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This work proposes a technique for optimizing the propellant consumption in multiple 

spacecraft assembly trajectories in Low Earth Orbits, combining the use of residual 

atmospheric drag and low thrust thrusters. By varying the level of aerodynamic drag of the 

spacecraft, relative differential accelerations are generated, and, therefore, their relative 

orbits are controlled. Each of the spacecraft, with the exclusion of the target, is assumed to 

include a system of drag plates, which can be actively opened or closed, in order to vary the 

atmospheric drag. Each of the spacecraft is also assumed to have continuous low thrusting 

capabilities in the three dimensions. In particular, the following two-phase control method is 

proposed. First, the relative motion of the chaser spacecraft with respect to the target 

spacecraft is controlled via an analytically computed differential drag sequence, with no 

propellant consumption, in order to move the chasers from their arbitrary initial conditions 

to the vicinity of the target spacecraft. Once the differential drag sequence is completed, the 

low thrust optimal control takes over, in order to perform an accurate rendezvous with the 

target spacecraft. Sample simulations are presented to support the validity and robustness of 

the developed technique. In particular, the Earth atmosphere is modeled to take into account 

day-to-night variations plus a noise effect to represent unpredictable behaviors such as 

“bubbles” of lower or higher density and solar effects. Furthermore, the proposed technique 

is validated against a complete nonlinear orbital model. The main advantage of this 
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approach is that it enables a group of spacecraft to perform the assembly with very low 

propellant consumption. 

Keywords: Multiple Spacecraft, Differential Drag, Optimal Control, Autonomous Assembly. 
 

Nomenclature 
 

ISSa  = ISS Orbit Semi-Major Axis 

c  = Coefficient in Schweighart-Sedwick Equations 

DC  = Drag Coefficient 

V  = Fuel Consumption in terms of Total Velocity Variation 

, ,  x y z  =  Mutual Position Coordinates of Two Spacecraft in LVLH 

, ,    x y z  =  Mutual Velocity Components of Two Spacecraft in LVLH 

S  = Difference in cross wind section area between two spacecraft 

t  = Unknown Time Duration for the Controlled Rendezvous Phases 

 wt  = Waiting Time Interval before Controlled Phase in Rendezvous Maneuver 

e  = Time-Varying Eccentricity of the Harmonic Oscillator Motion 

0e  = Time-Varying Eccentricity of the Harmonic Oscillator Motion before Rendezvous 

ISSe  = ISS Orbit Eccentricity 

 t  =  state transition matrix for Clohessy-Wiltshire, 1960 equations 

  = Phase of Forcing Term in Out-of-plane Motion in Schweighart-Sedwick Equations 

h  = Target Altitude above the Earth Surface 

I  = Fuel Consumption in terms of Total Impulse 

I  = Identity Matrix 

ISS = International Space Station 

refi  = Reference LVLH Orbit Inclination 

ISSi  = ISS Orbit Inclination 
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2J  = Second Order Harmonic of Earth Gravitational Potential Field (Earth Flattening) [ , 

Vallado] 

-8108263×10

J   =  cost function 

LVLH  =  Local Vertical Local Horizontal 

l  = Coefficient in Schweighart-Sedwick Equations (out-of-plane motion)  

r


   =  position adjoint vector 

V


   =  velocity adjoint vector 

m  = Spacecraft Mass 

 ISS  = ISS Orbit Initial Anomaly 

   =  Orbital Angular rate of the Target 

ISS   =  ISS Orbit Argument of Perigee 

  = ISS Orbit Right Ascension of Ascending Node (RAAN) 

 t  =  convolution integral matrix for Clohessy-Wiltshire, 1960 equations due to optimal unbounded 

control 

q  = Coefficient in Schweighart-Sedwick Equations (out-of-plane motion) 


r   =  relative position vector 

R  = Earth Mean Radius [ , Vallado] 6378.1363km

refr  =  Reference LVLH Orbit Radius 

  = Atmospheric Density 

S  = Spacecraft Wind-Cross Section Area 

PS  = Single Plate Wind-Cross Section Area 

T  = Orbital Period 

t  = Time 

,u U  = Control Variable 

V  = Spacecraft Velocity Vector Magnitude with respect to Earth Atmosphere 

V̂  = Spacecraft Velocity Unit Vector with respect to Earth Atmosphere 
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
V   =  relative velocity vector in LVLH 

