs. Orbit Inclination [50].

Fig. 9. Schematic representation of safety boxes geometry.
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The =d 12 high level variables of the reduced order model are here
called inputs of the problem and are collected in the random vector
X d. For any input combination, the transfer function : d 2

propagates the re-entry dynamics up to ground impact and estimates: 1)
the along track distance Y// with respect to the AIP and 2) the cross track
distance Y from the ground track. They are collected in the bidimen-
sional vector = Y YY { , }//

2, called output of the transfer function. Y
is computed in two steps:

1. project the impact point of the fragment, called P in Fig. 11, on the
ground track as:

=C d s s( ˆ) ˆ (22)

where d joins P to a point on the ground track very close to it but
slightly towards the AIP, which is indicated with S, ŝ is the unit vector
tangent to the ground track in S oriented in the motion direction, and C
is the projection of P on the ground track; computing the tangent to the
ground track in C as:

= s jsin (ˆ )1 (23)

2. the cross track distance is computed as

= +Y d i d jsign( sin cos ) CP (24)

whereas the along track distance can be approximated by numerically
integrating the distance from the AIP as:

= +
=

Y Errsign( )AIP SC
i

n

i RedOrdModC//
1 (25)

where i indicates the distance on the Earth surface between two

consecutive points on the ground track, and CS and CP are the dis-
tance from C to S and from C to P, respectively. All the distances i, CS
and CP are computed as the shortest distance on the ellipsoid (geo-
detics) given by the WGS84 model to better approximate the actual
shape of Earth. This is done using the Vincenty's algorithm in Ref. [51].
The error due to the use of the reduced order model ErrRedOrdMod, esti-
mated as km50 in sec. 4, is subtracted from this integration.

6.3. Problem statement

Since the safety box is fully defined once the A-range and the C-
range are defined, the problem requires the computation of four
thresholds: U-range, D-range, R-range and L-range. Nevertheless, only
one constraint, the required probability level α, is available so the
problem admits infinite solutions. An engineering condition is therefore
introduced which sets the probability outside the A-range // to be less
than or equal to 10% of α and the probability outside the C-range to
be less than or equal to 90% of α, so that the overall probability outside
the safety box is still less than or equal to α as required. This proportion
was chosen because the A-range is generally much bigger than the C-
range and is subject to a larger number of dispersions. It is therefore
more likely that if a point falls outside the safety box and reaches an
inhabited region, it will be in the along track direction. The in-
dependent // and values make it possible to study the two directions
separately. In both directions, the problem requires the identification of
two thresholds T1 and T2, with <T 01 and >T 02 , such that the prob-
ability that the output Y falls outside the interval T T[ , ]1 2 is less than or
equal to a predetermined value α:

T Y T1 ( )1 2 (26)

For the A-range problem T1 will be the U-range and T2 the D-range
and // will be considered, while for the C-range problem T1 will be the
R-range and T2 the L-range and will be considered.

In addition, a sensitivity analysis on the 12 input variables has been
carried on and we have found that the GNC errors on the position at the
DEO point, defined in terms of along track // and cross track , do not
significantly affect the A-range of the safety box. On the other hand, all
the other 10 variables do not significantly affect the C-range of the
safety box. This is shown in Fig. 12, where nine 4000-runs MC foot-
prints are shown starting from three DEO points having different lati-
tudes (0deg and ± 20deg) and a longitude of 99deg. For each DEO point,
the associated MC simulations were performed considering: 1) the full
set of 12 variables (green), 2) only // and (black) and 3) the 10
variables excluding // and (red). As can be visually verified, the
black footprint accurately estimates the C-range and the red footprint
matches the A-range. This is also verified with the Kolmogrov-Smirnov
test and shown in Fig. 13 in terms of cumulative distribution functions
for the equatorial case. Similar plots can be obtained for the other two

Fig. 10. Schematic illustration of the input-output formulation for the safety boxes computation.

Fig. 11. Schematic illustration to clarify the computation of the along track
distance of a fragment impact point with respect to the AIP.
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cases. Therefore, this subdivision of 10 + 2 input variables is assumed
to always be valid for this problem and is adopted in all the following
safety box computations. This is beneficial when the Inputs' Statistics
method is applied because it further reduces the problem dimension-
ality.

