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ANALYTICAL GUIDANCE FOR SPACECRAFT RELATIVE MOTION 
UNDER CONSTANT THRUST USING RELATIVE ORBIT 

ELEMENTS 

Riccardo Bevilacqua,* and Thomas Alan Lovell† 

This paper introduces novel analytical guidance solutions for spacecraft relative 

motion considering continuous, on-off thrust, and using Relative Orbit Elements 

as a geometrical representation of the dynamics. The solutions provide the rela-

tive state vector at any given time, accommodating any thrust magnitude along 

the three directions of the relative frame, as well as generic activation times and 

durations. Relative Orbit Elements geometrically interpret key aspects of the 

relative motion, including for example, the relative ellipse size, and the evolu-

tion of its center in time. The new solutions provide the guidance designer with 

a direct visualization of the thrust effects on the relative motion geometry, offer-

ing new possibilities for analytical guidance in the presence of continuous thrust 

engines, such as low thrust engines on nano-spacecraft. The paper presents the 

analytical solutions, and tests their effectiveness using a sample guidance thrust 

profile based on input-shaping, previously developed by one of the authors using 

classical Cartesian coordinates. The use of Relative Orbit Elements shows sub-

stantial benefits and added simplicity with respect to Cartesian-based approach-

es. 

INTRODUCTION 

Spacecraft relative motion is commonly represented in a relative frame using Cartesian coor-

dinates. Relative Orbit Elements (ROEs) represent a nonlinear transformation from Cartesian co-

ordinates to geometric variables, giving a visual and straightforward understanding of the main 

aspects of proximity flight dynamics. This paper presents the general analytical solution for the 

time evolution of the ROEs, when on/off constant thrust is used. These results are of particular 

interest for missions employing low thrust engines. The new solutions hold the potential for on-

board implementation.  Alternately, given their analytical nature, they may serve as an initial 

guess for numerical optimizers to minimize fuel/time, and enable verification of various pre-

designed thrust profiles. In this paper the authors demonstrate the last feature, by deriving solu-

tions for orbital re-phasing (moving to a new location along track) or rendezvous (moving to the 

location of a chief satellite, i.e. the origin of the relative motion frame) using thrust profiles based 

on input shaping.  
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Input shaping has been extensively used in vibration suppression for flexible manipulators 

(References 1-8), but never for orbital control, to the authors’ knowledge. Input shaping is a con-

volution technique based on the knowledge of a system’s natural frequencies of oscillation. Given 

a feed-forward control signal, designed to perform a desired maneuver, but not taking into ac-

count potential excitation of undesired oscillations, input shaping consists of the convolution of 

the signal itself and a specified train of impulses, so that the system’s resulting behavior presents 

minimal residual vibrations at the end of the maneuver. The impulses and their locations in time 

are computed based on the frequencies that need to be suppressed, i.e. the modes one wants to 

limit in amplitude. The majority of input shaping applications falls under the category of flexible 

structures control, such as space manipulators control. It is important to underline that input shap-

ing is not intended to reduce the energy of a system. Roughly speaking, existing oscillations can-

not be damped with input shaping, while maneuvers from a stable set to a new stable set are pos-

sible, as in the case of re-phasing maneuvers. In the specific context of spacecraft relative motion, 

oscillations refer to periodic motion in the position coordinates.  

Exploiting the new analytical formulas, the special case of an input shaping profile is present-

ed, and the analytical solution for spacecraft rendezvous with along-track control only is derived. 

In addition, the paper demonstrates how the input shaped control profile can be ad-hoc modified 

to obtain a final close relative motion of desired size relative to a reference satellite. Sample nu-

merical simulations show some of the maneuvers achieved via the analytical solutions. 