 T

1 2 3 4z z z z    z 



 = Intermediate Transformed Spacecraft Relative State Vector 

 T

1 2 3 4z z z zz  = Transformed Spacecraft Relative State Vector 

 0
...  = Initial Conditions 

 ...
j
 = Component along j  direction in LVLH ( , ,j x y z ) 

I. Introduction 

his work proposes the integration of differential drag-based control and low-thrust optimal control for multiple 

spacecraft rendezvous and assembly maneuvers.  
T 
 The possibility of controlling spacecraft relative motion by exploiting the Earth’s atmosphere, combined with ad-

hoc-driven vehicles’ relative configuration, has been studied for several years (Leonard 1986, Leonard et al. 1989, 

Humi et al., 2001 and 2003, Carter et al., 2002, Palmerini et al., 2005) and it is still an open topic of research 

(Shankar et al., 2008, Bevilacqua et al., 2008). When atmospheric differential drag is used for satellites rendezvous, 

an under-actuated controllable system is introduced, as already discussed in previous literature (Campbell et al., 

2003, Kumar et al., 2007 and Starin et al., 2001). 

 Spacecraft rendezvous and assembly has also been addressed in order to optimize propellant consumption, by 

allowing long time duration low-thrust maneuvers (Bevilacqua et al. 2007, Guelman et al., 2001 and Humi et al., 

2001). 

 In this work we propose a new approach based on the combination of differential drag and low-continuous-thrust 

optimal control, in order to generate quasi propellant-free assembly maneuvers for an arbitrary number of spacecraft. 

The approach of the chaser spacecraft to a target spacecraft is performed via differential drag from far away initial 

conditions, until the vicinities are reached. Then, low-thrust engines are used to complete the precise rendezvous. 

Both controllers, which are based on linear dynamics and simplifying assumptions are validated against an high 

fidelity orbital propagator, in order to evaluate their robustness and feasibility. In particular, part of the differential 

drag controller and the whole optimal thrust controller are implemented as feedback reactions with respect to the 

spacecraft relative states. 
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 The main contributions of this paper to the state of the art for multiple spacecraft assembly control can be 

summarized as follows: 

1. Introduction of a new hybrid technique to obtain low propellant spacecraft rendezvous and assembly 

maneuvers. 

2. Further development of previously obtained analytical results on differential drag precise rendezvous 

(Bevilacqua and Romano, 2008). 

3. Demonstration of a seamless integration between existing rendezvous optimal controller (Guelman et al., 

2001) and differential drag controller. 

4. Test of linear models based techniques against a complete nonlinear model which includes disturbances 

and uncertainties on the atmospheric density. 

 The paper is organized as follows. Section II introduces the dynamics model and control logic used for the 

differential drag controller design. Section III illustrates the optimal low-thrust approach for the final phase of the 

assembly maneuver. Section IV describes the validation of the drag controller and the optimal low-thrust controller 

with a nonlinear orbital propagator and a realistic spacecraft model. Section V is dedicated to numerical simulations 

and section VI concludes the paper. 

II. Dynamics Model including J2 and Control via Differential Drag 

In this section the analytical developments for the dynamics and control of the spacecraft relative motion via 

differential drag are presented. The differential drag control logic is used in the first phase of the multi-spacecraft 

assembly maneuvers. 

The relative dynamics between two generic spacecraft, considering the averaged effect of the J2 perturbation 

over one orbit, projected in the LVLH coordinate system, is represented by the Schweighart-Sedwick equations 

(Schweighart-Sedwick, 2002) 
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The Schweighart-Sedwick LVLH coordinate system is defined as follows: the x axis points from the center of 

the Earth to the origin of the system (which moves along a circular orbit), the  axis is along the orbital track and y
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the axis completes a right-hand Cartesian coordinate system. The angular velocity of the coordinate system with 

respect to an inertial frame is defined as

z

c , being c  defined in Eq. (2) 

  
2

2
ref2

ref

3J
+

R
= 1 1+3cos2i

8r



c  (2) 

Furthermore,  x y zu u u  indicate the components of the relative acceleration between the two spacecraft. 