6.4. Inputs' statistics method

When the Inputs' Statistics method is chosen, the problem is for-
mulated in an alternative way with respect to eq. (26). Instead of
working on the output distribution, the objective is to approximate the
optimal failure domain f

Opt of problem [43]. f
Opt corresponds to the

failure domain which provides the smallest possible interval T T[ , ]1 2 and
in the current problem, results in the smallest possible safety box. The
Single Step Inputs' Statistics method attempts to find f

Opt by con-
sidering the d-dimensional contour surfaces ˜ of the multivariate
probability density function (pdf) f of the input vector X. The particular
˜ enclosing a probability equal to 1 is chosen and the two thresh-
olds T̃1 and T̃2 are computed as the minimum and maximum cases which
may occur inside ˜ [49]. This initial approximation is always con-
servative and may be quite accurate when few input dimensions are
considered. This is the case for the computation of the C-range of the

safety box because only two input variables are used. For that reason,
the Single Step solution of the C-range is retained as final one in all the
following results. On the other hand, since 10 input variables are
considered for the A-range problem, the Single Step approximation is
too conservative and so we rely on the Multistep algorithm [43]. The
Multistep algorithm improves the Single Step solution by iteratively
estimating the error on the probability estimate through a Crude Monte
Carlo (CMC) method [31]. The CMC method works by simulating tra-
jectories with initial conditions selected outside the current ˜k to reduce
the dimension of the successive +˜k 1 input domains. This ultimately
brings the current failure domain ˜ f closer and closer to the optimal
one f

Opt . The details of the Multistep algorithm can be found in Ref.
[43], and a more in-depth treatise on the Inputs' Statistics method is
contained in Ref. [52].

As described so far, the Inputs' Statistics method is based on the d-
dimensional pdf and its contours surfaces. Therefore, as long as the
marginal distributions of the input variables are known and the corre-
lation is somehow defined, the Inputs' Statistics method can be applied
to the problem. This is the case for the problem under analysis here
because the marginals have been defined in sec.3.1 and in sec.4, and a
Gaussian copula is used to take into account the correlation among the
variables. However, there are two approaches to the Inputs' Statistics
method. The first is to directly use the contour surfaces of the pdf in the
physical space. This approach may be of interest if the multivariate pdf
and its contours can be mathematically described in an easy manner.
Otherwise, a better approach is to transform the physical space into the
standard normal space such that the contour surfaces are d-dimensional
spheres centred on the origin of the axes and described as:

=t tx x x( ) { : }d T (27)

where t is the sphere radius squared. We adopt the second approach in
this work because the marginals follow different types of distributions
(normal, gamma, uniform, kernel approximated, etc.) and so the
mathematical description of the multivariate pdf is not known. This
transformation is achieved through the Diagonal transformation [31]
(particular case of the Probability Integral transform [53]) for variables
that are not correlated and the Nataf transformation [54,55] for the
correlated variables. More specifically, if FXi is the marginal cumulative
distribution function (cdf) of the i-th physical variable xi, the Diagonal
transformation D states that:

= = ( )u x F x( ) ( )i D i X i0,1
1

i (28)

is a standard normal variable, i.e. with zero mean and unitary standard

Fig. 12. Monte Carlo footprints for different DEO points and input variables.

Fig. 13. CDF plot for different DEO points and input variables.
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deviation. = x2 erf (2 1)0,1
1 1 is the inverse of the standard normal

cdf. For the Inputs' Statistics method, we are mostly interested in the
inverse transformation D

1, because the search points of the optimiza-
tion algorithm have to be converted to the physical space in order to
compute the cost function ([49]). The inverse transformation can be
written as:

=x F u( ( ))i X i
1

0,1i (29)

where FX
1
i is the inverse of the i-th marginal cdf. The Nataf transfor-

mation N is the composition of two successive transformations:
=N N N1 2. The first one coincides with the Diagonal transformation:

N D1 , converting the physical vector X with correlation matrix R into
a Gaussian vector Z with correlation matrix R0 and with standard
normal marginal distributions (generally R R0). The second trans-
formation N2 converts Z into the standard normal vector U with the
independent components as:

= =U Z Z( )N2 (30)

where is any square root of R0
1. A common choice of is the Cho-

lesky decomposition [56] of R0
1. In the simple case of Gaussian copula,

R0 coincides with the correlation matrix of Z, so the entire transfor-
mation N is defined and its inversion is straightforward.

