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Nomenclature

Am = reference model dynamics matrix
B��� = control distribution matrix
e = tracking error vector
H = thrust distribution matrix
Fc = control forces
Mc = control torques
P = solution matrix of the Lyapunov equation
Q = selected Lyapunov equation matrix
R = rotation matrix
S�a� = switching function
u = thrusts’ vector
V = Lyapunov function
v�c = inputs’ vector of the commanded trajectory
v�c = inputs’ vector of the commanded attitude maneuver
w = ideal control vector
�
�
, �

�
= thrusters’ activation vectors

�
�
, �

�
= functions of tracking errors

��, �� = terms of the derivative of the Lyapunov functions
"� = position tracking error vector
"� = modified Rodrigues parameters tracking error vector
’, � = switching variables’ vectors
� = relative position vector
� = modified Rodrigues parameters vector
! = angular velocity vector of the space vehicle with

respect to Earth-centered inertial reference frame in
spacecraft reference frame coordinates

$ = command frequency
!L = angular velocity vector of the local-vertical–local-

horizontal frame with respect to Earth-centered
inertial reference frame in local-vertical–local-
horizontal coordinates

I. Introduction

C ONTROL of space vehicles for proximity operations, such as
rendezvous and docking, is a problemof great interest for future

manned missions [1], autonomous guidance of satellite swarms [2],
onorbit servicing missions operated by free-flyer robotic spacecraft
for refueling, monitoring or removing satellites [3–5], or for the
autonomous onorbit assembly of a large space structure [6].

For some of these applications, it may be necessary to control the
rotational and translational motions by the use of on–off thrusters.
The use of thrusters as the only actuators to steer the space vehicle
leads to dynamic coupling between rotation and translation.

Commonly, the control scheme for a spacecraft is based on
continuous control laws, designed with either linear or nonlinear
methods, which provide the necessary forces and torques to pursue
programmed trajectories and attitudemaneuvers of the space vehicle.
As a result, the designed continuous control forces and torques have
to bemapped into thrusters’ forces. This is accomplished by applying
thruster mapping strategies that are usually based on the simplex
method [7]. Because of the thrusters’ on–off nature, the output of the
thruster mapping algorithm is the input of the pulse-width modulator
that modulates a continuous thrust in a pulsed thrust aimed at
minimizing the difference between the actual pulsed control and the
designed continuous control [8–10].

The problem of control in the presence of actuator saturation limits
has been dealt with in the past [11] and the global stability has been
verified for a class of model reference adaptive controllers [12].
Moreover, an adaptive control law has been developed to
asymptotically enforce desired closed-loop dynamics by using the
Lyapunovapproach [13]. In the present work the Lyapunovapproach
is applied to search the suitable thrusters’ commanding strategy so
that the rotational and relative translational dynamics are tracking
linear reference models. As result, the control problem with on–off
actuators is simplified, since position and attitude maneuvers can be
designed upon the reference models by using the linear control
theory.

Furthermore, the number of thrusters to be activated is minimized.
The thrusters’ configuration is at each time step chosen, which
maintains the derivative of the Lyapunov function negativewhile the
space vehicle dynamics tracks a linear reference model. The
proposed approach reduces the complexity of the control scheme
because the simplex method and the pulse-width modulator are
replaced with a Lyapunov-based thrusters’ selection strategy. Such
strategy uses functions of the difference between the linear reference
model state vector and the actual dynamics state vector, and it
produces the thrusters’ on–off commands.

The paper is organized as follows. In Sec. II, the spacecraft
rototranslational dynamics equations are formulated in a mobile
orbital frame when only thrusters are the actuators for the control. In
Sec. III, the Lyapunovapproach is presented. In Sec. IV, the proposed
method is numerically tested in simulation for the control of the
rotational and translational dynamics of a spacevehicle. In Sec.V, the
proposed method is experimentally tested on one of the spacecraft
simulators of the Spacecraft Robotics Laboratory at the Naval
Postgraduate School [14]. Section VI concludes the paper.

II. Space Vehicle Dynamics
with Thrusters-Only Actuation

This section deals with the rototranslational dynamics equations
for a space vehicle. In particular, we use the local-vertical–local-
horizontal (LVLH) reference frame, since themain application of the
proposed method is considered to be in proximity maneuvers of
spacecraft.

A. Reference Frames

The following coordinate frames are used (Fig. 1):
1. The first coordinate frame is the LVLH reference frame (LRF)

attached to an orbiting reference point, with x axis directed along the
radius vector rL of the reference point from the Earth’s center z axis in
the direction of the orbit normal and y axis directed to complete the
right-handed coordinate frame;

2. The second coordinate frame is the spacecraft reference frame
(SRF), which is the body principal axes of inertia frame of the
spacecraft.

The rotation matrices between the two coordinate frames are
denoted with SRL.

B. Rototranslational Dynamics

The rotational dynamics are governed by the classical Euler
equations of the rigid body and the attitude kinematics has different
expressions according to the attitude parameterization.

Relative translational dynamics are developed as the relative
position and translational velocity of the spacecraft with respect to
the origin of the LVLH reference frame.

Fig. 1 Reference frames: inertial, LVLH, and spacecraft body

principal axes.
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1. Rotational Dynamics

Weuse themodifiedRodrigues parameters (MRPs) for the attitude
representation because they minimize the attitude parameters [15]
and, aswe showbelow, can be useful towrite the attitude dynamics in
a general manner as nonlinear second-order differential equations.