When only differential drag is considered, the control vector becomes 

 20
2


0

       
  

 
D

x y

SC
V

mzuu u  (3) 

The dynamics of Eq. (1) can be decomposed into a double integrator and a harmonic oscillator via the following 

state vector transformation 
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
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2 A

   (4)  

The dynamics in the new state vector (see also Bevilacqua and Romano, 2008) has the following closed form 

solution for constant control acceleration  with yu 0 x zu u  
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B t
z = - u + z t + z

2A - B
B

z = - u t + z
A - B

zA u A u
z = z - cos A - B t + sin A - B t +

A - B2 A - B 2 A - B

A u
z = z cos A - B t - A - B z - sin A - B t

2 A - B

 (5) 

For notation convenience we use, for the rest of the paper, the following modified final transformed state vector 
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4
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 (6) 

The two aspects of the relative motion dynamics can be represented in two different phase planes. Figure 1 a 

represents the double integrator motion, Figure 1 b the harmonic oscillator part. 

 

 a) Qualitative shape of the curves in      b) Qualitative shape of the curves in 21z z 3 4z z    

Figure 1 Qualitative shape of the curves representing the relative motion of a chaser with respect to the 
target in the phase planes. The axis orientation has been chosen consistently with Leonard 1986, 1989. 

When using differential drag as control, drag plates are imagined to be mounted on each spacecraft, so that the 

relative acceleration sign can be controlled (see Eq. (3): S  can be either zero, negative or positive). Furthermore, 

the following assumptions are made, in order to exploit the analytical solution in Eq. (5) for designing the control 

logic (Bevilacqua, 2008). It is important to highlight that the assumptions listed below are only used for the 

analytical developments of the drag control logic. 

1. The angle of attack of the drag plates of each spacecraft can be either 0 or 90 degrees, thus generating a 

minimum (Figure 2, CASE 1), zero (Figure 2, CASE 2) or a maximum (Figure 2, CASE 3) relative drag 

acceleration. Furthermore, the drag plates are considered to rotate in couples, as depicted in Figure 2, 

CASE 2. 

2. Attitude dynamics is not considered. Attitude is assumed to be stabilized in the LVLH coordinate 

system. 
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3. All of the spacecraft in the fleet have the same drag coefficient and mass. 

4. The air density is constant for all of the spacecraft and equal to that of the target’s altitude at the initial 

time 0t . 

5. The problem is confined to the xy  plane. Therefore, for each chaser, the state vector is 

    
T

x y x y and the final condition is   T . The dynamics 

along the z axis, which is oscillatory and independent from the one on the 

0 0 0 0     
T

x y x y

xy  plane, is controlled only 

in the last phase of the maneuver, when thrusters take over. 

6. The target orbital rate  is constant during the maneuver. 

 Assumptions 4 and 6 are removed when the complete nonlinear model is used to test the controller in the 

simulations section (Section V). 

 

Figure 2 Drag Plates Concept. 

The drag plates concept illustrated in Figure 2 represents an evolution of the idea previously introduced by 

Bevilacqua and Romano, 2008. In particular, in this paper the target spacecraft is not controlling its surfaces’ 
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orientation, while each individual chaser is capable of generating a negative, zero or positive control with respect to 

the target. By this new assumption we simplify the algorithm presented in Bevilacqua and Romano, 2008, by 

removing any mutual constraints among the control signs of the chasers.  

The control sequence is divided in two phases: 

1. Stabilization of the chasers with respect to the target, i.e. canceling out the double integrator motion so 

that the chasers orbit around the target in a stable motion (see Figure 3). The stable motion can be either 

a leader-follower configuration or a closed relative orbit described by the chaser around the target. 

2. After stabilization, precise rendezvous at the target is obtained by an analytically determined control 

sequence (see Figure 4) 

 

a) stabilization trajectory in the  plane   b) stabilization trajectory in the 21z z 3 4z z   plane 

Figure 3 Qualitative example of relative orbit stabilization maneuver in the phase planes. The plus symbol (+) 
on the trajectory indicates the initial state, the star symbol (*) indicates the final condition at the exit of the 

stabilization algorithm. Equal Greek letters in the two figures indicate simultaneous events. 
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a) Rendezvous trajectory in the  plane   b) Rendezvous trajectory in the  plane 21z z 43z z

Figure 4 Qualitative example of rendezvous maneuver in the phase planes. In figure b the plus symbol (+) 
indicates the initial state, and the star symbol (*) indicates the final condition. 