6.5. Some typical results

Starting the re-entry propagation from the km120 DEO point in-
troduced in sec.3.1, we tested the algorithm on several required safety
box probabilities. The results as well as the associated performances of
the Inputs' Statistics method are collected in Table 5. The plot of the
associated safety boxes are given in Fig. 14. As expected, for the A-
range computation, the efficiency of the Multistep Inputs' Statistics with
respect to the CMC method increases with a decrease of the allowable
probability of debris landing outside the safety box. For = 10//

4 and

= 10//
5 the method performs well, requiring only 15% and 4% of the

samples used by the CMC. The convergence analysis for the A-range
corresponding to = 10//

4 is given in Fig. 15 and similar convergence
results were obtained for all the other probability levels. The number of
iterations is, in all the cases, lower than 30. The computational time is
almost proportional to the number of propagated samples if the time for
the optimization processes is neglected. Thus the same efficiency ratio
holds also for the computational time. Considering an average of 0.7 s
for a single run of the reduced order model, the time required to esti-
mate = 10//

5 with the Inputs' Statistics method is 12 days. Using
instead the CMC, = ×N 3.8 107 propagations are required to achieve
the 95% CL and 10% RE, so the computation would last 10 months. If to
this we add the time required to statistically characterize the variables
of the reduced order model, the time can be compared with a hy-
pothetical CMC applied directly to the high fidelity model. We used
3460 runs of the high fidelity model (average time of 30 s). So the total
time for the Inputs' Statistics with the reduced order model is 13.5 days.
The total time of CMC with the high fidelity model would be 36 years.

These orders of magnitude of computing time reduction justify the
use of the Inputs' Statistics method coupled with the reduced order
model for the computation of very small probabilities. The computa-
tional time was further reduced by implementing a parallel computa-
tion on a desktop computer equipped with a four-core processor. We
can also note that the A-range increases linearly with the decrease of
the logarithm of the probability. With a total probability of = 10 4,
the A-range length is km4780 , so we can still easily fit the safety box
within the SPOUA.

The C-range computation is instead performed with the Single Step
algorithm. The computational time is almost negligible since only a few
minutes are necessary to perform the two optimization processes. To
estimate the accuracy of the Single Step solution, the Multistep algo-
rithm has been applied to the C-range problem and the error between
the two solutions is computed as:

Table 5
Summary of results and Inputs' Statistics performances for the computation of A-ranges and C-ranges for safety boxes associated with different levels of probability.
Dimensions are given in kilometers.

Prob.α A-range C-range

// N %NMIS
N

U-range D-range R-range L-range Error%

10 1 10 2 ×3.8 104 80% 910 1780 ×9 10 2 20 32 + 190%
10 2 10 3 ×3.8 105 41% 1150 2330 ×9 10 3 57 144 + 95%
10 3 10 4 ×3.8 106 15% 1330 2810 ×9 10 4 76 190 + 20%
10 4 10 5 ×3.8 107 4% 1480 3300 ×9 10 5 91 202 + 9%

Fig. 14. Safety boxes for different probability levels associated with DEO point 99deg longitude, 0deg latitude and km120 geodetic altitude.
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=Error 100 C range
C range

1
SingleStep

Multistep%
(31)

As shown in Table 5, this error is always positive because the Single
Step solution is always conservative. The error decreases logarith-
mically with a logarithmic decrease of the required probability. For

= ×9 10 5 the Single Step solution is only 9% larger than the Mul-
tistep solution, so for low probability levels the Multistep algorithm is
not necessary. Furthermore, the C-range is always quite small (about
6 % 7% of the A-range), so the A-range is definitely the primary
parameter to be adjusted to ensure the safety box lies inside the SPOUA.

7. Optimal de-orbit point

7.1. Purpose

In the previous section, the procedure to compute the safety box
associated with a general probability level when starting the re-entry
propagation from a specific DEO point has been described. Here, we
explain how to generalize the statistical characterization of the input
variables in order to be able to change the DEO point and directly re-
apply the Inputs' Statistics method to compute the new associated safety
boxes without re-run the MC analysis with the high fidelity model. This
procedure may be useful in several circumstances including placing the
safety box in an optimal location inside the SPOUA. This allows one to
optimize the available space and minimize the casualty risk. This in
turn also provides the optimal DEO point to aim for with the targeting
algorithm [12]. This generalization procedure can be useful during the
mission operations. For example, the optimal DEO point may need to be
changed if more accurate density forecasts become available. The safety
box depends on the expected density profile and the distribution of that
density profile. If the density profile changes, the optimal safety box
will change. Also, if the satellite is close to the de-orbit time, there may
no longer be sufficient controllability left to target the desired DEO
point. In that case, a new optimal DEO point can be picked from the set
of reachable DEO points. Also, after observing the spacecraft in orbit, a
more accurate estimate of the spacecraft ballistic coefficient can be
obtained which will also affect the location of the optimal DEO point.

