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FAILURE-ROBUST THRUSTER COMMANDING FOR SPACE
VEHICLES CONTROL

Fabio Curti, " Riccardo Bevilacqua, ' and Marcello Romano *

In this paper we study the problem of controllinghdmics of a spacecraft by
on-off thrusters only in the case of actuatorstf@k. We assume that one or
more thrusters can fail and that the logic drivihg translational and rotational
dynamics does not have any information on thesatsvén particular, the me-

thodology guarantees the Lyapunov-stable trackfigear models for both the

translational and the rotational dynamics of thecsgraft.

INTRODUCTION

The problem of controlling dynamics of a spaceonafh only the thrusters’actuation is pecu-
liar in the proximity operations such as rendezvand docking. Such operations are of great in-
terest for future manned missions, on-orbit semgamissions and for the autonomous on-orbit
assembly probleff®“ In the case that a thruster fails, there are ouksthhat use failure detection
algorithms to guarantee robust controllability feé space vehicl&

The approach here proposed is based upon a prewimksby the authors of this wadtkin
particular, the methodology guarantees Lyapunobistiracking of linear models for both the
translational and the rotational dynamics of thacsgraft. An on-off command is sent to each
thruster, depending on its contribution to the Lyagv function whose first time derivative must
be negative throughout the maneuver. When one oe thousters fail to turn on, there is still in
many cases the capability of controlling the speafesince the algorithm keeps selecting thrus-
ters contributing to stabilize the tracking errgndmics. At the moment of a malfunctioning the
tracking error increases, thus provoking the reingiactuators to work differently and for longer
intervals of firing, in a completely automatic fami This means that the algorithm does not
know which actuators are failing and it keeps fiomghg as if they were all active.

The method is experimentally tested on the th&degation of spacecraft simulators of the
Spacecraft Robotics Lab at the Naval Postgraduzieds.
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FULLY-ACTUATED SPACECRAFT WITH THRUSTERS ONLY

The roto-translational dynamics of a fully-actwhspacecraft with only thrusters is written
here for the three-degree of freedom spacecratfilator used in the experimental tests. The gen-
eral equations for a six-degree of freedom spabhi&heeare found in Reference 7.
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Figure 1. AMPHIS representative sketch.

The spacecraft simulator consists of a floatingfpten, named AMPHIS (Autonomous Multi-
Agent Physically Interacting Spacecraft), and adkef it is given in Figure 1. A detailed de-
scription of the spacecraft simulators, the on-i@aronics and the in-door navigation system is

given in Reference 8. The fram(ﬂx, y) is the Local Reference Frame (LRF), the frame

(xbody, ybody) is the Body Reference Frame (BRF), while is the orientation angle of the

spacecraft with respect to the LRF; the thrusteesnambered from 1 through 8 and are placed
around the platform at a distancefrom the center of mass. The main parameters of AP
are listed in Table 1:

Table 1. AMPHIS parameters

Mass: m=10.5 kg

Size: L,=19cm; L,=19cn
Moment of Inertia J,=0.032 kgnd
Thrusters placement: d=5cm

Thrust: u, =0.159 N

Minimum impulse duration (valves mechanical limit)50 ms




Let §=[x y w]T be the vector of the generalized displacemenésydto-traslational dy-

namics is:
1
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in which u =[ul u e ug]T is the vector of the thrusts of the thrusters with:

0  (i-th thruster OFF)

= i=12...8
4 {ua (i-th thruster ON) I 2

where u, is the positive value of the available thru"sRB (l//) is the rotation matrix from the

BRF to the LRF:
L _(cosy - siny
" (41/) - (sin(/l coyy j 3

The matrix H is the thrust distribution matrix related to theogetrical structure of the
thrusters’ placement on the spacecraft. ?Etc and BMC be the vectors of control forces and the
control torque in the BRF, respectively; then:

= " lu=Hu (4)
EQMC Hwm

where:
b [0 1-100110 .
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and:
Hy=[-d d -d d -d d -d { (6)