SATELLITE RELATIVE DYNAMICS 

Consider two satellites orbiting in close proximity to each other.  For this analysis, one will be 

referred to as the reference satellite, or “chief,” and the other as the “deputy.”  For the methods 

presented here, it is assumed that the only force acting on each satellite is that of a point mass 

gravitational field, the chief is in a circular orbit, and the distance between the satellites is small 

compared to their orbital radius. These assumptions yield the following linear time-invariant 

differential equations:
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These are known as the Hill’s-Clohessy-Wiltshire (HCW) equations and are written in the local-

vertical, local-horizontal (LVLH) coordinate frame, whose origin is at the chief satellite.  In these 

equations, x is the component of the deputy’s position vector relative to the chief in the radial 

direction positive away from the Earth, y is the along-track component positive along the velocity 

vector of the chief, and z is the cross-track component perpendicular to the orbital plane of the 

chief. n is the mean motion of the chief.  The LVLH frame is depicted in Figure 1. 

The solution to Equations (1) is: 
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where x0, y0, etc, are conditions at some epoch time t0, and t is the time since t0.  Consider the 

following change of coordinates from zyxzyx  ,,,,, :
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where ae, xd, yd, zmax, and  are the ROEs.  The inverse of this transformation is 
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It has been shown in Ref. 11 how the ROEs evolve with time: 
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These equations are analogous to Equations (2) for zyxzyx  ,,,,,  in that they express the 

ROE values at any given time as a function of their initial (epoch) values and the time since 

epoch. 

The parameterization of Equations (4) reveals that the relative motion in the x-y plane of the 

deputy with respect to the chief is a superposition of periodic motion in x and y, with period equal 

to that of the chief’s orbit, and secular motion in y.  Essentially, this is an elliptical path that is 

drifting in the y-direction at a rate of dnx
2

3
 .  The instantaneous center of the ellipse is (xd, yd).  

It has a semi-major axis of length ae in the along-track direction and semi-minor axis of length 

ae/2 in the radial direction.   is a parametric angle (i.e. phase angle) indicating the location of the 

deputy satellite in its trajectory, with  = 0 corresponding to the perigee location (the “bottom” of 

the ellipse).  The relative motion in x and y, if the elliptical path were “frozen” at a point in time, 

is depicted in Figure 2.  Although the ellipse is actually drifting, it has been frozen in order to 

conveniently label the ROEs.  The z-component of the relative motion, according to the HCW 

model, is purely sinusoidal and independent of x and y.  This motion is a simple harmonic oscilla-

tor with amplitude zmax and phase angle .  The deputy intersects the chief’s orbit plane at   

= 0 and , and reaches zmax and -zmax at   = /2 and 3, respectively.  Thus,  represents the 

phase difference between the x-y motion and the z motion.  Figure 3 depicts a typical 3-D relative 

trajectory, with zmax and  labeled.  (NOTE:  Because  and  are angular representations of 

time—similar to mean anomaly—they are labeled in Figures 2 and 3 as *and , which are the 

physical interpretations of these angles.)
 

 

 

 

Figure 1.  Depiction of LVLH Frame. 
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Figure 2.  Planar Projection of Relative Motion Trajectory with Relative Orbit Elements 

Labeled. 

 

 

 

Figure 3.  Depiction of Out-of-Plane Relative Motion with Relative Orbit Elements Labeled. 

ANALYTICAL SOLUTIONS WITH CONTINUOUS ON-OFF THRUST 

This section presents the steps to derive the closed-form solutions for the time evolution of the 

ROEs when a generic on-off, continuous thrust profile is assumed in each direction of the LVLH 

reference frame. Ax,y,z,i indicates the magnitude of the i-th firing in the x, y, or z direction. Δt x,y,z,i is 
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the corresponding time duration of the firing, while t f x,y,z,i is the coasting (off) time duration be-

tween the (i-1)-th and the i-th firing. tF is the final time (see Figure 4). Note that, if the first firing 

in a particular direction begins at t = 0, then t f1 in that direction is defined to be 0. 

 

Figure 4. Generic example of on-off continuous thrust profile. 