7.2. Generalization of the errors

When we set a different DEO point to be reached through the tar-
geting algorithm, it may provide slightly different distributions of the
errors at the DEO point both in terms of mean value and dispersions
around the mean value. In Refs. [11,12], some convergence results as
well as a general MC analysis is provided. Nevertheless, as long as the
DEO point keeps the same altitude and the latitude and longitude vary
within a neighborhood of the initial ones, these differences are not very
significant. Additional analysis has been performed in this study
showing that the only effects which should be taken into account are
the variations of the mean values of the velocity magnitude vDEO and
the flight path angle DEO with the DEO point geodetic latitude DEO.
They can be linearly approximated as:

= +µ µ m s0.24 /
deg

( )v v DEO DEODEO DEO (32)

= + ×µ µ 2.6 10 ( )DEO DEO
3

DEO DEO (33)

where DEO is the initial geodetic latitude for which the errors have been
characterized through the MC analysis of the targeting algorithm (see
sec.3.1) and DEO is the new geodetic latitude where we want to set the
DEO point. The linear fitting is justified in Fig. 16. Similar relationships

Fig. 15. Convergence analysis for a the A-range corresponding to = 10//
4.

Starting with = ×N 3.8 106 to have 95% CL and 10% RE.
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may apply to other variables of the reduced order model, but the
magnitudes of these variations are very small and can be neglected
since they do not have a significant effect on the safety box dimensions.

It is very important to highlight that the above relations are valid
when the DEO point is kept at the same geodetic altitude. The flight
path angle and the velocity magnitude profiles significantly change
when the DEO point altitude is varied. This must be taken into account
to reliably estimate the safety box. Changing geodetic latitude and
longitude but keeping the same altitude can be done exploiting some
algebraic relations derived by Vallado in Ref. [42] and spherical tri-
gonometry. For the sake of completeness, we briefly describe this
transformation. Given the new geocentric latitude DEO and the altitude
hDEO, the new geodetic latitude can be computed by solving the fol-
lowing non-linear equation using a root finder:

=
+

e
h R e

tan tan 1
1 / 1 sin

DEO DEO
DEO DEO

2

2 2
(34)

where R is the equatorial radius of Earth ( km6378.1363 ) and
=e 0.081819 is its eccentricity. The new distance from Earth center is

computed as:

=r
cos
cosDEO

DEO

DEO (35)

The new argument of latitude u DEO is calculated keeping the same
branch of the trajectory, descending or ascending, with respect to the
initial DEO trajectory. This means

= < <u
i

usin
sin

sin
if /2 mod( , 2 ) 3 /2DEO

DEO
DEO

1

(36)

=u
i

sin
sin

sin
otherwiseDEO

DEO1

(37)

where i is the orbital inclination. Assuming the same orbital eccentricity
=e e and the same orbital flight path angle1 =DEO DEO, we get that

the true anomaly must also be the same: =DEO DEO. So the new ar-
gument of perigee is:

= u DEO DEO (38)

and the new orbital semi-major axis is:

= +a r e
e

(1 cos )
1

DEO DEO
2 (39)

Imposing a latitude change inevitably results in a longitude change.
To set the desired longitude DEO, we set the new right ascension of the
ascending node as:

= +
i

usign
tan

tan
cos cos

cosDEO
DEO DEO

DEO
sid

1

(40)

where sid is the sidereal angle (e.g. from the vernal equinox to the foot
of the Greenwich meridian in the equatorial plane).

