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a b s t r a c t

Proximity control of modern nano-spacecraft often relies on low and discrete thrust
engines that are characterized by low consumption, and generate on-off force profiles.
New guidance solutions must take into account the nature of this type of orbital engines.
This paper introduces novel analytical guidance solutions for spacecraft relative motion
considering continuous, on-off thrust, and using relative orbit elements as a geometrical
representation of the dynamics. The solutions provide the relative state vector at any
given time, accommodating any thrust magnitude along the three directions of the
relative frame, as well as generic activation times and durations. Relative orbit elements
geometrically interpret key aspects of the relative motion, including for example, the
relative ellipse size, and the evolution of its center in time. The new solutions provide the
guidance designer with a direct visualization of the thrust effects on the relative motion
geometry, offering new possibilities for analytical guidance in the presence of continuous
thrust engines, such as low thrust engines on nano-spacecraft. The paper presents the
analytical solutions, and tests their effectiveness using a sample thrust profile based on
input-shaping, previously developed by one of the authors using classical Cartesian
coordinates. The use of relative orbit elements shows substantial benefits and added
simplicity with respect to Cartesian-based approaches, holding the promise for straight-
forward onboard spacecraft implementation. The software developed for this research
will be available open source1, to be used by spacecraft guidance designers as trajectory
design tool.

& 2014 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Small spacecraft flying in tight formations are nowadays replacing larger single satellites, due to their lower cost, the
reconfiguration ability, the flexibility to substitute malfunctioning vehicles without aborting the mission, and their inherent
redundancy as multi-vehicle systems [1]. On the other hand, solutions such as the CubeSats2, present a new set of design
challenges, mainly related to the vehicles’ limited size, power, and computation abilities. Incorporating thrusters and
carrying on-board propellant is extremely difficult on nano-spacecraft weighting a few kilograms [2], and such thrusters
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Nomenclature

a orbital semi-major axis
ae relative ellipse semi-major axis
Ax,y,z,i amplitude of control force at the ith firing in

the x, y, or z direction
β parametric (phase) angle for the planar

motion in terms of ROEs
c reference thrust value (it represents the nom-

inal thrust available on a spacecraft)
Δtx,y,z,i duration of the ith firing in the x, y, or z

direction
Δtw unknown duration in input-shaping profile
e orbital eccentricity
γ parametric (phase) angle for the out of plane

motion in terms of ROEs
HCW Hill–Clohessy–Wiltshire
iorb orbital inclination
J2 Earth’s second zonal harmonic
LVLH local vertical local horizontal
μ Earth’s gravitational constant
n orbital angular rate
Nx,y,z number of firings in the x, y, or z direction
ν orbital polar angle

Ω orbital right ascension of the ascending
node (RAAN)

ωp orbital argument of perigee
REarth mean radius of the Earth
ROEs relative orbit elements
s Laplace complex variable
t time
tn unknown time variable in input-shaping

profile
x, y, z Cartesian coordinates in the LVLH frame
xd, yd center of the 2-by-1 relative ellipse (part of

the ROEs variables)
X, Y, Z Laplace transforms of the Cartesian coordi-

nates in the LVLH frame

Further symbols explanation

Subscript 0 refers to initial conditions (at initial epoch
time t0). Subscript f refers to final epoch.

Dot on a variable represents first time derivative. Two
dots, second time derivative, etc.

Subscript h indicates coasting solutions to the relative
motion dynamics.
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operate at one – or just a few – nominal value of force, i.e. they are on-off only. As for the computational capabilities, very
simple programs must be designed for the vehicles to be autonomous. Analytical solutions are needed for straightforward
online implementation, and to completely avoid the need of onboard numerical iterations.

The relative motion of spacecraft formations is commonly represented in a relative frame using Cartesian coordinates.
Relative orbit elements (ROEs) represent a nonlinear transformation from Cartesian coordinates to geometric variables,
giving a visual and straightforward understanding of the main aspects of proximity flight dynamics. Other researchers have
presented various solutions separating the oscillatory and drifting motions in the classical linearized equations of spacecraft
relative motion [3–6], using linear transformations. These previous efforts are not directly and thoroughly addressing the
geometrical problem of relative motion. In particular, ROEs are akin to classical orbital elements, in that they consist of
physical lengths and angles allowing easy visualization of any relative orbit (a benefit not provided in Refs. [3–6]).

This paper presents the general analytical solution for the time evolution of the ROEs, when on/off constant thrust is
used. These results are of particular interest for missions employing low thrust engines. The new solutions also hold the
potential for on-board implementation. Alternately, given their analytical nature, they may serve as an initial guess for
numerical optimizers to minimize fuel/time, and enable verification of various pre-designed thrust profiles. In this paper the
authors demonstrate the last feature, by deriving solutions for orbital planar re-phasing (moving to a new location along
track) or rendezvous (moving to the location of a chief satellite, i.e. the origin of the relative motion frame) using thrust
profiles based on input-shaping.