Because the dynamics are linear, the superposition principle can be applied to find the state at 

the final time. In particular, the final state can be written as the sum of the value at the final time 
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Finding the final state after firing from zero initial conditions, and then coasting, requires the 

combination of Cartesian coordinates to find the state right after firing, then conversion to ROEs, 

and finally coasting, using the same form as in Equation (6) . The following equations give the 

values of the Cartesian relative states after a generic single firing of duration Δt and coasting pe-

z 
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riod t beforehand, with components in the x, y, and z directions. They can be easily derived using 

Laplace transform on the system in Equations (1): 
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Equation 3 is then used to convert the Cartesian relative states into ROEs, and the ROEs are 

propagated for the coasting period according to Equation (6). This is repeated for each single fir-

ing, with Nx, Ny, Nz indicating the total number of firings along each axis. By adding together all 

the states obtained as described above, the following closed-form solutions for the ROEs subject 

to generic thrust profiles are obtained:  
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   (8d) 

EXAMPLE OF APPLICATION OF THE ROE FORMULAS: INPUT SHAPING THRUST 

PROFILE 

In this section a validation of the Equations (8) is performed. In particular, one of the results previ-

ously obtained by one of the authors using Cartesian coordinates (Reference 12) is confirmed by means 

of ROEs, obtaining a simpler expression. In Reference 12, an input-shaping-based, y-only thrust profile 

was devised as an effective means to obtain analytical leader-follower re-phasing or rendezvous guid-

ance, as well as stable-relative-orbit to stable-relative-orbit guidance. Such a profile allows for in-plane 

control, moving the center of the ellipse to a new desired location, where the ellipse collapses to a point 

for leader-follower maneuvers. The thrust profile was derived in Reference 12 as follows: 

 
0

1,2,5,6 1,2,4,6

3,4 3,5

*

*

1,...,6

0 , 0 3 2

1
, 0,

4 2

1
,

2

i i fx z d d F w

f

f w

A A u c sign y y c t t t

t
A u t t

A u t t

        

     

   

 (9) 

The profile of Equation (9) consists of known amplitudes for the firings (c is a given control 

amplitude), while the Δtw and t* are to be determined. Substituting Equation (9) into Equation 

(8b) and assuming yd0 > ydf, the following expressions are obtained: 



 11 

 

     
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0

2
*3 4

d F d

d F d

x t x

y t y c t


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   (10)  

Equation (10) leads to the solution for t*, given initial and desired final values for yd , that is, 

initial and final centers of the ellipse of relative motion. 

 
0* 4

3

d d Fy y t
t

u


      (11) 

Note that this result is not as straightforward to find in Cartesian coordinates (Reference 12), 

in which case there is no geometrical interpretation. 

Substitution of the profile of Equation (9) in Equation (8a) does not lead to an expression of 

comparable simplicity. Nevertheless, several observations can be made that provide useful insight 

with regards to the expected final value for ae. First of all, all the terms where thrust along x ap-

pears are zero. Secondly, the terms not containing ae0 in Equation (8a), in the square powers, rep-

resent modifications with respect to the initial value of ae. In fact, if no thrusting was present, the 

final value for ae would be ae0, as expected. These observations justify focusing on only some of 

the resulting terms in Equation (8a), and specifically we here analyze the following portion, 

where the square power is omitted for simplicity: 
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After some algebra, and the use of Prosthaphaeresis formulas, Equation (12) becomes: 
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  (13) 

where the 
iy


 become a common y


, given the nature of the firings of same duration in the 

profile of Equation (9). Equation (13) still provides little information about what to expect at the 

end of the firing sequence. Since t
*
 is determined in Equation (11), as well as the y


, through 

Equations (8), the only free variable in Equation (13) is the wait time between the series of firings 

wt . One observation to be made is that the term under the square root is never expected to be 

zero, since it would imply firing with no duration. For this reason we need only focus on the pa-

renthesis term. The derivative of this parenthesis term with respect to wt  yields 
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  (14) 

This shows that at the most four values for wt  can represent a minimum/maximum for Equa-

tion (13), within an orbital period ( 0 wt T   ). In fact, such a derivative is composed of four 

cosine functions, all shifted by different phases. 