7.3. Convergence procedure

The objective now is to iteratively move the DEO point to optimize
the safety box inside the SPOUA. This procedure can be divided into
three steps:

7.3.1. Computation of the desired AIP
The minimum latitude where the safety box can be placed is equal

to minus the orbital inclination. If this does not exceeds the SPOUA
lower bound (60deg South), as in the case study under analysis (orbital
inclination =i 51.9deg), a good option is to place the center of the
safety box as far South as possible. This constraint can be enforced
setting the desired argument of latitude of the safety box center, let us
call it uMIDDes, to 3/2 . Consequently, the desired argument of latitude
for the AIP can be computed as:

= +u u
R

D range U range
2AIP MIDDes Des (41)

Eq (41) assumes that the A-range does not vary significantly when
changing the DEO point for the same probability level. This is not ac-
tually true, but it is a good initial guess that will be corrected later. For
the following computations, we consider = 10 4, corresponding to D-
range= km2810 and U-range= km1330 from Table 5. Thus, we get
that =u 263.35degAIPDes . Similarly, to optimize the SPOUA width, the
longitude of the safety box center MIDDes is set in the middle of the
SPOUA, corresponding to the 230deg East meridian. Consequently, the
desired longitude of the AIP AIPDes is computed as:

= +

+

( )
( )

sign cos

sign cos

AIP MID i
u

i
u

tan
tan

1 cos
cos

tan
tan

1 cos
cos

Des Des
MIDDes MIDDes

MIDDes

AIPDes AIPDes
AIPDes (42)

where AIPDes is the desired geocentric latitude for the AIP, computed as:

= ( )i usin sin sinAIP AIP
1

Des Des (43)

and MIDDes is the desired geocentric latitude of the safety box center. In
this case, = =i 51.9degMIDDes , = 51.41degAIPDes , and

= 219.30degAIPDes .
If a specific desired point is already available because other con-

straints are imposed (e.g. maximizing distance from a determined is-
land, re-entry observation constraints, operational constraints, etc.) this
initial step of the procedure can be avoided.

7.3.2. First DEO correction
When the DEO latitude changes, it affects both the latitude and

longitude of the AIP. However, a longitude variation of the DEO point
does not affect significantly the latitude of the AIP. Therefore, an effi-
cient way to converge to the desired AIP is to correct for the latitude

Fig. 16. Average relative velocity magnitude and flight path angle vs. DEO
point geodetic latitude.

1 The orbital flight path angle is indicated with the symbol δ to not confuse it
with the relative flight path angle γ, introduced in sec.3.1.

2 Truncated at 11.3deg.
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first. When the convergence is achieved, the remaining longitude error
can be corrected, too. Let us describe this first convergence scheme. At
the k-th step, the high fidelity model is propagated in time starting from
the k-th DEO point having argument of latitude uDEO

k up to ground
impact. The geocentric latitude Imp

k , longitude Imp
k and sidereal time

sid
k

Imp are computed at the impact point. Thus, the argument of latitude
is obtained as:

= < + <u
i

sin
sin

sin
if /2 mod , 2 3

/2

Imp
k Imp

k

Imp
k

sid
k1

Imp

(44)

=u
i

sin
sin

sin
otherwiseImp

k Imp
k

1

(45)

where is the orbital right ascension of the ascending node. The error
is estimated with respect to the desired argument of latitude. So, at the
k-th step it is:

=Err u uu
k

AIP Imp
k

Des (46)

The new iteration is initiated calculating the argument of latitude at
the DEO point as:

= ++u u ErrDEO
k

DEO
k

u
k1 (47)

This introduces the assumption that the variation of the argument of
latitude between impact and DEO point remains the same when the
DEO point is changed. Again, this is not completely true, but is a rea-
sonable assumption that verifies at convergence. The new geocentric
latitude at the DEO point is:

=+
+
i

u
sin sin

sinDEO
k

DEO
k

1 1
1 (48)

and the new longitude is:

= ++
+ +

+i
u

i
u

sign
tan

tan
cos cos

cos

sign
tan

tan
cos cos

cos

DEO
k

DEO
k DEO

k
DEO
k

DEO
k

DEO
k

DEO
k

DEO
k

1
1

1
1

1

1

(49)

These two inputs fully define the new DEO point that occurs at the
same geodetic altitude as the previous DEO point. The associated state
vector can be defined as described in the sec.7.2. The convergence is
reached when the absolute value of Erru

k becomes smaller than a given
tolerance, set here to 1deg. After that, the DEO latitude is kept constant
( =+

DEO
k

DEO
k1 ) and a second convergence scheme is set up to eliminate

the remaining longitude error. The longitude error is computed as:

=Errk
AIP Imp

k
Des (50)

and the new longitude at the DEO point is:

= ++ ErrDEO
k

DEO
k k1 (51)

The procedure is stopped when <Err| | 0.5degk . The final obtained
+

DEO
k 1 and +

DEO
k 1 locate the optimal DEO point, in this case

= 5.69degDEO
Opt and = 150.03degDEO

Opt . The convergence rate is rather
fast. In this case, a total of 4 steps were necessary: 2 for the argument of
latitude convergence and 2 for the longitude convergence. The re-entry
trajectories obtained at each step are plotted in Fig. 17a. In Fig. 17b, the
decreases of the absolute values of the errors along the iteration steps
are given.