Input-shaping has been extensively used in vibration suppression for flexible manipulators Refs. [7–14], but never for
orbital control, to the authors’ knowledge. Input-shaping is a convolution technique based on the knowledge of a system’s
natural frequencies of oscillation. Given a feed-forward control signal, designed to perform a desired maneuver, but not
taking into account potential excitation of undesired oscillations, input-shaping consists of the convolution of the signal
itself and a specified train of impulses, so that the system’s resulting behavior presents minimal residual vibrations at the
end of the maneuver. The impulses and their locations in time are computed based on the frequencies that need to be
suppressed, i.e. the modes one wants to limit in amplitude. The majority of input-shaping applications falls under the
category of flexible structures control, such as space manipulators control. It is important to underline that input-shaping is
not intended to reduce the energy of a system. Roughly speaking, existing oscillations cannot be damped with input-
shaping, while maneuvers from an equilibrium set to a new equilibrium set are possible, as in the case of re-phasing
maneuvers. In the specific context of spacecraft relative motion, oscillations refer to periodic motion in the position
coordinates.

Exploiting the new analytical formulas, the special case of an input-shaping profile is presented, and the analytical
solution for spacecraft planar rendezvous with along-track control only is derived. In addition, the paper demonstrates how
the input-shaped control profile can be ad-hoc modified to obtain a final close relative motion of desired size relative to a
reference satellite. Sample numerical simulations show some of the maneuvers achieved via the analytical solutions.
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The intended advancements in the state of the art for relative motion guidance design are:
�
 Use of ROEs in conjunction with on-off thrust profiles, thus enabling geometrical visualization of the key aspects of relative
motion, and addressing modern engines found especially in small satellites.
�
 Analytical solutions for ROEs time evolution, and examples of their use with a specific open-loop thrust signal and a
closed-loop application.
�
 Illustration of potential future uses for the new analytical formulas.

The paper is organized as follows. Section 2 presents the spacecraft relative motion dynamics in Cartesian coordinates and its
nonlinear transformation in ROEs. Section 3 is dedicated to the derivation of the general analytical equations for the ROEs
evolution in time when on-off thrust is used. Section 4 shows the example where an input-shaping-based along-track thrust
profile is applied to the new analytical equations, to derive close form guidance solutions for re-phasing maneuvers. Section 5
illustrates the guidance obtained in the previous section with numerical simulations. The same section also presents one closed-
loop example where the guidance is computed iteratively when used in a more realistic nonlinear simulation environment.
Section 6 draws the conclusions and suggests future applications for the new analytical solutions. The software developed in
Matlabs and Simulinks for this investigation will be made available open source (link in Ref. [15]), for interested researchers and
guidance designers.

2. Satellite relative dynamics

Consider two satellites orbiting in close proximity to each other. For this analysis, one will be referred to as the reference
satellite, or “chief,” and the other as the “deputy.” For the methods presented here, it is assumed that the only force acting
on each satellite is that of a point mass gravitational field, the chief is in a circular orbit, and the distance between the
satellites is small compared to their orbital radius. These assumptions yield the following linear time-invariant differential
equations [16,17]:

€x�2n_y�3n2x¼ 0
€yþ2n_x¼ 0

€zþn2z¼ 0 ð1Þ
These are known as the Hill–Clohessy–Wiltshire (HCW) equations and are written in the local-vertical, local-horizontal

(LVLH) coordinate frame, whose origin is at the chief satellite. In these equations, x is the component of the deputy’s position
vector relative to the chief in the radial direction positive away from the Earth, y is the along-track component positive along
the velocity vector of the chief, and z is the cross-track component perpendicular to the orbital plane of the chief. n is the
mean motion of the chief. The LVLH frame is depicted in Fig. 1.

The solution to Eq. (1) is:

x¼ _x0
n

sin ðntÞ� 3x0þ
2_y0
n

� �
cos ðntÞþ 4x0þ

2_y0
n

� �

y¼ 2_x0
n

cos ðntÞþ 6x0þ
4_y0
n

� �
sin ðntÞ�ð6nx0þ3_y0Þt�

2_x0
n

þy0

z¼ _z0
n

sin ðntÞþz0 cos ðntÞ
_x¼ _x0 cos ðntÞþð3nx0þ2_y0Þ sin ðntÞ
_y¼ �2_x0 sin ðntÞþð6nx0þ4_y0Þ cos ðntÞ�ð6nx0þ3_y0Þ
_z¼ _z0 cos ðntÞ�nz0 sin ðntÞ ð2Þ
Fig. 1. Depiction of LVLH Frame.