The rotational kinematics of SRFwith respect to LRF is expressed
in terms of MRPs �T � � �1 �2 �3 � by the following equation
[16]:

_� � 1
4
C����! � SRL���!L� (1)

where ! is the absolute angular velocity vector of the vehicle
expressed in SRF, !L is the absolute angular velocity vector of the
LRF, while

SRL��� � I3�3 �
8� ~��2 � 4�1 � �T��� ~��

�1� �T��2 (2)

is the rotation matrix from the LRF to SRF, and

C��� � ��1 � �T��I3�3 � 2� ~�� � 2��T � (3)

In Eq. (3), and in the following, the tilde symbol �~s� applied to a
generic vector s� � s1 s2 s3 �T is the skew symmetric matrix
form, representing the cross product in matrix algebra:

�~s� �
0 �s3 s2
s3 0 �s1
�s2 s1 0

0
@

1
A (4)

The rotational dynamics for a rigid body is

_!� J�1�� ~!�J!� SMc� (5)

where J� diag� J1 J2 J3 � is the diagonal matrix of the principal
moments of inertia and SMc is thevector of the control torques around
the principal axes of inertia in the SRF. From Eq. (1) the angular
velocity can be expressed as a function of �, _� and !L as

!� 4

�1� �T��2 C
T��� _� � SRL���!L (6)

because

C�1��� � CT���
�1� �T��2 (7)

By taking the derivative of Eq. (1) and using Eqs. (5) and (6), it
yields:

�� � f��; _�; !L; _!L� �G���SMc (8)

which is a system of nonlinear second-order differential equations,
where the matrix G��� � 1

4
	 C���J�1 is invertible and

f��; _�; !L; _!L� is a vector nonlinear function. Equation (8) is the

attitude dynamics equation expressed as a function of MRPs, their
time derivatives, and the kinematics of LRF.

2. Translational Dynamics

The relative position of the center of mass of the spacecraft can be
expressed in terms of Cartesian coordinates �� � x y z �T in the

LRF; let rS and rL be the orbital position vectors of the spacecraft and
the reference orbiting point, respectively, in the LRF. Then,

rS � rL � ��
rL
0

0

2
4

3
5� x

y
z

2
4

3
5� rL � x

y
z

2
4

3
5 (9)

The relative translational dynamics equations are obtained based
on two derivatives with respect to the inertial frame [16,17] and by
considering the Keplerian motion, yielding:

8>>>>><
>>>>>:

�x�
�
_�2 � 1

�
�E
r3
L

�
x� ��y� 2 _� _y�

�
1� 1

�

�
�E
r2L
� 1

m
LFcx

�y�
�
_�2 � 1

�
�E
r3
L

�
y� ��x� 2 _� _x� 1

m
LFcy

�z�� 1
�
�E
r3
L

z� 1
m
LFcz

(10)

where

��
�
1� 2

x

rL
�
�
x

rL

�
2

�
�
y

rL

�
2

�
�
z

rL

�
2
�3

2

(11)

The Earth gravitational constant is �E, and �� 	� 
 is the true
latitude of the reference orbiting point (that is, the sum of the true
anomaly 	 and the perigee argument
). LFcx,

LFcy, and
LFcz are the

components of the control forces vector LFc in the LVLH frame, and
m is the space vehicle’s mass. For a complete set of equations
governing the spacecraft reference point dynamics, the equations
����2� _rL=rL� and �rL � rL _�2 � ��E=r2L� must be added to
Eq. (10).

For the reference point in a circular orbit and k�k 
 rL, Eq. (10)
becomes the well-known Hill–Clohessy–Wiltshire equations [18].
The relative motion equations can be written in the following
compact form:

��� h��; _�� � 1

m
LFc (12)

where h��; _�� is the set of nonlinear expressions of the relative

translational dynamics.

3. Rototranslational Dynamics

By looking at Eqs. (8) and (12), the rotational and translational
dynamics are decoupled if the controls SMc and

LFc are independent.
However, in the thrusters-only case, the attitude control and the
translational control are coupled and cannot be designed separately.
In fact, by using the rotation matrix from the LVLH reference
frame to the SRF of Eq. (2), we have LFc � LRS���SFc, where
LRS��� � SRTL��� � SRL����. The required directional force SFc
and torque SMc must be produced by the combined firing of the
thrusters, thus these control variables are not independent.

Let u� ua� û1 û2 	 	 	 ûn �T be the vector of the thrusts of the
thrusters, where

û i �
�
0 �ith thruster off
1 �ith thruster on i� 1; 2; . . . ; n (13)

with ua being the positive value of the available thrust of the thruster.
The vector û� � û1 û2 	 	 	 ûn �T is the binary vector that we call
the active thrusters’ configuration at the time t.

Let us write the controls as

SFc
SMc

� �
� HF

HM

� �
u�Hu (14)

where H is the 6 � n thrust distribution matrix related to the
geometrical structure of the thrusters’ placement on the spacecraft.

Let �� �� � �T be the vector of the generalized displacements

of the spacecraft, then the thruster commanded rototranslational
dynamics, combining Eqs. (8), (12), and (14), has the following
expression:

��� p��; _�; !L; _!L� � N���Hu (15)

CURTI, ROMANO, AND BEVILACQUA 1145

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
FL

O
R

ID
A

 o
n 

A
ug

us
t 1

9,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.4
72

96
 



where

p��; _�; !L; _!L� �
h��; _��

f��; _�; !L; _!L�

� �
;

N��� �
1
m
LRS��� 03�3
03�3 G���

� � (16)

4. Thrust Distribution Matrix Structure

Many thrusters’ architectures are possible; for instance, in [1] the
problem of thrusters’ placement is widely discussed for the NASA’s
Crew Exploration Vehicle. In general, the distribution of thrusters
depends largely on the vehicle geometry and the allocation criterion
[19]. In this paper, a generic fully actuated thrusters’ distribution is
considered, i.e., the thrusters’ placement is capable of always
providing directional forces and attitude control torques.