In particular the value of  used in the control sequence in *t Figure 4 is (Bevilacqua and Romano, 2008) 
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   (7) 

The following statement constitutes an important new development with respect to Bevilacqua and Romano, 

2008. In order for the argument of the inverse cosine in Eq. (7) not to exceed the unit value the following condition 

needs to hold true 

 
 

2 2
0 3 4

13

5
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3
y

5 22

A u
e z z

A - B
  (8) 

If this condition is not satisfied at the beginning of the rendezvous phase, the sequence of Figure 4 must be 

repeated until the quantity 2 2
3 4z z  respects the constraint of Eq. (8). In other words, the rendezvous sequence is 
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performed by reducing the amplitude of the harmonic motion 2 2
3 4z z  from the initial value , after the 

stabilization phase, to intermediate values , until the sequence can drive it to zero, once the condition in 

Eq. (8) is  satisfied at the . 

0e

je

1 2, ,..., Ne e e

Ne

Considering a generic iteration of the algorithm between the state vector magnitudes  and 1je , 

with  
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B
, where   is a user selectable small quantity, Eq. (7) is substituted by 
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  (9) 

K H

H K e e e e e e K

Collision avoidance issues are solved by recomputing the chasers’ trajectories, iterating on the value of the initial 

coasting phase, as described in Bevilacqua and Romano, 2008. Since the drag control sequence is completely 

analytical, these iterations can be performed with very low computational burden. 

III. Optimal Low-Thrust Close Proximity Maneuvers 

Using the linear model based control sequence described in previous section against a true orbital nonlinear 

model introduces errors in matching the final desired state vector for the chaser spacecraft. Furthermore, the 

differential drag control presented does not deal with the out of plane motion. For these reasons, an optimal 

controller, based on low thrust engines, is proposed for the last phase. This section builds upon the results of 

Guelman et al., 2001. 

The Clohessy-Wiltshire equations are used here to represent the relative state vector evolution between two 

generic spacecraft (Eq. 10). The use of this simpler representation of the relative motion with respect to Eq. (1) 

enables to usefully exploit the optimality conditions and it will be validated by the numerical simulations of Section 

V. In particular, if the chasers are already in the vicinities of the target, the simple HCW model can be used with no 

major issues due to the linear approximation and neglecting of disturbances. Furthermore, in order to overcome this 
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limitation, and to be able to use the fuel optimal HCW-based approach for distances of the order of several 

kilometers, the solution of Guelman et al, 2001 is implemented in such a way that it can be repetitively computed at 

fixed time steps, in a feedback fashion with respect to the spacecraft relative state vector, so that nonlinear effects 

and disturbances can be satisfactorily dealt with. 

The Hill-Clohessy-Wiltshire equations can be written as 
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with the LVLH angular velocity given by 2  T . By defining  
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and assuming continuous thrust capability in three dimensions, the propellant optimal control problem can be 

stated as follows (Guelman et al, 2001). Given the initial and final conditions for the state vector 
 TT Tr V  and a 

time interval to perform the maneuver , minimize the cost function 2  t t t1
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subject to the constraints 

 max , , , ku u k x y z  (13) 

In our particular case, the initial state vector of the generic chaser spacecraft is taken to be the state at the end of 

the differential drag control phase and the final desired state vector is the 6-by-1 null vector.  

The Hamiltonian of the problem is 
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By applying the minimum principle (Pontryagin et al., 1969) and considering the constraints in Eq. (13), the 

optimal control law is given by 
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Moreover, the time evolution of the costate needed in Eq. (15) is described by  
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We consider each thrust component to be generated by an independent continuously operated actuator. The 

optimal control problem is solved by iteratively searching for the values of the initial condition of the costate vector 

that minimizes the norm of the error between the desired and actual final states. This error is found by propagating 

Eq. (10), with the control policy of Eq. (15). The initial time costate vector guess for the first iteration is chosen as 

the one for the unconstrained continuous control 
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being  the convolution integral for the state vector due to the optimal unbounded control and  t  t  the 

state transition matrix associated to the dynamics in Eq. (10) (see Guelman et al., 2001 for details). 

The Matlab® fminsearch routine is used to efficiently solve the numerical problem. 