7.3.3. Verification of the safety box location
The assumption that the A-range magnitude remains constant when

the DEO point is changed is now verified. To do this, a modified Single
Step algorithm of the Inputs' Statistics method is utilized with the new

optimal DEO point. The Single Step algorithm requires determining the
probability outside the contour lines (e.g. ellipsoids) of the input pdf
and computing the output interval as min/max inside the contour as-
sociated with the prescribed probability. In the basic version of the
Single Step method, the decided probability coincides with the prob-
ability of interest and this guarantees a conservative result [49,52].
However, if a more accurate estimation of this probability is already
available, it can be used to get a more accurate result. The idea is to
exploit the convergence information of the Multistep algorithm for a
given DEO point for any other DEO point. The k value computed with
the Multistep iterations (see Fig. 15a) provides exactly what we are
looking for: the probability outside the pdf contours at the k-step. The
value of k at convergence is therefore used as the probability to be
constrained in the Single Step algorithm. Thus, only two optimization
processes are necessary to estimate the safety box associated with a new
DEO point. This implies that once a safety box is computed for a given
probability, it can be used to compute the safety box for any other DEO
point reasonably close to the initial one and with the same geodetic
altitude with only a few minutes of computational time. The assump-
tion of a constant k at convergence is justified by the idea at the basis
of the Inputs' Statistics method of using the pdf contours to approximate
the contours of the transfer function. The error due to this approx-
imation depends on the contours shape and so on the problem under
analysis rather than on the specific initial condition used. In Fig. 18, we
show in light blue the safety box shifted to the optimal AIP estimated
from the initial DEO point. The safety box plotted in black is estimated
instead with this modified Single Step approach, with = 0.1453k and
starting from the optimal DEO point. Finally, we restarted the full
statistical characterization of the optimal DEO point through an MC
analysis of both the targeting algorithm (as seen in sec.3.1) and of the
high fidelity model (in sec.3.2), and we ran the Multistep algorithm
using the reduced order model as described in sec.6. The resulting
safety box is plotted in green. We can draw the following conclusions:

• comparing the safety boxes in light blue and in black proves the
quality of the assumption that the A-range remains constant when
the DEO point is changed. If instead a significant difference existed,
the entire procedure could be repeated with the new A-range esti-
mation. It is expected that at most at the second iteration the two
safety boxes will be very close to each other and the procedure will
have converged. Note that re-running the procedure again does not
require significant computational time since the MC analysis is not
required and the Multistep algorithm is not necessary with the
modified Single Step approach.

• comparing the safety boxes in black and green proves the accuracy
of the modified Single Step approach and confirms that there is no
need to re-run the Multistep algorithm. In addition, the small dif-
ference between the optimal AIP and the corrected AIP shows that
the linear fittings of the mean values of the GNC errors given by eq.
(32) and eq. (33) are good approximations and that it is not ne-
cessary to re-characterize the new DEO point through an MC ana-
lysis of the targeting algorithm.

8. Maximum probability of failure

Inverting eq. (21) for the mission casualty risk introduced in sec.5,
the maximum admissible probability of control failure can be computed
as function of the probability associated with the safety box as:

P E10 /
1f

n
7

(52)

Pf depends on DEO point altitude, because a higher altitude results in a
greater dispersion of the fragments as they fall through the atmosphere
and hence a larger safety box. Looking at the problem in a reversed
sense, for the largest safety box that still fits inside the SPOUA, the
probability α that some fragments will fall outside the box will increase
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Fig. 17. Convergence procedure to achieve a desired AIP location.