This implies that the H matrix must allow for forces and torques
generation capability around the three axes of SRF [i.e., from
Eq. (14)], a full rank requirement for H, otherwise a thruster
configuration u0 ≠ 0 exists so thatHu0 � 0.Moreover, theHmatrix
satisfies the following properties:

1) Property 1 guarantees existence of a configuration uF that
exists, such that HFuF ≠ 0 and HMuF � 0.

2) Property 2 guarantees existence of a configuration uM that
exists, such that HMuM ≠ 0 and HFuM � 0.

The above-mentioned properties guarantee the capability to
generate pure forces without torques and vice versa. These are
intrinsic properties of the geometrical placement of the thrusters.

Note that this is true only from a theoretical point of view, since
systematic errors in the thrusters’ placement and orientation, and
slight differences of the nominal thrust among the different thrusters
introduce undesired disturbance forces and torques for a given
maneuver.

A sample generic structure for a fully actuated spacecraft thrusters’
placement is shown in Fig. 2.

We denote with dx, dy, and dz the moment arms of the thrusters
with respect to the center of the mass. The thrusters are numbered
from 1 through 12. For this structure, the submatrices ofH,HF, and
HM, are as follows:

HF �
�1 0 0 �1 0 0 1 0 0 1 0 0

0 1 0 0 �1 0 0 1 0 0 �1 0

0 0 1 0 0 �1 0 0 �1 0 0 1

2
4

3
5
(17)

HM

�
0 dz �dy 0 dz �dy 0 �dz dy 0 �dz dy
dz 0 �dx �dz 0 dx dz 0 �dx �dz 0 dx
�dy dx 0 dy �dx 0 dy �dx 0 �dy dx 0

2
4

3
5

(18)

It can be easily seen that the H matrix has full rank and satisfies
properties 1 and 2. Notably, the thrusters’ placement scheme of Fig. 2
is not based on the geometry of a particular space vehicle.

C. Classical Control Design Approach

The classical control design for spacecraft with only thrusters is
typically conducted by solving the control problem for the
rototranslational dynamics, considering the space vehicle actuated
by continuous actuators. This approach leads to finding the con-
tinuous control law for SMc and SFc. Subsequently, the suitable
configuration of thrusters is found such that Eq. (14) is met with a
minimum number of thrusters.

This problem is usually solved by applying simplex-based
algorithms [20] as follows: given the known terms SMc and

LFc, and
the attitude � at the time t, let us find �u� � �u1 �u2 	 	 	 �un �T , such
that

�u � �min
�u

Xn
i�1

�ui

subject to

8<
:
uaHF �u� FcS
uaHM �u�McS

0 � �ui � 1 for i� 1; 2; . . . ; nFig. 2 Fully actuated space vehicle with thrusters only.

Fig. 3 Classical control block scheme for an on–off actuated spacecraft.
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with SFc � SRL���LFc. The optimal solution �u� of the constrained
minimum problem is the mapping of the force and torque control
laws into positive continuous variables �u�i . The last step is to convert
the continuous laws �u�i into on–off commands ûi [Eq. (13)] by using
the pulse-width-modulation (PWM) technique. The classical control
schemes consist of a cascade of blocks, as shown in Fig. 3.

III. Control Design and Command Strategies Based
on Reference Models

This section introduces a new thrusters’ command strategy based
on the tracking of the dynamics of reference linear models. The
strategy is found for the generic structure of the thrusters’ placement
of Fig. 2.

A. Reference Model Tracking Error Equation

Let �
m
and �m be the solutions of the following equations:

�� m � K1 _�m � K2�m � v�c ��m � K3 _�m � K4�m � v�c (19)

where K1, K2, K3, and K4 are 3 � 3 symmetric positive definite
matrices. The input vectors v�c and v�c are the variables of
commands. If v�c � 0 and v�c � 0, we deal with the problem of
regulation; otherwise, �

m
and �m are the responses of a second-order

system to the inputs v�c and v�c.
Defining the error variables "� � �� �m and "� � � � �m,

between the spacecraft actual state and the evolution of Eq. (19), by
using Eqs. (8), (12), (14), and (19), we obtain:

�" � � K1 _"� � K2"� �
1

m
LRS���HFu � �v�c � v�l�;

�"� � K3 _"� � K4"� �G���HMu � �v�c � v�l�
(20)

where v�l � h��; _�� � K1 _�� K2� and

v �l � f��; _�; !L; _!L� � K3 _� � K4�

We rearrange Eq. (20) by introducing the variables e� � � "� _"� �T ,
e� � � "� _"� �T , and e� � e� e� �T :

_e� Ame� B����Hu � w� (21)

with

Am�
A1m 03�3
03�3 A2m

� �
; A1m�

03�3 I3�3
�K1 �K2

� �
; A2m�

03�3 I3�3
�K3 �K4

� �

(22)

and

B��� �

03�3 03�3
1
m
LRS��� 03�3
03�3 03�3
03�3 G���

2
664

3
775;

w� wF
wM

� �
� mLRS�����v�c � v�l�

G�1����v�c � v�l�

� �
(23)

Equation (21) is the reference model tracking error equation, where
the matrices A1m and A2m and, therefore, Am are Hurwitz [21]. It is
noteworthy that, if Hu� w in Eq. (21), the system of Eq. (15) has
the dynamics ��� K1 _�� K2�� v�c and �� � K3 _� � K4� � v�c. In

fact, in Eq. (21) the term (Hu � w) forces the dynamics of the
tracking error. If this term is zero, the tracking error goes
exponentially to zero. The variables wF and wM can be seen as the
ideal controls to yield the linear behavior of the system in Eq. (15).