IV. Implementation of the Differential Drag and Optimal Low-Thrust Controllers 

Having laid out the mathematical background to both the proposed differential drag-based and optimal low-

thrust controllers, this section is detailing the practical implementation of the algorithms. The block diagram of an 

integrated spacecraft control system with the differential drag controller and optimal low-thrust controller is 

presented in Figure 5.  The inputs to the differential drag controller are the current position and velocity of the 

spacecraft in the Schweighart-Sedwick LVLH frame and its velocity in the inertial frame.  Additionally, the 

spacecraft’s surface area, its coefficient of drag, the drag plates surface areas, the atmospheric density at the target’s 
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altitude at start time, and a tolerance on the final condition are pre-computed and provided to the controller.  This 

information is passed initially through the feedback differential drag algorithm and then to the feed-forward 

differential drag algorithm. Both algorithms generate a required control in either the positive or negative y direction 

in the LVLH frame which is then translated into a rotation command for each set of drag plates as depicted in Figure 

2. 

Upon completion of the feed-forward differential drag control sequence, the translational control of the 

spacecraft is transferred to the optimal low-thrust controller.  The inputs to this controller are the position and 

velocity of the spacecraft in the LVLH frame but also a parameter is provided to select the period of re-computation 

of the controls.  This parameter provides the designer with a trade-space between computation speed and optimality. 

 

Drag Plates Control ,x y    

N V  

,x y    
Differential Drag Based 

Controller 

u  

V


 

r


 
 

Optimal Low-Thrust 
Controller 

Figure 5 Block diagram of the integrated differential drag and fuel optimal controllers 

V. Numerical Simulations 

This section reports the results of two sample numerical simulations. Two chaser spacecraft and the target, 

described in Table 1, are maneuvering from the initial conditions reported in Table 2 and 3. 

The first sample simulation employs the differential drag analytical approach described in Section II. When the 

analytical controller has completed its sequence, the thrusters take over, in order to reduce the residual error between 

the chaser spacecraft and the target spacecraft. This error is due to the assumptions made in Section II in order to 

develop the analytical controller. The following more realistic assumptions are considered for the simulations: 
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1. The atmospheric density is not constant. It is generated according to the model found in Vallado. 

Furthermore, a random noise of the order of magnitude of the density itself is added. 

2. The dynamics is nonlinear (up to J4). 

3. Disturbances are present (solar radiation pressure, third body effect). 

The second simulation uses only thrusters on the same time frame of simulation 1, in order to compare the fuel 

expenditure and show the amount of saving by using differential drag. 

 

Table 1 Simulations Parameters 

Spacecraft Mass   kg 10 
Spacecraft Main Body Face Surface 

Area   2S m .25 

Single Drag Plate Surface Area  2
PS m (1 of 4 

for the chasers, 1 of 2 for the target) .25 

DC  2.2 
Target Altitude at Initial Time  h km  350 

Reference Density  3
350 km kg m  111.3 10 (Wertz, 1999) 

Maximum Acceleration with Thrusters on 

 2 , ,j
mu j

s
,x y z  45 10  

Period of recomputation for the fuel optimal 
controller  s  100 

 

Table 2 Target Spacecraft Initial Conditions 

6713889.83mISSa  

0.008ISSe  

51.9412degISSi  

206.3577deg ISS  

101.0711deg ISS  

108.0848deg ISS  

 

Table 3 Chasers Initial Positions in LVLH 

Chaser 1   0
  

t
x y z   1000 2000 10m m m  

Chaser 2   0
  

t
x y z   1000 2000 10  m m m  
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A. Simulation Test Case 1: Differential Drag and Optimal Low Thrust Control 
 

The main numerical results for Simulation Test Case 1 are reported in Table 4. The time required for completing 

the maneuver is 15.5 hours.  

Figure 6 and Figure 7 show the drag plates control history for chaser one and two. In particular, the drag plates 

are supposed to be opened and closed in couples, by rotating the plates which are symmetric with respect to the 

spacecraft in opposite directions, so that attitude effects can be compensated (see Figure 2). It is worth to underline 

that the maneuver time frame is 15.5 hours, so that the rotation of the plates depicted in Figure 6 and Figure 7 is not 

showing chattering, the rotations occur at feasible rates. 

Figure 8 and Figure 9 depict the two chasers’ thrust history, demonstrating active thruster control only near the 

end of the maneuver, after the drag controller has completed the feed-forward phase. Furthermore, Figure 8 and 

Figure 9 show smooth behavior for the thrust history and also that the thrust limitations are respected. 