MODEL-BASED THRUSTERS COMMANDING
The method consists of imposing a reference dyrathit the system must track to make the

derivative of a suitable Lyapunov function negatiet p = [X y] be the position vector; we
write the reference dynamics as:
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where K; and K, are 2x2 symmetric positive definite matriceks >0 and k, >0. The
variablesv ,. andV,. are reference commands. If we define the erroebles £, = p- 0,

andé, =4/ —t,, we find the equation of the tracking error:
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A 0&2} _{Ozxz I&z} _{ 0 1}
) m™— ) m=— (9)
|:02><4 A2m Al _Kl _KZ A2 _k3 - k4

An

02><2 02< 1

1
_LRB(l//) 02><1 W mL - Vc__vpl
B(y)=|" . {—F}: R ()% )
0

L z

In Eq. (10)v, =K, p+K, p andv, =k ¢+ Kk, ¢ . Itis noteworthy that if the vectow
takes the place of the teri U in Eq.(1), the variablesy- and w, linearize the equation and
they force the system to have the dynamics:

PtK p+tK,p=V,

11
P+ + K =V -

Therefore, the variableg/: and w,, are theideal controlsfor the system in Eq. (1) to yield

the behavior of Eq. (7). In fact, in Eqg. (8) thenue( Hg—w) forces the dynamics of the tracking
error. If this term was zero, the tracking erromaogo exponentially to zero.

To study the stability of Eqg. (8) under the thrustactuations, we use the Lyapunov approach
by selecting as a candidate function:

V(e)=€ Pe (12)

with P = P" > 0. Differentiating Eq. (12) along the trajectoriesHq. (8) we find:



V=¢(AP+PA)e2 & Ply)( He_y (13)

For a given symmetrical positive definite matflx, the matrixP is found as the unique solu-
tion of the Lyapunov equationA P+ PA =-Q and Eq. (8) is asymptotically stable if
2e" P B(¢)( Hu- W< 0. In particular, if we select:

Q O
Q { (14)
Ops Q
with Q =Q >0 4x4-matrix andQ, =Q, >0 2x 2-matrix, the solution matrix® has
the fornt:
P, 0, P, P
P:[" 42}'35 o pz,%z i Ry (15)
O2><4 Pw sz F;,3 Q2 Rs
Eq. (13) and Eqg. (14) yield:
V=-g,Q6-¢Q g+2A (16)
where, using Eq. (15):
A=A, +A,
A, =ZxT7 (He u-w)
By =Yy (Hu u=wy)
17
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Eq. (16) implies that the tracking errer— 0 if A<O, that is, by a suitable activation of a set

of thrusters. Actually, the tracking error cannedch zero because in the dynamics of Eq. (1) the
control is on-off only. As a consequence, the ereaches a limit cycle whose amplitude is a

function of the control paramete€3, K, K,, k; andk,.

THRUSTERS’ SELECTION STRATEGIES

We seek to establish the asymptotic stability @f teference model tracking error equation
Eq. (8) under a suitable selection of the thrudietse activated. From Eq. (17) we rearrange the
two relations:
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D,=B, U=0

. (18)
B, =f, -8y
with:
By =uUyy He,  Br=u,y, H
Py Yo e Py AR (19)
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In Eq. (18) we express the control vectoras a function of the binary vectar, that we call
active thrusters’ configuratigrfor which:
~ |0 (i-th thruster OFF)
1  (i-th thruster ON)

i:1’2’...8 (20)
and thereforau = u, U.

The g-strategy

In this section we recall briefly the strategy weveloped in a previous work for the selection
of the thrusters to be activafedhis strategy is namegtstrategybecause is established on the

signs of the vectors’ componen@l and é’; . We write the table below, Table 2, where in the
first row we put the identification number of theruster and in the second and third rows the
components of the vectog), and g, :

Table 2. The vectorsﬂ; and ,8; :

Thruster 1 2 3 4 5 6 7 8
,3; -9, —-¢, -9, ¢, ¢, ¢, ¢, -9,
,ET =/ T -7 T -m T - T
Py
where:
G=U, Vo1 92U Vs TT=dU Y, (21)

Note that the functiong, and 77 can be positive or negative according to the fraglkerror
behavior. If they are all zero, this means thatttaeking error is zero. Therefore, the vect;z_ﬂ'}

and ,é’uT, have always positive or negative components. Berduese components are added in
order to gie contribution to the derivative of the Lyapunov étion (see Eqg. (16) and Eq. (18)),
the thrusters are selected according to the pasifior which the components of the vectqg}



and g; are negative. We assume thatitheal controlswy,, W, andw,, satisfy the following

conditions:

Wer| SU 5 [Wep[S W Wyl 2y O (22)

The values of the ideal controls are not knawpriori, because they are a function of the ac-
tual state variables (Eq. (10)) of the system ailetl by the thrusters’ activations. Assuming the
asymptotical stability of Eq. (8), the values oé tidleal controls can be predicted by computing

Wg,, We, andw,, on the reference dynamics of Eq. (11). As a corsecg) the control parame-

tersQ, K; ,K;, ks andk,, and the reference commands . and v, . must be chosen to fulfill

the conditions in Eg. (22). These conditions angivedent to take into account the saturation lim-
its of actuators. From Eq. (14) and Eq. (16) anbld &, thes-strategyis:

1. If o 20 andd,, 20: no thrusters’ activation is needed, becafsés not always

positive.

2. If 6. <0 andJ,, 20: in this casé&w < 0. We apply the following procedure that ge-
nerates control forces only and minimizes the nurobactivated thrusters:

a. Find the maximum betwed,| and|@,|. Let || be the maximum; then the

couple of thrusters in the positiorﬁi;, ] ) of Table 2 are selected. The posi-
tions (i,j)are where@, or —¢, appear in Table 2 and for which the com-

ponents ofg; are negative; therefore, @, >0 the couple is (2,3), that is a

force in the opposite direction of theaxis otherwise the couple is (6,7), that
is a force in the direction of theaxis.

Computed , = (g; Q—dF) with only (; =1 and U; =1 while the others

components oij are set to zero; iﬂp <0, we stop the procedure, other-
wise we would have to activate in addition the dewy thrusters in the posi-

tions (h, k) of Table 2 whergp, or —¢, appear and for which the compo-
nents of,§; are negative; therefore, @, >0 the couple is (1,8), that gives a

force in the opposite direction of tlgeaxis otherwise the couple is (4,5), that
gives a force in the direction of theaxis

3. If & 20 anddy, <O0: in this casé , <0. We apply the following procedure that
generates control torques only and minimizes thebar of activated thrusters:

a. Activate a couple of thrusters in the positidmsj ) of Table 2 for which the

components ofg; are negative and no forces are applied. /710 the

couple is (1,5) (or (3,7)), that gives a negatmejtie; otherwise the couple is
(2,6) (or (4,8)), that gives a positive torque.



4. If Oz <0 andd,, <O0: in this case forces and torques must be givéineasame time.
The procedure is to select the thrusters in théipos where both the component of
é’; and the component q_b’; are negative. We apply the following procedurente
nimize the number of activated thrusters:

a. Let 77 be positive. Find the maximum betwelgh| and|@,| . Let |#;| be the

maximum; then ifg, >0 the thrusten =3 is activated, otherwise the thrus-
teri =7 is activated.

b. ComputeA = (g; Q—é'F)+(,§J L_]—JM) with only U, =1 while the oth-
ers components dfi are set to zero; ih<0, we stop the procedure, other-
wise in addition we would have to activate the #eu in the position of
Table 2, wherej =1, if ¢, >0 or j =5, if ¢, <O0.

c. If 71 is negative, we can easily repeat the similar gulace in the items (a)
and (b) , in order to find the thrusters to beatgd.

The g-strategywith the conditions of Eq.(22) ensures tifax 0, and therefore, the tracking
error asymptotically reaches the limit cycle.

Strategy in the presence of thrusters’ failures
The p-strategycannot tolerate failures of the thrusters. To cefib the failures a new thrus-
ters’ selection strategy is devised. We deffie 3, + 3, and 0 = ¢ + 9, , and write Table 3
with the same meaning of Table 2.
Table 3. Thep-vector.