B. Lyapunov Approach

To study the stability of Eq. (21) under the thrusters’ actuation, we
use the Lyapunov approach by selecting as a candidate function:

V�e� � eTPe (24)

with P� PT > 0. Differentiating Eq. (24) along the trajectories in
Eq. (21), we find:

dV
dt
� eT�AmP� PATm�e� 2eTPB����Hu � w� (25)

For a specified symmetric positive definite matrixQ, the matrix P
is found as the unique solution of the Lyapunov equation:

AmP� PATm ��Q (26)

and Eq. (21) is asymptotically stable if 2eTPB����Hu � w� � 0. In
particular, in order to separate the position error contribution from the
attitude error contribution, if we select:

Q� Q1 06�6
06�6 Q2

� �
(27)

withQ1 �QT
1 > 0 andQ2 �QT

2 > 0, Eq. (26) has the solution of the
form [22]:

P� P� 06�6
06�6 P�

� �
(28)

By partitioning the matrices P� and P� as

P� �
P�1 P�2
PT�2 P�3

� �
; P� �

P�1 P�2
PT�2 P�3

� �
(29)

Equation (25) yields:

dV
dt
��eT�Q1e� � eT�Q2e� � 2� (30)

where

���� ���; �� � �T� �HFu � wF�;

�� � �T� �HMu � wM�;

�T
�
� �"T�P�2 � _"T�P�3�1mLRS��� � 1

m
eT�K

T
�
LRS���;

�T
�
� �"T�P�2 � _"T�P�3�G��� � eT�KT�G���

(31)

with K� � �P�2 P�3 �T and K� � �P�2 P�3 �T . Equation (30)
implies that the tracking error e! 0 if � � 0.
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C. Selection of the Active Thrusters’ Configuration

We seek to establish the asymptotic stability of the reference
model tracking error equation (21) under a suitable selection of
the thrusters to be activated. From Eq. (31), we rearrange the two
relations using the vector of the active thrusters’ configuration û:

�� � �T� û � �F; �� � �T� û � �M (32)

with

� T
� �ua�T�HF; �T

�
�ua�T�HM; �F� �T�wF; �M� �T�wM

(33)

By using the first relation of Eqs. (31) and (32), we can therefore
write:

�� ��T
�
û � �F� � ��T� û � �M� (34)

To make � zero or negative, we have to find the suitable binary
vector û. It is easy to see that, if �F � �M  0, no thrusters must
be activated (that is, û� 0), because the condition � � 0 is
automatically satisfied.

From Eqs. (17) and (18) of the submatrices HF and HM and
Eq. (31), we find the vectors �

�
and �

�
and write Table 1.

In the first row of Table 1, the identification number of the thruster
is listed, and the functions ’i and �j are

’1
’2
’3

2
4

3
5�

ua 0 0

0 ua 0

0 0 ua

0
@

1
A ��1

��2
��3

2
4

3
5 (35)

�1

�2

�3

�4

�5

�6

2
6666664

3
7777775
�

0 �uadz uady
uadz 0 �uadx
�uady uadx 0

0 uadz uady
uadz 0 uadx
uady uadx 0

0
BBBBBB@

1
CCCCCCA

��1
��2
��3

2
4

3
5 (36)

Looking at Table 1, the vectors �
�
and �

�
can be written as

� � � b��’�; �
�
� b���� (37)

where ’T � �’1 ’2 ’3 � and �T�
��1 �2 �3 �4 �5 �6 �, while b� maps ’ into �

�
, and b�

maps � into �
�
.

If �F � �M < 0, three cases are found to yield the suitable active
thrusters’ configuration û.

1. Selection of the Active Thrusters’ Configuration when �F < 0 and
�M  0

We search a thrusters’ configuration that makes � � 0 and,
because �M  0, that implies �� � 0; the configuration does not
have to introduce any control torque (that is, �T

�
û� 0). The thrusters

to be selected belong to the configuration ûF, for which ��k < 0 for
k� 1; 2; . . . ; 12 and, due to property 1 (see Sec. II.B.4), it provides a
control force only (see Table 1). We must demonstrate that the
selected configuration ûF yields�� � 0. Table 1 shows that a set of
components �

�
are always negative, because the functions ’i are

either positive or negative; if all these functions equal zero, then
[fromEq. (35)], the term�� vanishes. Note that, for each function ’i,

a couple of thrusters are concerned. Assuming we select all the
thrusters for which ��k < 0, then by using Eqs. (32) and (33), we
obtain:

�� � ��2j’1j � ��1wF1� � ��2j’2j � ��2wF2�
� ��2j’3j � ��3wF3� (38)

The most negative values of �F are when ��iwFi < 0, for i� 1, 2,
3; therefore, from the relation of Eq. (35) we have:

�� � j��1j��2ua � jwF1j� � j��2j��2ua � jwF2j�
� j��3j��2ua � jwF3j� (39)

Thus, a sufficient condition to have � � 0 is

jwFij � 2ua for i� 1; 2; 3 (40)

2. Selection of the Active Thrusters’ Configuration when �F  0
and �M < 0

We search a thrusters’ configuration that makes � � 0 and,
because �F  0, that implies �� � 0; the configuration does not
have to introduce any control force (that is, �T

�
û� 0). The thrusters

to be selected belong to the configuration ûM, for which ��k < 0 for
k� 1; 2; . . . ; 12 and, due to property 2 (see Sec. II.B.4), such
configuration provides control torque only (see Table 1). As in the
previous case, we must demonstrate that the configuration ûM yields
�� � 0. Table 1 shows that a set of components �

�
are always

negative because the functions �i are either positive or negative. In
addition, each of these functions is related to a couple of thrusters; if
all these functions equal zero, then [from Eq. (36)], the term ��

vanishes. Assuming we select all the thrusters for which ��k < 0, by
using Eqs. (32) and (33), we have:

�� ��
X6
j�1
j�jj �

X3
i�1

��iwMi (41)

The most negative values of �M are when ��iwMi < 0 for i� 1, 2, 3;
therefore,

�� � �
X6
j�1
j�jj �

X3
i�1
j��iwMij (42)