The location of these minimum/maximum points changes from case to case, depending on the 

y


 and t
*
. Despite the impracticability of solving Equation (8a) in terms of wt , even when sim-

plified with the input shaping profile, the derivative information allows us to predict the type of 

function we should expect, and, in addition, Equation (13) clearly shows a content in frequency, 

when using wt  as independent variable, not exceeding 2n. The Nyquist–Shannon sampling the-

orem (Reference 13) enables capturing the nature of the function representing ae when input shap-

ing is applied, and wt is the independent variable, by computing Eq. (8a) only at Δt points 

spaced by a 1/4n distance, that is, theoretically 8π (i.e. 25 or more) points total in one orbital peri-

od time frame. A desired ae value can be then interpolated using these required values (e.g. using 

splines), or more points, for increased accuracy purposes, posing no computational issues. 

Depending on the initial conditions, the extrema can be four or less, and located at different 

Δtw values between 0 and the orbital period T, as shown later on. In all cases there are special val-

ues of Δtw that zero out the increase in ae, that is, there are no oscillation size increases due to per-

forming the maneuver.  

It should be noted that for the other term under the radical in Equation (8a), an identical ex-

pression can be found, the only difference being that the sine function in Equation (12) would be 

replaced by a cosine function.  Thus, the analysis of this term would be quite similar to that 

above. 

SAMPLE NUMERICAL SIMULATIONS 

In the following numerical simulations we assume a chief satellite located at the origin of the 

LVLH frame, and that we are maneuvering a deputy satellite. The chief represents the target tra-

jectory for the different types of maneuvers here presented, i.e. we set up rendezvous problems. 

More generally, such a target trajectory can be a virtual satellite, and can be located anywhere 

such that the chief and deputy orbital periods are equal. The following numerical simulations are 

obtained using the results presented earlier. For all the simulations the control value c=2·10
-5

 m/s
2
 

is used, typical of atmospheric differential drag control in low Earth orbits.
14

 In principle, any c 

value can be chosen, representing the thrust available on the spacecraft. The initial orbital param-

eters of Table 1 are used to generate the trajectories for the first simulation, representing an initial 

condition of leader-follower. Note that the initial orbital parameters are first converted to Carte-

sian position and velocity in an Earth centered inertial frame, then translated kinematically into 

the LVLH frame, and finally forced to match a leader follower initial condition for the linear 

equations, i.e., cancelling any residual relative velocity and x displacement. Three different final 

conditions are chosen for this simulation, one being exact rendezvous and two cases where the 

final motion is a relative closed orbit around the chief. For these cases, the variation of final ae as 

function of Δtw reduces to a simple cosine function, with maximum at 0 and one orbital period, 
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and no increase at one-half orbital period (see Figure 5).  Figure 6 shows the resulting trajectories 

applying input shaping, as well as the control profiles as dictated by Equation (9). 

 

Figure 5 Example of ae vs. Δtw for leader follower initial condition. Note: the above graph 

is obtained using the numerical data of Table 1, showing the min and max points. 

Table 1: Initial Orbital parameters for S/C and desired trajectory for Leader-Follower 

case, plus general data for simulations. 

Initial Orbital Parameter Chief Deputy 

Semi-major axis a 6,778.1 km 6,778.1 km 

Eccentricity e 0 0 

Inclination i 97.9908 deg 97.9908 deg 

Right Ascension of the Ascending Node (RAAN)   261.621 deg 261.621 deg 

Argument of Perigee p  30 deg 30 deg 

Polar Angle   27.216 deg 27.18 deg 

Additional parameters used for the simulations 

8

2 108263 10J  
  

6378.1363EarthR km
  

3 2398600.4418km s 
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Figure 6 Rendezvous with chief starting from an initial relative point. TOP: 1) Δtw=0.5T, 

exact rendezvous with chief; 2) Δtw =0, obtaining the maximum ae for the final stable orbit 

around the chief; 3) Δtw =0.25T, obtaining an intermediate value of ae for the final stable 

relative orbit around the chief. BOTTOM: control profiles. 