R. Bevilacqua, T.A. Lovell / Acta Astronautica 102 (2014) 47–6150
where x0, y0, etc, are conditions at some epoch time t0, and t is the time since t0. Consider the following change of
coordinates from x; y; z; _x; _y; _z [18]:

ae ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x
n

� �2þ 3xþ2 _y
n

� �2r
xd ¼ 4xþ2 _y

n

yd ¼ y�2
_x
n
β¼ atan2ð_x;3nxþ2_yÞ

zmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_z
n

� �2

þz2

s
γ ¼ atan2ðnz; _zÞ�atan2ð_x;3nxþ2_yÞ ð3Þ

where ae, xd, yd, β, zmax, and γ are the ROEs. The inverse of this transformation is

x¼ �ae
2 cos βþxd _x¼ ae

2n sin β

y¼ ae sin βþyd _y¼ aen cos β�3
2
nxd

z¼ zmax sin ðγþβÞ _z¼ zmaxn cos ðγþβÞ ð4Þ

It has been shown in Ref. [18] how the ROEs evolve with time:

ae ¼ ae0 xd ¼ xd0
yd ¼ yd0�3

2nxd0t ¼ yd0�3
2nxdt β¼ β0þnt

zmax ¼ zmax 0 γ ¼ γ0

ð5Þ

These equations are analogous to Eq. (2) for x; y; z; _x; _y; _z in that they express the ROEs values at any given time as a
function of their initial (epoch) values and the time since epoch.

The parameterization of Eq. (4) reveals that the relative motion of the deputy with respect to the chief in the x–y plane is
a superposition of periodic motion in x and y, with period equal to that of the chief’s orbit, and secular motion in y.
Essentially, this is an elliptical path that is drifting in the y-direction at a rate of �3=2nxd. The instantaneous center of the
ellipse is (xd, yd). It has a semi-major axis of length ae in the along-track direction and semi-minor axis of length ae/2 in the
radial direction. β is a parametric angle (i.e. phase angle) indicating the location of the deputy satellite in its trajectory, with
β¼0 corresponding to the perigee location (the “bottom” of the ellipse). The relative motion in x and y, if the elliptical path
were “frozen” at a point in time, is depicted in Fig. 2. Although the ellipse is actually drifting, it has been frozen in order to
conveniently label the ROEs. The z-component of the relative motion, according to the HCW model, is purely sinusoidal
and independent of x and y. This motion is a simple harmonic oscillator with amplitude zmax and phase angle γþβ. The
deputy intersects the chief’s orbit plane at γþβ¼0 and π, and reaches zmax and �zmax at γþβ¼π/2 and 3π⧸2, respectively.
Thus, γ represents the phase difference between the x and y motion and the z motion. Fig. 3 depicts a typical 3-D relative
trajectory, with zmax and γ labeled. (NOTE: Because β and γ are angular representations of time – similar to mean anomaly –

they are labeled in Figs. 2 and 3 as βnand γn, which are the physical interpretations of these angles.)
Fig. 2. Planar projection of relative motion trajectory with relative orbit elements labeled.



Fig. 4. Generic example of on-off continuous thrust profile.

Fig. 3. Depiction of out-of-plane relative motion with relative orbit elements labeled.
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3. Analytical solutions with continuous on-off thrust

This section presents the steps to derive the closed-form solutions for the time evolution of the ROEs when a generic
on-off, continuous thrust profile is assumed in each direction of the LVLH reference frame. Ax,y,z,i indicates the magnitude of
the ith firing in the x, y, or z direction. Δtx,y,z,i is the corresponding time duration of the firing, while tf x;y;z;i is the coasting (off)
time duration between the (i�1)th and the ith firing. tF is the final time (see Fig. 4). Note that, if the first firing in a particular
direction begins at t¼0, then tf 1 in that direction is defined to be 0.

Because the dynamics we started from are linear (Eq. (1)), the superposition principle can be applied to find the state at
the final time. In particular, the final state can be written as the sum of the value at the final time when coasting from the
initial condition, plus each of the final values obtained by starting at zero initial conditions, coasting for a duration equal to

∑i�1
1 tf j þΔtj
� �

þtf i , applying the generic ith thrust for its given duration, and then coasting for a duration equal to

tF�∑i
j ¼ 1 Δtjþtf j

� �
. In the previous expressions the subscript indicating the direction of the firing was removed, indicating

its validity for any axis. For each of the x, y, and z components, the ROEs offer a simple solution, since coasting from a set of
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initial conditions is represented by the equations:

ae ¼ ae0
xd ¼ xd0
yd ¼ yd0�3

2nxd0tF
β¼ β0þntF
zmax ¼ zmax 0

γ ¼ γ0

ð6Þ

Finding the final state after firing from zero initial conditions, and then coasting, requires the combination of Cartesian
coordinates to find the state right after firing, then conversion to ROEs, and finally coasting, using the same form as in
Eq. (6). Eq. (11) gives the values of the Cartesian relative states after a generic single firing of duration Δt and coasting period
t beforehand, with components in the x, y, and z directions. They can be derived using Laplace transform on the system in
Eq. (1), when applying control accelerations Ax,y,z,i. If s is the Laplace complex variable, we start from:

s2XðsÞ�sx0� _x0�2n sYðsÞ�sy0
	 
�3n2XðsÞ ¼ Ax

s

s2YðsÞ�sy0� _y0þ2n sXðsÞ�x0½ � ¼ Ay

s

s2ZðsÞ�sz0� _z0þn2ZðsÞ ¼ Az

s
ð7Þ

Solving Eq. (7) in the Laplace domain we obtain:

XðsÞ
YðsÞ

" #
¼ 1

s2ðs2 þn2Þ
s2�3n2 �2ns
2ns s2

" # Ax
s þsx0þ _x0�2nsy0
Ay

s þsy0þ _y0þ2nx0

2
4

3
5

ZðsÞðs2þn2Þ ¼ Az
s þsz0þ _z0

ð8Þ

which further simplifies into:

XðsÞ ¼ XhðsÞþ
Ax

sðs2þn2Þþ
2nAy

s2ðs2þn2Þ
YðsÞ ¼ YhðsÞþ

4Ay

sðs2þn2Þ�
2nAx

s2ðs2þn2Þ�
3Ay

s3

ZðsÞ ¼ Az

sðs2þn2ÞþZhðsÞ ð9Þ

and finally, converting back in the time domain:

x¼ xhþAx
n2 1� cos ðntÞ½ �þ2Ay

n t� sin ðntÞ
n

h i

y¼ yhþ4
Ay

n2 1� cos ðntÞ½ ��2
Ax

n
t� sin ðntÞ

n

� �
�3
2
Ayt2

z¼ zhþ
Az

n2 1� cos ðntÞ½ �

_x¼ _xhþ
Ax

n
sin ðntÞþ2

Ay

n
1� cos ðntÞ½ �

_y¼ _yhþ4
Ay

n
sin ðntÞ�2

Ax

n
1� cos ðntÞ½ ��3Ayt

_z¼ _zhþ
Az

n
sin ðntÞ ð10Þ

where xh, yh, and zh represent the solution of the HCW equations for unforced motion (i.e. Eq. (2)). To apply the super-
position principle described earlier, we only need to retain the portion of Eq. (10) generated by control accelerations,
i.e. we consider null initial conditions. This provides Eq. (11).

xþ ¼ Ax
n2 1� cos ðnΔtÞ½ �þ2Ay

n t� sin ðnΔtÞ
n

h i

yþ ¼ 4
Ay

n2 1� cos ðnΔtÞ½ ��2
Ax

n
t� sin ðnΔtÞ

n

� �
�3
2
Ayt2

zþ ¼ Az

n2 1� cos ðnΔtÞ½ �



R. Bevilacqua, T.A. Lovell / Acta Astronautica 102 (2014) 47–61 53
_xþ ¼ Ax

n
sin ðnΔtÞþ2

Ay

n
1� cos ðnΔtÞ½ �

_yþ ¼ 4
Ay

n
sin ðnΔtÞ�2

Ax

n
1� cos ðnΔtÞ½ ��3AyΔt

_zþ ¼ Az

n
sin ðnΔtÞ ð11Þ

Eq. (3) is then used to convert the Cartesian relative states (Eq. (11)) into ROEs, and the ROEs are propagated for the
coasting period according to Eq. (6). This is repeated for each single firing, with Nx, Ny, Nz indicating the total number of
firings along each axis. By adding together all the states obtained as described above, the following closed-form solutions for
the ROEs subject to generic thrust profiles are obtained:

aeðtF Þ ¼ 2


ðae0=2Þ sin ðβ0þntF Þ

� ∑
Nx

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2=n4ÞA2

xi
ð�1þ cos ðnΔtxi ÞÞ

q
sin �βþ

xi
�n tF� ∑

i

j ¼ 1
ðΔtxj þtf xj Þ

 ! !

þ2 ∑
Ny

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2=n4ÞA2

yi
ð�1þ cos ðnΔtyi ÞÞ

q
sin βþ

yi
þn tF� ∑

i

j ¼ 1
ðΔtyj þtf yj Þ

 ! !

0
BBBBBBB@

1
CCCCCCCA

2

þ

ðae0=2Þ cos ðβ0þntF Þ

� ∑
Nx

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2=n4ÞA2

xi ð�1þ cos ðnΔtxi ÞÞ
q

cos �βþ
xi �n tF� ∑

i

j ¼ 1
ðΔtxj þtf xj Þ

 ! !

þ2 ∑
Ny

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2=n4ÞA2

yi
ð�1þ cos ðnΔtyi ÞÞ

q
cos βþ

yi
þn tF� ∑

i

j ¼ 1
ðΔtyj þtf yj Þ

 ! !