By using Eq. (36), we obtain the relation:

�� � j��1j 	 ��2ua�dz � dy� � jwM1j� � �j��2j
	 ��2ua�dz � dx� � jwM2j� � �j��3j 	 ��2ua�dy � dx� � jwM3j�

(43)

Thus, a sufficient condition to have � � 0 is

jwM1j � 2ua�dz � dy�; jwM2j � 2ua�dz � dx�;
jwM3j � 2ua�dy � dx�

(44)

Table 1 Components of �
�
and �

�

Thruster 1 2 3 4 5 6 7 8 9 10 11 12

�T
�
� �’1 ’2 ’3 �’1 �’2 �’3 ’1 ’2 �’3 ’1 �’2 ’3

�T
�
� ��1 �5 ��6 �1 �2 �3 �4 ��5 ��3 ��4 ��2 �6

Table 2 Switching table for ’1, �1, and �4

�1 > 0 �1 < 0 �4 > 0 �4 < 0

’1 > 0 1 4 —— ——

’1 < 0 —— —— 10 7
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3. Selection of the Active Thrusters’ Configuration when �F < 0 and
�M < 0

In this case, the activation rule needs to consider both vectors �
�

and �
�
. In fact, we search an active thrusters’ configuration ûT that

provides control force and torque at the same time. The rule follows
the same strategy of the above cases, because the aim is to select
thrusters that provide negative weights in the sums:

X12
k�1

��kûTk

and

X12
k�1

��kûTk

Assume that ’1 > 0 (see Table 1); if �1 > 0, then thruster 1 must be
activated (that is, generating a force component along the opposite
direction of the x axis, a negative torque component around the z axis,
and a positive torque component around the y axis) (see Fig. 2). If
�1 < 0, then thruster 4 must be activated, thus leading to a similar
discussion (as mentioned before) of opposite signs of the torque
components.We can recursively repeat the same statements for all of
the other combinations of the functions ’i and �j of Table 1, which
are positive or negative according to the tracking error behavior. As a
consequence, we can construct three switching tables (Tables 2–4).
In these tables, the number k identifies that the kth thruster must be
activated.

The switching tables show that the activation rule does not set on a
couple of thrusters, as in the cases of Secs. III.C.1 and III.C.2, but one
only. This implies that � � 0 as a sufficient condition, if

jwFij � ua; i� 1; 2; 3 (45)

and

jwM1j � ua�dz � dy�; jwM2j � ua�dz � dx�;
jwM3j � ua�dy � dx�

(46)

D. Asymptotic Stability of the Tracking Error Dynamics

The analysis of the previous section provides the selection of the
rules to activate the suitable thrusters. Moreover, we have found
sufficient conditions for which the asymptotic stability of the
tracking error dynamics are achieved. Notice that the sufficient
conditions of Eqs. (45) and (46) dominate the sufficient conditions of
Eqs. (40) and (44). As a result, if the inequalities of Eqs. (45) and (46)
are satisfied, the active thrusters’ configurations found in Sec. III.C
guarantee that the tracking error e! 0. Actually, the tracking error
cannot reach zero; however, it reaches a residual set around the
equilibrium, which is the limit cycle in the case of a periodic orbit of
convergence [23]. This is because the actuators are on–off devices
and have a minimum in the duration of the pulse.

The conditions of the asymptotic stability to a residual set are the
admissible range values that the ideal controls, wFi and wMi, must
have. The ideal controls are not known a priori, because they are
functions of the actual states � and � of the system controlled by

the thrusters’ activations [Eq. (23)]. Anyhow, wFi and wMi can be
predicted by computing them on the designed behaviors �

m
and �m.

If they are not in the admissible ranges, it means that the thrusters in
hand have a lower thrust than the necessary to track the desired
behaviors of �

m
and �m. Therefore, we have to change the behaviors

of�
m
and�m [for instance, by reducing thevalues of the gainmatrices

in Eq. (19)] until the conditions of Eqs. (45) and (46) are verified. If
the designed behaviors of �

m
and �m are mandatory, it implies the

need of thrusters with a higher thrust to be taken into account during
the spacecraft design process. As the simulation will show, under the
conditions of Eqs. (45) and (46) for �

m
and �m, and assuming that

the initial conditions of the real dynamics [Eq. (15)] and those of the
referencemodels [Eq. (19)] are the same, the controlled dynamics are
not far from the behavior of the reference models. This is because the
selected active thrusters’ configuration makes the derivative of
the Lyapunov function of Eq. (25) negative and, as a consequence,
the tracking error e is kept within the region that includes the residual
set of asymptotic stability around the equilibrium.

E. Algorithms to Minimize the Active Thrusters

This section deals with the problem of minimizing the number
of the thrusters to be activated, aiming at the condition � � 0. The
algorithms assume that the inequalities of Eqs. (45) and (46) are met

Table 3 Switching table for ’2, �2, and �5

�2 > 0 �2 < 0 �5 > 0 �5 < 0

’2 > 0 11 5 —— ——

’2 < 0 —— —— 8 2

Table 4 Switching table for ’3, �3, and �6

�3 > 0 �3 < 0 �6 > 0 �6 < 0

’3 > 0 9 6 —— ——

’3 < 0 —— —— 3 12

Fig. 4 Block diagram of the proposed control method.
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and use of the selection rules of Sec. III.C. Let S�a� be the switching
function:

S�a� �
�
1 a < 0

0 a  0
(47)

If �F � �M < 0, we must consider three activation algorithms:
1) �F < 0 and �M  0.

a) Initialize the vectors ’̂� 0 and ~’� ’;
b) Let ’i be the function of ~’ that has the maximum absolute

value; then we set ’̂i � ’i and ~’i � 0.

c) Compute �̂
�
� b��’̂�.

d) Compute û� �S��̂�1� S��̂�2� 	 	 	 S��̂�k� 	 	 	
S��̂�12��T .

e) If �� ��T
�
û � �F � �M� � 0 then stop, else go to b.