Table 2 introduces a small eccentricity in the deputy initial orbital parameters, thus creating an 

initial motion which is a relative closed orbit whose center is offset from the chief by the same 

amount as the leader-follower separation in the previous cases. Note that the initial orbital param-

eters are first converted in Cartesian coordinates in an Earth centered inertial frame, then translat-

ed kinematically into the LVLH frame, and finally forced to match a stable motion initial condi-

tion for the linear equations, i.e., imposing the condition 0 02y x  .
10

  For these scenarios, the 

final ae function is more complicated than before.  Figure 7 indicates that Δtw=625sec yields no 

change in ae, Δtw =4440sec yields the maximum final value of ae, and Δtw =0.5T yields an inter-
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mediate final value of ae.  These results are shown in Figure 8, including both the x-y trajectories 

and the control profiles. 

 

Figure 7 Example of ae vs. Δtw for stable relative orbit initial condition. Note: the above 

graph is obtained using the numerical data of Table 2, showing the min and max points. 

Table 2 Initial Orbital parameters for S/C and desired trajectory for Stable-to-Stable 

case. 

Orbital Parameter Chief Deputy 

Semi-major axis a 6,778.1 km 6,778.1 km 

Eccentricity e 0 0.0001 

Inclination i 97.9908 deg 97.9908 deg 

Right Ascension of the Ascending Node (RAAN)   261.621 deg 261.621 deg 

Argument of Perigee p  30 deg 30 deg 

Polar Angle   27.216 deg 27.18 deg 
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Figure 8 Rendezvous with chief starting from an initial relative stable orbit. TOP: 1) 

Δtw=0.5T, obtaining an intermediate ae (between initial and maximum achievable) on final 

relative orbit; 2) Δtw =625s, obtaining the minimum ae for the final stable orbit around the 

chief; 3) Δtw =4440s, obtaining the maximum of ae for the final stable relative orbit around 

the chief. CENTER: zoom of the final relative orbits. BOTTOM: control profiles. 
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All the maneuvers can be computed analytically, from Equation (11) and the earlier observa-

tions on the function ae(Δtw). The only numerical operation required to design such maneuvers 

consists of reconstructing ae(Δtw) by means of computing Equation (8a) at a few points, and inter-

polating when a desired change in ae is given, to solve for the corresponding Δtw. This provides a 

powerful tool to design guidance trajectories onboard spacecraft with limited computing capabili-

ties. 

Figure 9 compares three reconstructions of the ae(Δtw) function: the one using the necessary 8π 

points, minimally differing from the more accurate line obtained with a sample time of 1 second. 

The third line shows how less than 8π points (10 in the example) lead to a poor reconstruction of 

the curve. The circles indicate the (Δtw, ae) points required for the curve reconstruction. Once 

those are stored in a table, a desired ae value leads to the corresponding Δtw by linearly interpolat-

ing between the two closest ae points. 

 

Figure 9 Graphical demonstration of the number of points needed to represent the 

ae(Δtw) function. 

More generally, the new equations providing the ROEs’ time evolution in analytical form, 

when continuous, on-off thrust is applied, hold the potential for testing and designing new open 

loop control sequences. They could also provide analytical initial guesses for numerical optimiza-

tion of the guidance. 

CONCLUSION 

This paper presents the general analytical solutions for spacecraft relative orbit control, when 

on/off continuous thrusters are used, employing Relative Orbit Elements instead of classical Car-

tesian coordinates to represent the relative dynamics. Relative Orbit Elements are a powerful tool 

to visualize geometrical aspects of spacecraft relative motion. A thrust profile based on the input-

shaping technique is used to validate the obtained formulas. The analytical solutions for exact re-

phasing or rendezvous using input shaping are provided, along with the expressions and proce-

dures to control the size of the final relative orbit around the target trajectory or chief satellite. 

Sample numerical simulations show the type of maneuvers achievable using the ROE formulas 

and input shaping control profiles, namely, re-phasing or rendezvous maneuvers with along-track 

control only. 
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