0
BBBBBBB@

1
CCCCCCCA

2

vuuuuuuuuuuuuuuuuuuuuuuuuuut
βþ
xi ¼ atan2ððAxi=nÞ sin ðnΔtxi Þ; �ðAxi=nÞð1� cos ðnΔtxi ÞÞÞ

βþ
yi

¼ atan2ðð2Ayi=nÞð1� cos ðnΔtyi ÞÞ; ð2Ayi=nÞ sin ðnΔtyi ÞÞ

ð12aÞ

xdðtF Þ ¼ xd0 þ
2
n

� �
∑
Ny

i ¼ 1
AyiΔtyi

ydðtF Þ ¼ yd0 �
3
2

� �
nxd0 tF�

2
n

� �
∑
Nx

i ¼ 1
AxiΔtxi �

3
2

� �
∑
Ny

i ¼ 1
AyiΔt

2
yi

�3 ∑
Ny

i ¼ 1
AyiΔtyi tF� ∑

i

j ¼ 1
Δtyj þtf yj
� � !

ð12bÞ

βðtF Þ ¼ a tan 2

ð1=2nÞ

ae0n
2 sin ðβ0þntF Þ�

∑
Nx

i ¼ 1
2Axi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�2 cos ðnΔtxi ÞÞ

q
sin �βþ

xi
�ntFþn ∑

i

j ¼ 1
ðΔtxj þtf xj Þ

 !
�

∑
Ny

i ¼ 1
4Ayi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�2 cos ðnΔtyi ÞÞ

q
sin �βþ

yi
�ntFþn ∑

i

j ¼ 1
ðΔtyj þtf yj Þ

 !

0
BBBBBBBB@

1
CCCCCCCCA
;

ð1=2nÞ

ae0n
2 cos ðβ0þntF Þþ

∑
Nx

i ¼ 1
2Axi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�2 cos ðnΔtxi ÞÞ

q
cos �βþ

xi
�ntFþn ∑

i

j ¼ 1
ðΔtxj þtf xj Þ

 !
þ

∑
Ny

i ¼ 1
4Ayi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�2 cos ðnΔtyi ÞÞ

q
cos �βþ

yi
�ntFþn ∑

i

j ¼ 1
ðΔtyj þtf yj Þ

 !

0
BBBBBBBB@

1
CCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

βþ
xi

¼ atan2ððAxi=nÞ sin ðnΔtxi Þ; �ðAxi=nÞð1� cos ðnΔtxi ÞÞ
βþ
yi

¼ atan2ðð2Ayi=nÞð1� cos ðnΔtyi ÞÞ; ð2Ayi=nÞ sin ðnΔtyi ÞÞ

ð12cÞ
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zmaxðtF Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zmax0 cos ðγ0þβ0þntF Þþ

∑
Nz

i ¼ 1
ðAzi=n

2Þ
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�βðtF Þ

ψ i ¼ atan2ððAzi=nÞð1� cos ðnΔtzi ÞÞ; ðAzi=nÞ sin ðnΔtzi ÞÞ

ð12dÞ

Eqs. (12a)–(12d) were obtained through a combination of symbolic calculation and numerical verification in Matlabs.
Roughly speaking, each firing, i.e. each non zero phase in the example of Fig. 4 corresponds to one instance of Eq. (11), its
transformation into ROEs (Eq. (3)), followed by coasting until final time (Eq. (6)). The difference between each firing is
represented by its duration (Δt in Eq. (11)) and the time remaining to reach final time (tF in Eq. (6) becomes
tF�∑i

j ¼ 1ðΔtjþtf j Þ, with the i and j indexes explained earlier in this section. The use of software tools enabled compact
formulation of the final analytical solutions (12a)–(12d), and the scripts used to obtain and validate them will be available
open source.

Despite their complicated appearance, Eqs. (12a)–(12d) represent a powerful tool for trajectory design, since they
are analytical and because they heavily simplify for specific applications. The input-shaping example in the following
section shows one such simplification, and in general, real spacecraft applications may reduce the number of variables in
(12a)–(12d), for example having only one value of thrust, or fixed durations of the firings, etc.