2) �F  0 and �M < 0.
a) Initialize the vectors �̂� 0 and ~�� �.
b) Let �j be the function of ~� that has the maximum absolute

value; then we set �̂j � �j and ~�j � 0.

c) Compute �̂
�
� b���̂�.

d) Compute û� �S��̂�1� S��̂�2� 	 	 	 S��̂�k� 	 	 	
S��̂�12��T .

e) If �� ��T
�
û � �F � �M� � 0 then stop, else go to b.

3) �F < 0 and �M < 0.

a) Initialize the vectors �̂� 0 and ~�� 0.

b) Find the matching components in the vectors �
�
and �

�
, for

which ��k < 0 and ��k < 0, and compute ~�k � ��k � ��k.

c) Let h be the position of the most negative value of ~�; then we

set �̂h � ~�h and ~�h � 0.

d) Compute û� � S��̂1� S��̂2� 	 	 	 S��̂k� 	 	 	
S��̂12��T .

e) If �� ��Tû � �F � �M� � 0, then stop; else go to c.

Themaximumnumber of iterations is three for algorithm 1 and six
for 2 and 3. The time of thrusting is the time in which the sign of
�F � �M is negative, while the signs of �F and �M switch among the
thrusters’ activation algorithms 1, 2, and 3.

F. Control Law Design

The suitable configuration û is found under the constraints of
Eqs. (45) and (46). The design of the control law has to take into
account these constraints to yield, as a sufficient condition, a stable
tracking control. From Eq. (23), it is recognizable that the
expressions of the variables wF and wM are the linearizing control
functions of the translational dynamics [Eq. (11)] and the rotational
dynamics [Eq. (7)]. In fact, in Eq. (12), if SFc � wF (and recalling
that LFc � LRS���SFc), then the translational dynamics become

��� K1 _�� K2�� v�c (48)

and, in Eq. (8) if SMc � wM, then the rotational dynamics become

�� � K3 _� � K4� � v�c (49)

In point of fact, the linearizing controlswF andwM are not applied
to the system and they are only used in the expressions of �F and �M
[see Eq. (33)].

In the case of regulation, the input variables are v�c � 0 and
v�c � 0. If a desired trajectory maneuver �

d
�t� is required [from

Eq. (19)], we can use the variable v�c with the law:

v �c � ��
d
� K1 _�d � K2�d (50)

Similarly, if an attitude maneuver �d�t� is planned, we can use the
variable v�c with the law:

Table 5 Spacecraft parameters

Mass m� 500 kg
Size Lx � 1:5 m; Ly � 2 m; Lz � 2:5 m
Moments of inertia Jx � 427 kg 	m2; Jy � 354 kg 	m2;

Jz � 260:4 kg 	m2

Thrusters’ placement dx � Lx=2; dy � Ly=2; dz � Lz=2
Thrust ua � 2 N
Minimum pulse duration
(valves mechanical limit)

50 ms
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Fig. 5 Reference model behavior for the spacecraft center of mass and spacecraft attitude.
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Fig. 6 Functions wF and wM vs time for the reference model.
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Fig. 7 Numerical simulation result: spacecraft center of mass position and attitude tracking errors.
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Fig. 8 Numerical simulation result: functions wF and wMcomparisons vs time.
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Fig. 9 Numerical simulation result: thrusters’ commands history.
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v �c � ��d � K3 _�d � K4�d (51)

The command strategy devised in Sec. III.C ensures, for the
position and attitude variables of the space vehicle, that �! �

m
while �

m
! �

d
and � ! �m while �m ! �d.

A block diagram of the proposed control method is reported in
Fig. 4.

The advantages of using the proposed method with respect to the
classical control approach are as follows:

1) The required behavior of on–off controlled rototranslational
dynamics can be designed by choosing suitable linear dynamics.

2) The computational complexity in searching the thrusters’
configuration is reduced with respect to the solving simplex problem
(see Sec. II.C). This last point can be clarified by exploring the
algorithms devised for solving theminimization problem formulated
in Sec. II.C, which uses iterative sequences ofmatrix operations [24].

IV. Simulation Results: Proximity Operation
of a Spacecraft

In this section, we apply the proposed model reference method
to the problem of the proximity navigation of a spacecraft. The
objective of the spacecraft is to zero out its position and velocity, as
well as its attitude and angular rates, with respect to the LVLH
reference frame that is attached to the orbiting point on a circular orbit
with the semimajor axis of 9800 km.

A. Reference Model and Control Design

The spacecraft parameters are summarized in Table 5,where (from
Fig. 2) Lx, Ly, and Lz are the size of the vehicle along the body
reference axes.

The model reference dynamics equations (19) have the matrices:

K1 � 2:4 	 10�2 	 I3�3; K2 � 3:6 	 10�3 	 I3�3;
K3 � diagf 0:1 0:06 0:096 g;
K4 � 10�3diagf 3:7 1:3 3:7 g

(52)

Fig. 10 Spacecraft simulator at the Spacecraft Robotics Laboratory, Naval Postgraduate School.

Lx

Ly
xbody

xy

x

1

45

6

7

8

3

d

ybody

y

ψ

2

Fig. 11 Spacecraft simulator representative sketch.