Thrustel 1 2 3 4 5 6 7 8
,BT —Po—TT P +TT P =TT P TT P,—TT P TT YT P HTT

From Eq.(17) and Eq.(18), the thrusters to be at#iv are those for which:
A=p"(1-0<0 (23)

As a consequence, =0 no thrusters must be activated because Eq.(2&tisfied with
U=0. On the contrary, the strategy is to select thastiers in the positions where the compo-

nents of the vecto;_G are negative. Using this approach the followinmiskers’ selection table is
found:



Table 4. Thrusters’selction table

| 4 | 8. | Nocondiions ||g[>|7 | |gi|<|7 | |go| |7 | |22 <[
>0 >0 >0 3 1 2 7 8 5
>0 <0 >0 7 1 6 3 8 5
>0 >0 <0 3 5 2 7 4 1
>0 <0 <0 7 5 6 3 4 1
<0 >0 >0 2 8 3 6 1 4
<0 <0 >0 6 8 7 2 1 4
<0 >0 <0 2 4 3 6 5 8
<0 <0 <0 4 6 7 2 5 8
Failure variables fa oo fq fp

According to the signs of the functiofis ¢, and 77, in Table 3 we indentify the positions
for which the components of the vect;gr are negative. These positions are related totémsuto

be activated with no conditions as shown in Tabl®ldreover, under the conditions on the func-
tions @, @, and 77 of Table 4, additional thrusters are selected.

As an example, the first row of Table 4 states thaisters 1 and 3 are activated. Assuming
that |¢,| >|71 and|@,| <|7, the thrusters 2 and 5 are activated as well. lgphe thruster’s

placement in Figure 1, this is equivalent to haveegative torque and a force in the opposite di-
rection of thex-axis Because the functiong,, @, and 77 are positive or negative, and,

4| >|71 or |§| <|r, four thrusters are always selected. These thrugiee the simultaneous

combination of torques and forces to control thecspraft. Now, we include in the strategy the
presence of failures. We introduce faéure variablesf,;, f,,, f, and f_,. If no failures oc-
cur all these variables are zero, otherwise frotld 4:

« f, =1 afailure occurs on the first selected thrustehamo-conditionscolumn;
« f,, =1 afailure occurs on the second selected thrustigreino-conditionscolumn;
« f, =1 afailure occurs on the selected thruster in tieron related tap, ;

« f,, =1 afailure occurs on the selected thruster in tieron related tap, ;

From Eq. (19) and Table 4, for all the cases ligtettie table Eq. (23) yields:
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As stated above, i® <0 thrusters must be selected. The worst case is whaas the most
negative values that occurs when at the sameptjmey:; <0, y,, W, <0 and y,, wy <O0.

Therefore, in this case Eq. (23) becomes:

A=~ (I] +17) = £ra) = (0] + 7)) €1 Fi2) =04 =[] o2 7o) +

|l L 1) # 1] I+ 1 e 4+ )
By using Eqg. (21), Eqg. (25) yields:
B =y | By + | Weal) {102 C =t +| e ) +[ | (-2 W o] w ) +
U, (V] + a1 O+ v + ] ) O+ (26)
+U, ‘ypl‘—d‘ywu Of, +u, ‘ypz‘— d‘VwHchz_ r
where:
r=u, ypl‘—d ‘VwH +U, ypz‘ - d‘VwH (27)

Eq. (26) shows that if the conditions of Eq. (2B)dh A is upper bounded by the following
expression:

Bt ([1al+ ]y ) O+ ([1a]+ iy [) O+

+ua

(28)
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From Eq. (28), if no failures occur th&t <0 becauseA <A and the stability of Eq. (8) is
ensured. We demonstrate in the next section howttategy supports failures keeping the track-
ing error dynamics stable.

FAILURE-TOLERANT BETA-STRATEGY

The above designed strategy is based on the sighsha values of the components of the
vectorg of Table 3; we analyze the cases in which one anerfailures occur. Table 4 helps us

in the following.

One Thruster-Failure

If one failure of typef, occurs, from Eq. (28) and Eq. (29) yieikj< 0. Assume a failure of
type f,.,, we have from Eq. (16):

10



<An(Q)le -An( Q)] 2 ulppd+2 u dy|-2 (30)

where A,(Q) and A,,(Q,) are the minimum eigenvalues @ and Q,, respectively, that
are positive. From Eq. (17) we can write:

(31)

whereK , =}{n[EPp2 Pp3] andk; =% [EQW Qas] . As a consequence, we find:

(\Vpl\ +\sz\) <oy (K )He H (32)
Yol =[] ey |

in which gy, (Kp) is the maximum singular value Mp. The first equation of Eq. (32) states

that the pair of value}sypl‘, ‘ypz‘ belongs to the set shown in Figure 2.