4. Example of planar application of the roe formulas: Input-shaping thrust profile

In this section a validation of some of Eqs. (12a)–(12d) is performed. In particular, one of the results previously obtained
by one of the authors using Cartesian coordinates Ref. [19] is confirmed by means of ROEs, obtaining a simpler expression. In
Ref. [19], an input-shaping-based, y-only thrust profile was proved to be an effective means to obtain analytical leader-
follower re-phasing or rendezvous guidance, as well as equilibrium-relative-orbit to equilibrium-relative-orbit guidance.
Such a profile allows for in-plane control, moving the center of the ellipse to a new desired location, where the ellipse
collapses to a point for leader-follower maneuvers. The thrust profile was presented in Ref. [19] as follows: (12a)

Axi ¼ Azi ¼ 0 u¼ c� signðyd0 �ydf Þ; c40 tF ¼ 3tnþ2Δtw

A1;2;5;6 ¼ 71
4u; tf 1;2;4;6 ¼ 0; Δt1;…;6 ¼ tn

2

A3;4 ¼ 71
2u; tf 3;5 ¼Δtw

ð13Þ

Section 5 shows the typical shape of the input-shaping profiles. Representative experiments showing how input-shaping
can be applied, for example, to bang–bang control profiles can be seen in the video in Ref. [20]. The profile of Eq. (13)
consists of known amplitudes for the firings (c is a given control amplitude), while the Δtw and tn are to be determined.
yd0 and ydf are the initial and final (desired) along track positions of the relative ellipse’s center, respectively. Substituting
Eq. (13) into Eq. (12b) and assuming yd0 4ydf , the following expressions are obtained:

xdðtF Þ ¼ xd0

ydðtF Þ ¼ yd0 �
3
4

� �
cðtnÞ2 ð14Þ

Eq. (14) leads to the solution for tn, given initial and desired final values for yd, that is, initial and final centers of the
ellipse of relative motion.

tn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
yd0 �ydðtF Þ

3u

r
ð15Þ
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Note that this result is not as straightforward to find in Cartesian coordinates (Ref. [19]), in which case there is also no
geometrical interpretation.

Substitution of the profile of Eq. (13) in Eq. (12a) does not lead to an expression of comparable simplicity. Nevertheless,
several observations can be made that provide useful insight with regards to the expected final value for ae. First of all, all
the terms where thrust along x appears are zero. Secondly, the terms not containing ae0 in Eq. (12a), in the square powers,
represent modifications with respect to the initial value of ae. In fact, if no thrusting was present, the final value for ae would
be ae0 , as expected. These observations justify focusing on only some of the resulting terms in Eq. (12a), and specifically we
here analyze the following portion, where the square power is omitted for simplicity:

2 ∑
Ny

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2

n4

� �
A2
yi

�1þ cos nΔtyi
� �� �s

sin βþ
yi
þn tF� ∑

i

j ¼ 1
Δtyj þtf yj
� � ! !

ð16Þ

After some algebra, and the use of Prosthaphaeresis formulas, Eq. (16) becomes:

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u2

n4 1� cos n
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2

� �� �s 2 sin ðβþ
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þ2 sin βþ
y þn5

4t
nþnΔtw

� �
cos ntnþnΔtwð Þþ

þ4 sin βþ
y þn5

4t
nþnΔtw

� �
cos ntn

2

� �

0
BBBB@

1
CCCCA ð17Þ

where the βþ
yi

become a common βþ
y , given the nature of the firings of same duration in the profile of Eq. (13). Eq. (17) still

provides little information about what to expect at the end of the firing sequence. Since tn is determined in Eq. (15), as well
as the βþ

y , through Eq. (12c), the only free variable in Eq. (17) is the wait time between the series of firings Δtw. One
observation to be made is that the term under the square root is never expected to be zero, since it would imply firing with
Fig. 5. Example of ae vs. Δtw for leader follower initial condition. Note: The above graph is obtained using the numerical data of Table 1, showing the min
and max points.

Table 1
Initial Orbital parameters for S/C and desired trajectory for Leader-Follower case, plus general data for simulations.

Initial orbital parameter Chief Deputy

Semi-major axis a 6778.1 km 6778.1 km
Eccentricity e 0 0
Inclination iorb 97.9908 deg 97.9908 deg
Right ascension of the ascending node (RAAN) Ω 261.621 deg 261.621 deg
Argument of perigee ωp 30 deg 30 deg
Polar angle υ 27.216 deg 27.18 deg

Additional parameters used for the simulations

REarth ¼ 6378:1363 km μ¼ 398;600:4418 km3=s2
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no duration. For this reasonwe need only focus on the parenthesis term. The derivative of this parenthesis termwith respect
to Δtw yields

2 cos βþ
y þnΔtwþ3

4nt
n

� �
þ2 cos βþ

y þnΔtwþ7
4nt

n

� �
þ

þ2 cos βþ
y þ2nΔtwþ2ntn

� �
þ2 cos βþ

y þ2nΔtwþ9
4
ntn

� �
ð18Þ

This shows that at the most four values for Δtw can represent a minimum/maximum for Eq. (17), within an orbital period
ð0rΔtwrTÞ. In fact, such a derivative is composed of four cosine functions, all shifted by different phases.

The locations of these minimum/maximum points change from case to case, depending on the values of βþ
y and tn.