Fig. 18. Re-entry trajectories from DEO point to impact point.
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as the DEO altitude increases. Therefore, for a given DEO altitude, there
will be a maximum admissible probability of control failure to be
compliant with the safety requirement. In this section, we describe a 5
steps procedure to obtain a reliable estimate of this maximum prob-
ability. The procedure takes advantage of both the Single Step and the
Multistep algorithms of the Inputs' Statistics method to speed up the
computation and utilizes the convergence procedure described in sec.7
to fit the safety box within the SPOUA. The procedure has to be re-
peated for any DEO altitude for which the computation of the maximum
admissible probability of control failure is required.

8.1. Boundaries for //

Since the A-range is much larger than the C-range as proven in
sec.6, the largest admissible safety box is computed by determining
when the A-range exceeds the SPOUA width. Therefore, the probability
of interest in the following computations is the probability outside the
A-range, indicated with //. In sec.6.3, // was related (conservatively)
to the overall probability outside the safety box as = 0.1// . The lar-
gest // that is necessary to consider is the one that makes Pf equal to
zero, that is = E0.1(10 / )Max

n//
7 . The DEO altitude that corresponds to

this // limit is the theoretical maximum altitude that can be targeted (if
=P 0f ) while still respecting the safety requirement. In a real case, the

maximum DEO altitude will be less according to the minimum prob-
ability of control failure that the mission can guarantee. In contrast,
there is no well defined limit for the smallest //, but very small //
values have almost no influence on the Pf computation. This is because
when // is small, the casualty risk associated with fragments falling
outside the SPOUA is not significant compared to the risk associated
with a potential of control failure. This is true when E10 / n

7 , so we
set = E10 (10 / )Min

n//
3 7 .

8.2. Computation of a safety box exceeding the SPOUA through the Single
Step algorithm

Starting from an initial guess of the optimal DEO point, the Single
Step algorithm is applied iteratively to obtain an initial estimate for the
probability outside the pdf contours j that provides a safety box ex-
ceeding the SPOUA. Starting with = Max0

// and decreasing it pro-
gressively as:

=+
10

j
j

1
(53)

the A-range is computed at each iteration j. If j Min
// and A-rangej is

still smaller than the maximum A-range admissible for the SPOUA, than
the probability of a fragment landing outside the maximum admissible
safety box is so small compared to E(10 / )n

7 that it can be neglected and
the iterative procedure can be stopped. In this case P E(10 / )f n

7 . If
j Min

// and A-rangej is greater than A-rangemax, j is a conservative
estimate for // and can be used in the next step.

8.3. First estimation of // through the multistep algorithm

The value of j estimated at the last step of the previous iterative
process guarantees an A-range larger than the A-rangemax. Therefore,
using it as initial value for the Multistep algorithm, the A-range is
progressively decreased at each iteration k and the probability of debris
falling outside the A-rangek is estimated. Let us call this probability ISk

in accordance with the nomenclature in Ref. [43]. The process will
eventually converge to an estimate of the A-range such that IS jk .
However, it is forced to stop prematurely as soon as the A-rangek be-
comes smaller than the A-rangemax. Thus, A-rangek is the largest one
that can fit within the SPOUA and the associated ISk is a good initial
estimate of //. If IS Min

//
k , we can approximate // as zero and Pf as

E(10 / )n
7 . If =j Max

// and IS Min
//

k without satisfying the condition

A-rangek < A-rangemax, then Max
// and Pf can be approximated as

0. In all cases where the algorithm terminates prematurely and
< <Min IS Max

// //
k

, the probability outside the current pdf contour k

as well as the U-rangek and the D-rangek associated with the A-rangek

are stored and used in the following steps.

8.4. Computation of the optimal DEO point

In the previous steps, the safety box associated with A-rangek is
obtained from a DEO point which may not be the optimal one, so it is
likely that the D-range exceeds the SPOUA. An example of the safety
box corresponding to such a DEO point is shown in red in Fig. 19 for the
case of =h km124DEO . Using the convergence procedure described in
sec.7 and the new values of U-rangek and D-rangek, the optimal DEO
point can be computed such that the safety box fits within the SPOUA as
shown in yellow in Fig. 19. Subsequently, the values of U-rangek and D-
rangek can be corrected as shown in green in Fig. 19 through the
modified Single Step algorithm starting from the previously estimated

k.