»
|

Iz

Figure 2. ‘ypl‘ and ‘ypZ‘ boundaries.

Therefore we can take the upper bOL’y{gk‘ <oy (Kp) ngH (with k =1ork=2) and Egq.
(30) becomes:

V<-a,-a,-2r (33)

where:

11



0, =20 (Q)|e,] -2 wan(K,)| 8
= (Q2)]es[ -2 du ][ 5]

If the variablesa, and &, are not negative, the derivative of the Lyapunawction is
upper bounded with a negative value. This happdfrmw

(34)

2u O'M 2du,
e, = NE Q) @)

When a failure occurs the tracking error can ineeeaut after a threshold the derivative of the
Lyapunov function becomes negative and the trackimgr does no longer increase. Note that
even if the derivative of the Lyapunov equationds negative, it does not imply that the tracking

error dynamics is not stable. Therefore, evevi i 0 the tracking error can be bounded.

Eq. (35) gives a simple numerical test to verifyhié assumptions ow,,, Wz, and w, in

Eq.(22) hold. In fact, the values o¥-;, W, andw,, are predicted on the reference dynamics.
Therefore, the smaller the lower bound in Eq. (85}he fewer the actual dynamics moves away
from the reference dynamics, and as a rewglf| < u, , [We,|< U, and|w,[<2u, d.

Two Thruster-Failures

If the two thruster-failures are of typg, the conditionA < Oholds. For one failure of type
f. type and one of typk, , the derivative of the Lyapunov function is uppeunded as:

V<_0'1_0'2—r (36)
For two failures offnk type, from Eq. (16) and Eq.(28) we have:
Q)le] ~An(Q e +2 ulyuf+2 urd+au -2 @

Using the first equation of Eg. (32), and lookingiglfe 2, we have

‘ypl‘-l- ‘sz‘s J2 gy, (Kp) ngu , and as a consequence:
V<-a'i-a',-2r

1 2 (38)

where:

12



ri=h@)fef -2/ w0 ()]s
o= Anf@]e -4 d ]| o] @)

which implies:

H>2\/§uaa,\,,(Kp)_ H H>4uadHK”H
@ 0 PP (40)

“gp

As in the previous case, the lower bounds of EQ) (&lp us verify the assumptions on the
ideal controlswg,, W, andw,, .

Three or Four Thruster-Failures

The strategy is able to cope with more than twastar-failures. For three thruster-failures the
derivative of the Lyapunov is upper bounded by:

if there are two failures of typé, and one of typef , . On the contrary, two failures of type
f.« and one of typef,, , the upper bound is:

V<-a'—a',—r
1 2 (42)

For four thruster-failures we obtain:

V<-a'i-a', 43)

The result is that itr', 20 and @', > 0 the method guarantees that< 0 and the tracking
error dynamics is asymptotically stable.

Controllability in the presence of Thruster-Failures

The analysis has shown that the strategy is alteattage up to four failures. Actually, some
sets of thrusters cannot fail at the same timearexample from Figure 1, if thruster 1 and thrus-
ter 8 fail at the same time, we lose the contrditstalong the negative direction of tlyeaxis If
thrusters 1, 3, 5 and 7 fail, we cannot apply ativestorque. Therefore, to keep the controllabili-
ty of the system some failures are not allowedisted in Table 5:

13



Table 5. Critical failures.

Thrusters Actuation lost
1 8 Force —y
2 3 Force -x
4 5 Force x
6 7 Force y
1 35 7 Torque <0
2 46 8 Torque >0

EXPERIMENTAL RESULTS

This section reports the results of two experimetests performed by implementing tfeel-
ure-tolerantg-strategyon board of one AMPHIS. The robot starts manemgefiom the initial
state vector

[% Y% ¢ % % a)]:[Om 1m Odeg @% Oyg 6!e9/s} 43)

and it is intended to track a one meter radiusuarcdrajectory at constant speed, while chang-
ing its attitude between 30 and -30 degrees foligna sine wave command. The commanded

trajectory’s frequency s, = O.OZHa%eC, the angle’s command frequencyds = O.OSVa%eC.