Despite the impracticability of solving Eq. (12a) in terms of Δtw, even when simplified with the input-shaping profile, the
derivative information allows us to predict the type of function we should expect, and, in addition, Eq. (17) clearly shows a
Fig. 6. Rendezvous with chief starting from an initial relative point. Top: (1) Δtw¼0.5 T, exact rendezvous with chief; (2) Δtw¼0, obtaining the maximum
ae for the final equilibrium orbit around the chief; (3) Δtw¼0.25 T, obtaining an intermediate value of ae for the final equilibrium relative orbit around the
chief. Bottom 3 plots: control profiles.
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content in frequency, when using Δtw as independent variable, not exceeding 2n. The Nyquist–Shannon sampling theorem
Ref. [21] enables capturing the nature of the function representing ae when input-shaping is applied, and Δtwis the
independent variable, by computing Eq. (12a) only at Δt points spaced by a 1/4n distance, that is, theoretically 8π (i.e. 25 or
more) points total in one orbital period time frame. A desired ae value can be then interpolated using these required values
(e.g. using splines), or more points, for increased accuracy purposes, posing no computational issues.

Depending on the initial conditions, the extrema for the ae value can be four or less, and located at different Δtw values
between 0 and the orbital period T, as shown later on. In all cases there are special values of Δtw that zero out the increase in
ae, that is, there are no oscillation size increases due to performing the maneuver.

It should be noted that for the other term under the radical in Eq. (12a), an identical expression can be found, the only
difference being that the sine function in Eq. (16) would be replaced by a cosine function. Thus, the analysis of this term
would be quite similar to that above.
5. Sample numerical simulations

In the following numerical simulations we assume a chief satellite located at the origin of the LVLH frame, and that we
are maneuvering a deputy satellite. The chief represents the target trajectory for the different types of maneuvers here
presented, i.e. we set up rendezvous problems. More generally, such a target trajectory can be a virtual satellite, and can be
located anywhere such that the chief and deputy orbital periods are equal. The following numerical simulations are
obtained using the results presented earlier. One example of closed-loop control is also presented where the ROEs-based
guidance is recomputed when reaching its final time, for three times. This improves accuracy when the proposed guidance
is used with the more realistic nonlinear Keplerian dynamics plus J2, and provides a proof for potential flight
implementation. For all the simulations the control value c¼2�10�5 m/s2 is used, representing a low-thrust thruster.
In principle, any c value can be chosen, representing the thrust available on the spacecraft.

The initial orbital parameters of Table 1 are used to generate the trajectories for the first simulation, representing an
initial condition of leader-follower. Note that the initial orbital parameters are first converted to Cartesian position and
velocity in an Earth centered inertial frame, then translated kinematically into the LVLH frame, and finally forced to match a
leader follower initial condition for the linear equations, i.e. cancelling any residual relative velocity and x displacement.
Fig. 7. Example of ae vs. Δtw for equilibrium relative orbit initial condition. Note: The above graph is obtained using the numerical data of Table 2, showing
the min and max points.

Table 2
Initial Orbital parameters for S/C and desired trajectory for equilibrium-to-equilibrium case.

Orbital parameter Chief Deputy

Semi-major axis a 6778.1 km 6778.1 km
Eccentricity e 0 0.0001
Inclination iorb 97.9908 deg 97.9908 deg
Right ascension of the ascending node (RAAN) Ω 261.621 deg 261.621 deg
Argument of perigee ωp 30 deg 30 deg
Polar angle υ 27.216 deg 27.18 deg



Fig. 8. Rendezvous with chief starting from an initial relative equilibrium orbit. Top: (1) Δtw¼0.5 T, obtaining an intermediate ae (between initial and
maximum achievable) on final relative orbit; (2) Δtw¼625 s, obtaining the minimum ae for the final equilibrium orbit around the chief; (3) Δtw¼4440 s,
obtaining the maximum of ae for the final equilibrium relative orbit around the chief. Center: zoom of the final relative orbits. Bottom 3 plots: control
profiles.

R. Bevilacqua, T.A. Lovell / Acta Astronautica 102 (2014) 47–6158
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Three different final conditions are chosen for this simulation, one being exact rendezvous and two cases where the final
motion is a relative closed orbit around the chief. For these cases, the variation of final ae as function of Δtw reduces to a
simple cosine function, with maximum at Δtw¼0 and one orbital period, and no increase at one-half orbital period (see
Fig. 5). Fig. 6 shows the resulting trajectories applying input-shaping, as well as the control profiles as dictated by Eqs. (13)
and (15). Note that in each case, the motion is simulated beyond tF (tF is indicated on the control plots for each case in Fig. 6).
This is done to illustrate clearly the final trajectory achieved in each case.