Table 6 Spacecraft simulator parameters

Mass m� 10:5 kg
Size Lx � 19 cm; Ly � 19 cm
Moment of inertia Jz � 0:032 kg 	m2

Thrusters’ placement d� 5 cm
Thrust ua � 0:159 N
Minimum pulse duration
(valves mechanical limit)

50 ms
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The designed behavior of the reference dynamics are plotted in
Fig. 5, where 	x, 	y, and 	z are the 1-2-3 Euler angles that represent
the attitude of the SRFwith respect to the LVLH frame. The reference
trajectories andmaneuvers are obtained as the integration of Eq. (19),
with v�c � 0 and v�c � 0 starting from the initial conditions:
xm ��10 m, ym � 10 m, zm � 10 m; velocities _xm � 0:05 m=s,
_ym � 0:05 m=s, and _zm ��0:05 m=s; Euler angles 	xm � 30 deg,
	ym � 30 deg, and 	zm ��30; and angular velocities !xm�
6 deg =s, !ym ��6 deg =s, and !zm � 6 deg =s.

As explained in Sec. III.C, the inequalities of Eqs. (45) and (46)
need to be verified; in this case, by using the values of Table 1, we
have:

jwFij � 2 N; i� 1; 2; 3 (53)

jwM1j � 4:5 Nm; jwM2j � 4 Nm; jwM3j � 3:5 Nm

(54)

The functions wF and wM are computed on �
m
, and �m and the

behaviors are shown in Fig. 6.
It can be easily seen that these functions are in the ranges defined

by Eqs. (53) and (54); therefore, the Lyapunov-based thruster
selection strategy ensures the stability condition of the tracking error.

B. Simulation Results

Simulations are conducted by choosing the matrices in Eq. (27):

Q1 � 5 	 104 	 I3�3; Q2 � 5 	 105 	 I3�3 (55)

Figure 7 shows the position errors and the attitude errors. As
discussed in Sec. III.C, the initial conditions of the reference models
in Eq. (19) have been taken as the initial conditions of the real
dynamics in Eq. (15); which is the reason for the initial errors’ value
of zero.

As Fig. 7 shows, the errors’ values are kept small and, as a result,
the spacecraft tracks the reference models. The tracking errors reach
a residual set about zero because of the nonlinear nature of the
problem related to the on–off actuators.

Figure 8 depicts the behavior of the components ofwF andwM as
functions of �

m
, �m, and �, �. The comparisons show that the

difference among the values is small, which implies (as pointed our
previously) that the designed control can be tested on the reference
models’ behavior to verify the inequalities (45) and (46).

Figure 9 shows the history of the thrusters’ activation; the
computed total impulse for the maneuver is 313 Ns.

V. Planar Case: Laboratory Experiments
with a Floating Spacecraft Simulator

The experimental tests included in this paper have been conducted
by using one of the floating spacecraft simulators (see Fig. 10) at the
flat floor test bed of the Naval Postgraduate School. This three-
degree-of-freedom simulator has size of 0:19 � 0:19 � 0:81 m and
a mass of 10.5 kg. It has a magnetometer, a gyroscope, and a
pseudoglobal positioning system as sensors, and it has on–off cold-
gas thrusters as actuators ([14,25–27]).
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Fig. 12 Experimental result: bird’s eye view for experiment 1:

regulation. The bold side of the square is used to visualize the heading of

the spacecraft simulator.
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Fig. 13 Experimental result: x and y coordinates vs time for experiment 1, regulation.
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A. Spacecraft Simulator Model

The spacecraft simulator model is sketched in Fig. 11.
In Fig. 11, the frame �x; y� is the inertial reference frame, the frame

(xbody, ybody) is the body reference frame, while  is the orientation
angle of the spacecraft with respect to the local reference; the
thrusters are numbered from 1 through 8 and are placed around the
platform at a distance of d from the center of mass. The robot
simulates in three-degree-of-freedom the rototranslational dynamics
of a space vehicle and the main parameters are shown in Table 6.

From Eqs. (17) and (18), the submatrices of the thrust distribution
matrix H have the structure:

HF �
0 �1 �1 0 0 1 1 0

�1 0 0 1 1 0 0 �1

� �
(56)

HM � ��d d �d d �d d �d d � (57)

Let �� � x y  �T be the vector of the generalized displacements,

the rototranslational dynamics are

���
1
m
IRB� � 02�1
01�2

1
Jz

� �
Hu (58)

where IRB� � is the rotation matrix from the local reference frame to
the body reference frame and u is the vector defined in Eq. (13).

The � vectors of Table 1, used by the Lyapunov-based thruster
selection strategy, become

� T
� � ��’2 �’1 �’1 ’2 ’2 ’1 ’1 �’2 � (59)
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Fig. 14 Experimental result: Vx and Vy vs time for experiment 1, regulation.
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Fig. 15 Experimental result:  and ! vs time for experiment 1, regulation.
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Fig. 16 Experimental result: thrusters’ commands history for experiment 1, regulation.
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� T
� � ��� � �� � �� � �� � � (60)

where

’� ’1
’2

� �
� ua 0

0 ua

� �
��1
��2

� �
� ua�� (61)

�� dua� (62)

inwhich �
�
has the samemeaning of Eq. (31), while � is the variable

related to the tracking error of the attitude represented by the angle ,
instead of the MRPs in Eq. (31).

B. Control Design

The control design is based on the imposing of the reference
trajectory �

m
and maneuver  m as solutions of the equations:

�� m � K1 _�m � K2�m � v�c; � m � K3
_ m � K4 m � v c

(63)

where �� � x y �T , and on the selection of the matrices of the

Lyapunov equation Eq. (26).
For the floating platform the following control matrices have been

set to

K1� 10:6 	 I2�2; K2� 35:13 	 I2�2; K3� 0:24; K4� 0:5

(64)

and

Q1 � diagf 1 1 10 10 g; Q2 � 10 	 I2�2 (65)

C. Experimental Results

This section reports the results of two experimental tests
performed by implementing the proposed approach. The first test is a
regulation maneuver, that is, v�c � 0 and v c � 0, which is run in
order to show the stability of the control approach. The spacecraft
simulator starts maneuvering at nonzero initial conditions in position
and attitude. It is left free to maneuver in order to reach the null state
vector.