This means that the circle is intended to be ruapproximately 250 seconds while the angle’s
oscillation between 30 and -30 degrees occurs twitgn the same time frame. Therefore the
reference commands (Eqg. (7)) have the expressions:

\_/pczli_jc+K1£c+K2Bc

44
Vyo =W+l o+ Ky 49

where o] =[cos(wpt) Sir(wpt)] andy, =0.5233 Coéwwt).

In the first test the robot has no thruster-fagunehile in the second test thrusters 1, 2 and 6
fail after 90 s from the start time. The gainstaf teference dynamics of Eq. (7) are:

K,=10.60,,, K,=35.180,,,k,= 0.24,k,= O (45)

while the matrices used in the Lyapunov equatien ar
Q =505, Q=500 4, (46)

Experimental Test 1: No Failures

Figure 3 shows the snapshots of the robot duriegtricking of the commanded trajectory.
The bolded side of the square is used to visu#tiedieading of the spacecraft simulator.

14



Figure 3. Experimental Results: Bird's Eye View forNo Failures Trajectory Tracking.
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The behaviors of the tracking errors are depiateHigure 4. The results show that the posi-
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Figure 4. Experimental Results: X, Y and ¢/ Tracking Errors.
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Experimental Test 2: Failure in the Thrusters 1, 2and 6
Using Eq. (44) and (45) we findy, (K, ) =0.0237and Hkgﬂu =30.98, while 4,,(Q)=5
and A, (Q,) =50. Now, we compute the bounds of Eq. (39) :

2x/§u JM (Kp)

sl
e 2

Q)

Therefore, from a theoretical point of view, we egpthat the strategy can manage the thrus-
ters’ failures.

= 1.9717 (46)

=2.18010%; e ]2

In Figure 5 we find the snapshots of the robotryithe maneuvers and it is shown the point
where the three failures occur at the same time.biavior of the tracking error is given in Fig-
ure 6 and the increasing error is clearly visibleerathe malfunctioning. This affects the
componenbf the position more than the other displacemerdsables, but the strategy is able to
recovery the increased error. Figure 7 shows th®iyi of the thrusters’ commands during the
robot maneuvers.

2 | :
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--------- Commanded
1+
E 4
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>
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Figure 5. Experimental Results: Bird’s Eye View wih Three Thruster-Failures.
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Figure 6. Experimental Results: X, Y and ¢/ Tracking Errors with Three Thruster-Failures.

CONCLUSION

The paper has presented a failure-tolerant thiistermmanding strategy for controlling
translational and rotational dynamics of fully-aatted spacecraft with thrusters only. In particular
the analysis has focused on the control problenthefspacecraft simulator AMPHIS of the

Spaceraft Robotics Lab of the Naval Postgraduate@c

It has been demonstrated in this work that the atkth able to compensate up to four thrus-
ters’ failures. The experimental tests have conmpdne behavior of AMPHIS, accomplishing
commanded tasks, in the case of no failures anchthiree failures occur. The experimental re-
sults have shown that the tracking errors incredtee the failures’ event, but the strategy recov-
ers the malfunctioning and reduces the trackingrerr
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Experimental Results: Thrusters’
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NOTATION

a,aq,,a',a',= Terms in the upper bounds of the derivative efltiiapunov function
ﬁp’ﬁw ,g = Vectors of the Thrusters’ selection

0,0:,0y = Activation variables

&, = Paosition tracking error vector

&y = Attitude tracking error vector

@, 95,77 = Switching variables

A = Eigenvalue

w = Angular velocity

w = Command frequency

W = Attitude angle

1Y = Position vector

o = Singular eigenvalue

A = Term of the time derivative of the Lyapunowdétion
&, = Tracking error vector of the translational dgmics
&y = Tracking error vector of the rotational dynami
s Fros T Feo= Binary variables representing failures

Ks, Ky, Kﬂ = Gain coefficients

u = Vector of the activated thrusters

4] = Binary vector of the activated thrusters

u, = Thrust of a thruster

W, Weo, W, = Ideal controls

A, = Model reference dynamics matrix

19



B((//) = Control distribution matrix

H,H. ,H,, = Thrust distribution matrices
K, Ky, Kp = Gain matrices

P, Pp, Pl,l/ = Lyapunov matrices
Q.Q,.Q = Positive definite matrices
V = Lyapunov function
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