Table 2 introduces a small eccentricity in the deputy initial orbital parameters, thus creating an initial motion which is a
relative closed orbit whose center is offset from the chief by the same amount as the leader-follower separation in the
previous cases. Note that the initial orbital parameters are first converted to Cartesian coordinates in an Earth centered
inertial frame, then translated kinematically into the LVLH frame, and finally forced to match an equilibrium motion initial
condition for the linear equations, i.e. imposing the condition _y0 ¼ �2ωx0 Ref. [17]. For these scenarios, the final ae function
is more complicated than before. Fig. 7 indicates that Δtw¼625 s yields no change in ae, Δtw¼4440 s yields the maximum
Fig. 9. Graphical demonstration of the number of points needed to represent the ae(Δtw) function.

Fig. 10. Example of closed-loop guidance solving the ROEs input-shaping-based solution iteratively, with Δtw¼0. (Top) first iteration, (bottom) and two
more iterations.
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final value of ae, and Δtw¼0.5 T yields an intermediate final value of ae. These results are shown in Fig. 8, including both the
x–y trajectories and the control profiles. Note again that the motion is simulated beyond tF in each case to illustrate the final
trajectory achieved.

All the maneuvers can be computed analytically, from Eq. (15) and the earlier observations on the function ae(Δtw).
The only numerical operation required to design such maneuvers consists of reconstructing ae(Δtw) by means of computing
Eq. (12a) at a few points, and interpolating when a desired change in ae is given, to solve for the corresponding Δtw. This
provides a powerful tool to design guidance trajectories onboard spacecraft with limited computing capabilities.

Fig. 9 compares three reconstructions of the ae(Δtw) function: the one using the necessary 8π points, minimally differing
from the more accurate line obtained with a sample time of 1 s. The third line shows how less than 8π points (10 in the
example) lead to a poor reconstruction of the curve. The circles indicate the (Δtw, ae) points required for the curve
reconstruction. Once those are stored in a table, a desired ae value leads to the corresponding Δtw by linearly interpolating
between the two closest ae points.

Fig. 10 shows an example where the ROEs input-shaping-based solution for equilibrium relative orbit to equilibrium
relative orbit is solved iteratively, to obtain a closed-loop simulation considering a more realistic nonlinear dynamics for the
relative motion. The solution of Eq. (15) with Δtw¼0 is recomputed three times, at the end of each sequence. The maneuver
is intended to move the center of the already excited equilibrium relative orbit, starting from the same initial conditions of
the simulation presented in Fig. 8 and Table 2. The nonlinear relative motion is simulated using Keplerian dynamics plus J2
for each satellite, and then projecting the relative position and velocity vectors in the LVLH frame. Fig. 10 shows that the first
iteration achieves a position magnitude error of 445 m between the analytically (re)generated guidance and the nonlinear
trajectory. This error actually increases in the second iteration, but then decreases to a very acceptable 56 m in the third
iterationa decrease in the error between the analytically (re)generated guidance and the nonlinear trajectory, starting from
445 m and ending at 56 m after 3 iterations. Particularly, the bolded lines in the bottom plot of Fig. 10 highlight the guidance
trajectory and corresponding nonlinear trajectory for the third iteration, showing a close match between the two motions
for the entire duration of the trajectory. In performing this simulation, it was noted that the accuracy with which the
nonlinear trajectory achieved the desired final closed relative orbit was consistent with the position magnitude error
described above. That is, the error between the actual final ROEs achieved by the nonlinear trajectory and the desired final
ROEs increased from the first to the second iteration, and decreased from the second to the third iteration. In a real mission
scenario, mid-course corrections may be advised, to maintain a lower tracking error.

More generally, the new equations providing the ROEs’ time evolution in analytical form, when continuous, on-off thrust
is applied, hold the potential for testing and designing new open loop control sequences. They could also provide analytical
initial guesses for numerical optimization of the guidance.

6. Conclusion

This paper presents the general analytical solutions for spacecraft relative orbit control, when on/off continuous thrusters
are used, employing relative orbit elements instead of classical Cartesian coordinates to represent the relative dynamics.
Relative orbit elements are a powerful tool to visualize geometrical aspects of spacecraft relative motion. A thrust profile
based on the input-shaping technique is used to validate the obtained formulas. The analytical solutions for exact re-phasing
or rendezvous using input-shaping are provided, along with the expressions and procedures to control the size of the final
relative orbit around the target trajectory or chief satellite. Sample numerical simulations show the type of maneuvers
achievable using the ROE formulas and input-shaping control profiles, namely, re-phasing or rendezvous maneuvers with
along-track control only.

The new analytical solutions in terms of ROEs, and particularly their simplifications, as done in the input-shaping case, can be
implemented onboard small spacecraft with limited computing capabilities, allowing them to autonomously compute guidance
trajectories of several kinds. In addition, optimization routines running on the ground could be envisioned, using as initial guess
the here proposed formulas. The ROEs analytical solutions, simplified when applying the problem specific constraints (such as
fixed value for the thrust, duration of thrust, etc.) can be used as the core for fast direct methods of numerical optimization, the
advantage being the a-priori satisfaction of the constraints provided by the nature of the solutions.
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