The second experiment is a trajectory tracking test, performed in
order to show the control logic stabilitywith respect to a time-varying
commanded state vector.

1. Experiment 1: Regulation

The robot starts maneuvering from the initial state vector,

� x0 y0  _x0 _y0 ! �
� ��1 m 1 m 33 deg 0 m=s 0 m=s 0 deg =s �

−1.5 −1 −0.5 0 0.5 1 1.5
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−0.5

0

0.5
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Y
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m
)

 

 

Actual
Commanded

t=63 sect=190 sec

t=126 sec

[0m 1m 0deg], t=0 sec, t=252.97 sec

Fig. 17 Experimental result: bird’s eye view for experiment 2,
trajectory tracking. The bold side of the square is used to visualize the

heading of the spacecraft simulator.
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Fig. 18 Experimental result: x and y coordinates vs time for experiment 2, trajectory tracking.
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and it is intended to drive its state variables to zero. A video of the
experimental run is available online.∗ The required impulse is
6.27Ns and the required time is approximately 29 s. Figure 12 shows
a bird’s eye view of the regulation experiment with time tags at the
start and end points. The bold side of the square is used to visualize
the heading of the spacecraft simulator. The portions of the
trajectories with sparse snapshots represent faster motion of the
simulator on the flat floor (see also the video∗). Figures 13 and 14
depict the behavior of the position and velocity components, while
Fig. 15 shows the heading (angle about the vertical axis) and angular
velocity. The simulator’smotion closely follows the desired behavior
of the linear reference model, with a minimal overshooting, as
presented in Figs. 13 and 15.

The on–off sequences of the thrusters for the regulation
experiments are reported in Fig. 16. The most of the on–off thrusting
is concentrated at the beginning and at the end of the trajectory, while
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Fig. 19 Experimental result: Vx and Vy vs time for experiment 2, trajectory tracking.
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Fig. 20 Experimental result:  and ! vs time for experiment 2, trajectory tracking.

Table 7 Results of experiment 2

Total impulse 9.23 Ns
Mean of the tracking error in x 0.0025 m
Standard deviation in tracking error in x 0.0043 m
Mean of the tracking error in y �0:0044 m
Standard deviation in tracking error in y 0.0155 m
Mean of the tracking error in Vx 0:0001 m=s
Standard deviation in tracking error in Vx 0:0075 m=s
Mean of the tracking error in Vy 0:0046 m=s
Standard deviation in tracking error in Vy 0:2139 m=s
Mean of the tracking error in  0.0107 deg
Standard deviation in tracking error in  0.2152 deg
Mean of the tracking error in ! �0:0008 deg =s
Standard deviation in tracking error in ! 0:4160 deg =s

∗Data available online at http://vimeo.com/6599932 [retrieved
30 March 2010].
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the middle portion is characterized by longer intervals with the
thrusters either on or off.

2. Experiment 2: Trajectory Tracking

The robot starts maneuvering from the initial state vector,

� x0 y0  _x0 _y0 ! �
� � 0 m 1 m 0 deg 0 m=s 0 m=s 0 deg =s �

and it is intended to track a 1 m radius circular trajectory at constant
speed, while changing its attitude between 30 and �30 deg

following a sine wave command. The commanded trajectory’s
frequency is $� � 0:025 rad=s, the angle’s command frequency is
$ � 0:05 rad=s. In this case, the command variable v�c has the
expressions of Eq. (50) with �T

d
� � cos�$�t� sin�$�t� �, while

the command variable v c has the expression of Eq. (51) with
�d � 0:5233 cos�$ t�. This means that the circle is intended to be
run in approximately 250 s while the angle’s oscillation between 30
and�30 deg occurs twicewithin the same time frame.Avideo of the
experimental run is available online.†
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Fig. 21 Experimental result: thrusters’ commands history for experiment 2, trajectory tracking.

†Data available at http://vimeo.com/6600180 [retrieved 30 March 2010].
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Figure 17 shows the bird’s eye view of the experiment, the bold
line is again employed to help visualizing the simulator’s heading
throughout the maneuver. Figure 18 shows the planar coordinates
evolution in time, compared with the commanded signals. Figure 19
is dedicated to the comparison between commanded and actual
planar velocities. Figure 20 is finally depicting the commanded
heading and heading rate versus the experimental ones. In all the
comparison plots a high tracking accuracy is achieved. Figure 21
collects the on–off history for the eight onboard thrusters.

Table 7 collects the main parameters related to the accuracy of the
trajectory tracking and the total impulse for the maneuver.

In Figs. 14, 15, 19, and 20, a noisier behavior of the simulator’s
planar velocities and angular rate can be noticed, compared with the
smooth behavior of the position and heading variables. This
characteristic has to be ascribed to the navigation algorithms, whose
behavior and tuning is beyond the scopes of this work. Nevertheless,
the current navigation system allows for very satisfactory model
tracking using the proposed control strategy.

VI. Conclusions

The Lyapunov-based thrusters’ selection and commanding
technique, presented in this paper, provides a method to control the
rototranslational dynamics of a space vehicle with only on–off
actuators by the tracking of linear reference models. The control
design involves the choice of matrix coefficients of the linear
reference models. The devised thruster selection strategy reduces the
complexity of the classical approach because it replaces the thruster
mapping and the PWF. The proposed strategy selects, at each time
step, the thrusters to befired, by checking the signs of functions of the
tracking error. A minimum number of actuators is used.

The analysis yields the sufficient conditions for the asymptotic
stability of the dynamics of the tracking error, which have to be
imposed at each time step.

The paper establishes the stability of the method and presents
numerical results for the six- degree-of-freedom case as well as
experimental results by using three-degree-of-freedom floating
spacecraft simulators.
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