Figure 10 and Figure 11 show the rendezvous trajectories of the two chasers in different views in the LVLH 

reference frame. The two chasers reach the target without any collision. 

Finally, Figure 12 demonstrates how the differential drag logic satisfactorily drives the chasers in the vicinity of 

the target before the fuel optimal controller takes over. 
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Figure 6 Drag Plates Control Sequence for Chaser 1. 

 

Figure 7 Drag Plates Control Sequence for Chaser 2. 
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Figure 8 Low Thrust Control Sequence for Chaser 1: Differential Drag and Thrusters. 

 

Figure 9 Low Thrust Control Sequence for Chaser 2: Differential Drag and Thrusters. 
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Figure 10 Trajectory of Chaser 1: Differential Drag and Thrusters. 

 

Figure 11 Trajectory of Chaser 2: Differential Drag and Thrusters. 
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 a)                   b) 

Figure 12 Last Phases of the Trajectories of Chaser 1 (a) and Chaser 2 (b): Differential Drag and Thrusters. 

Further advantage of the proposed new drag plates’ concept is that no coasting phases are required with respect 

to the work of Bevilacqua and Romano, 2008, optimizing the overall maneuver required time. 

Table 4 Simulation 1 Results: Fuel Consumption for the propelled phase 

Chaser 1 Chaser 2 

Impulse 0.80317I Ns  Impulse 0.40405I Ns  

0.08032  mV s  0.0404  mV s  

B. Simulation Test Case 2: Optimal Low Thrust only 
 

The main numerical results for Simulation Test Case 2 are reported in Table 5. The time imposed for completing 

the maneuver is the same of the simulation with aero drag and thrusters, i.e. 15.5 hours. 

Figure 13 and Figure 14 are the chasers’ thrust histories when the maneuver is performed using thrusters only. In 

this simulation the engines are used throughout the whole maneuver and the thrusters’ capability is exploited more 

than in the previous simulation, still maintaining a smooth profile and respecting the constraint on the maximum 

allowed acceleration on each direction. 

Figure 15 and Figure 16 show the rendezvous trajectories of the two chasers in different prospective in the 

LVLH reference frame. Both the chasers reach the target state vector. 

As expected, comparison of Tables 4 and 5 yields a propellant savings for the combined differential drag and 

low-thrust controller against the low-thrust controller of 92%. 
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Figure 13 Low Thrust Control Sequence for Chaser 1: Thrusters only. 

 

Figure 14 Low Thrust Control Sequence for Chaser 2: Thrusters only. 
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Figure 15 Low Thrust Control Sequence for Chaser 1: Thrusters only. 

 

 

Figure 16 Low Thrust Control Sequence for Chaser 2: Thrusters only. 
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Table 5 Simulation 2 Results: Fuel Consumption for the maneuver 

Chaser 1 Chaser 2 

Impulse 10.9700I Ns  Impulse 10.4686I Ns  

1.0971  mV s  1.0469  mV s  

 

VI. Conclusion 

This work presents a hybrid technique which enables multiple-spacecraft rendezvous and assembly to a target 

spacecraft with low usage of propellant. The combination of differential drag from far away distances and low-thrust 

engines for the final approach to the target is the key factor of this research. In particular, the spacecraft are 

considered equipped with drag plates whose orientation can be changed with respect to the atmosphere wind 

direction, in order to control the amount of differential drag among them. In the final phase of the maneuver, a fuel 

optimal continuous low-thrust controller drives the spacecraft to the target. Both the differential and fuel optimal 

controllers are based on linear dynamics, but are demonstrated here to be feasible solutions for a high fidelity model 

of the orbital environment with its nonlinear effects, including solar, atmospheric, third body and up to J4  

gravitational effects. 

Starting from a previous work by the authors, important developments are here presented for the completely 

analytical differential drag approach. In particular, the drag plates’ concept is improved with respect to previous 

work by the authors, so that shorter time frames are required for maneuvering the spacecraft. Furthermore, new 

analytical breakthroughs are reported for the closed form solution control sequence based on differential drag. 

The simulations confirm the advantage of using differential drag with respect to an optimal use of thrusters in 

terms of propellant consumption. Furthermore, the concept of variable drag plates on each of the chaser spacecraft 

provides a feasible and low-risk ability to generate requisite drag differentials. 
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