8.5. Final estimation of // through MC simulation

A MC simulation can be performed to precisely estimate ISk with
the prescribed confidence level and relative error. The number of re-
quired sample trajectories N is computed through eq. (18) using the
previous estimate of ISk. Only those samples that fall outside the pdf
contour ˜k associated with k are actually simulated. In addition, if the
Nk samples previously simulated with the Multistep algorithm are
stored, it is only necessary to simulate another N Nk k samples. After
the simulations, ISk is computed by counting the number of samples
that fall after D-rangek or before U-rangek and dividing by N. Thus ISk

is a reliable estimate of //. The final estimate of the probability α of
debris falling outside the largest safety box that can be fit within the
SPOUA for a given DEO altitude is then simply computed as:

= 10 ISk
. Finally, eq. (52) provides the maximum permissible prob-

ability of failure Pf that yields a casualty risk less than 10 7 for that
specific DEO altitude.

In conclusion, the computational time required by this procedure to
compute Pf for a specific DEO altitude is equal to the time that would be
required by the Multistep algorithm to estimate a probability on the
order of ISk for a specified confidence level and relative error. Since

ISk is quite small for low DEO altitudes, this procedure is significantly
more efficient than the CMC. We have repeated this computation for
several values of DEO altitudes and the resulting Pf values are shown in
Fig. 20. Given a specific mission with a predetermined Pf , Fig. 20
provides the maximum DEO altitude that can be targeted to meet the
safety requirement.

9. Conclusions

This paper presents a safety analysis framework, based on the
geometrical concept of safety boxes, for the estimation of the casualty
risk resulting from a small satellite performing a controlled destructive
atmospheric re-entry. A high fidelity model is developed to estimate the
aerodynamic and aerothermodynamic interaction of the spacecraft with
the airflow. Several uncertainties exist in this model, though, which are
captured by 50 uncertain variables. These uncertainties can be con-
densed in a set of 12 high level variables that are able to fully describe
the fragmentation process and the re-entry dynamics. These variables
are used in a reduced order model that can be simulated with a com-
putational time one order of magnitude smaller (0.7 s compared to 30 s
evaluated on the same standard desktop computer) than the time re-
quired by the high fidelity model. The average location of the ground
impact point predicted by the reduced order model differed from that
predicted by the high fidelity model by only km50 in the down track
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direction. Through a low budget (3460 samples) Monte Carlo analysis
of the high fidelity model, the high level variables can be statistically
characterized. Simple linear fittings are utilized to generalize their er-
rors for any de-orbit (DEO) point with the same geodetic altitude
without needing to re-perform the Monte Carlo analysis of the high
fidelity model. The reduced order model is coupled with the Inputs'
Statistics method to obtain the estimate of very low probabilities within
a reasonable computational time. Considering a confidence level of 95%
with 10% relative error, only about 15 % 4% of the samples of a Crude
Monte Carlo method will be required when using the Inputs' Statistic
method to compute probabilities on the order of 10 104 5. The
computational time required to estimate a probability of 10 5 for this
problem is thus reduced from a hypothetical 10 months for the Crude
Monte Carlo to 12 days, with the possibility of parallelizing the com-
putation.

In addition, a convergence procedure is suggested to target an op-
timal Aimed Impact Point in order to place the safety box perfectly in
the middle of the South Pacific Ocean Uninhabited Area (SPOUA). This
convergence procedure exploits a modified version of Single Step al-
gorithm of the Inputs' Statistics method and is computationally in-
expensive (few minutes). The procedure is therefore able to compute
the latitude and longitude of the optimal DEO point that can be pro-
vided as an input to the de-orbit point targeting algorithm to minimize
the casualty risk for a specific re-entry scenario. Finally, using this
convergence procedure and the Multistep algorithm of the Inputs'
Statistics method, it is possible to set up an iterative procedure to es-
timate the probability of a debris fragment landing outside the largest
possible safety box that can fit within the SPOUA. This probability is
related with an inequality constraint to 1) the casualty risk of

uncontrolled re-entry estimated to be ×8.3 10 7 in this 2U CubeSat case
study, 2) the maximum allowable casualty probability for the mission,
considered to be 10 7, and 3) the maximum probability of failure to
control the spacecraft to the desired DEO point. The maximum prob-
ability of failure is estimated for different DEO altitudes. The maximum
theoretical DEO altitude that could be targeted such that the casualty
risk is below 10 7 if the mission is able to guarantee a zero probability of
failure is km128 . With a reasonable value of 0.01 probability of failure,
the mission will be compliant with the safety requirement as long as the
optimal DEO location at an altitude below km125 is targeted.
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