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Abstract

This paper presents the control solutions to the spacecraft formation reconfiguration problem when
impulsive or extended maneuvers are considered, and the reference orbit is circular. The proposed ap-
proach for the derivation of the control solutions is based on the inversion of the linearized equations
of relative motion parameterized using the mean relative orbit elements. The use of mean relative orbit
elements eases the inclusion of perturbing accelerations, such as the Earth’s oblateness effects, and offers
an immediate insight into the relative motion geometry. Several maneuvering schemes of practical oper-
ational relevance are considered and the performance of the derived impulsive and piecewise continuous
control solutions are investigated through the numerical propagation of the nonlinear relative dynamics.
Finally, the benefits of the new extended maneuvers strategies are assessed through a comparison with
the corresponding impulsive one.
© 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Spacecraft formation flying has received great attention in last two decades thanks to
the advantages it offers in terms of costs, mission flexibility/robustness, and enhanced per-
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formance [1,2]. In fact, the distribution of tasks and payload among multiple cooperative
spacecraft gives the opportunity to overcome the limitations due to using a single satellite
system for the mission goal accomplishment. Among the various technical challenges involved
in spacecraft formation flying, the design of control laws for reconfiguration represents a key
aspect that has been intensively studied over the last years. The reconfiguration problem
pertains to the achievement of a specific relative orbit in a defined time interval given an
initial formation configuration. So far, many methods have been proposed to solve the afore-
mentioned problem, ranging from the impulsive to the continuous control techniques, [3].
Impulsive strategies have been widely investigated since they provide an analytical solution
to the relative motion control problem. Such solutions are generally based on (1) the use of
the Gauss Variational Equations (GVE), to determine the control influence matrix, and (2) on
the inversion of the state transition matrix (STM) associated with a set of linear equations
of relative motion. Vaddi et al. [1] addressed the issues of establishment and reconfiguration
of a multiple spacecraft formation, consisting of a central chief satellite surrounded by four
deputy spacecraft, for unperturbed orbits using impulsive control. They proposed an analyt-
ical two-impulse control scheme for transferring a deputy spacecraft from a given location
in the initial configuration to any given final configuration, using the GVE. Ichimura et al.
[4] developed an analytical open-time minimum fuel impulsive strategy associated with the
Hill-Clohessy-Wiltshire equations of relative motion. It involves three in-plane impulses to
achieve the optimal in-plane reconfiguration. Gaias and D’Amico [3] addressed the problem
of multi-impulsive solution schemes for formation reconfiguration in near-circular keplerian
orbits using Relative Orbit Elements (ROE). They proposed a general methodology, based on
the inversion of relative dynamics equations, which led to the straightforward computation
of analytical or numerical control solutions. A similar impulsive approach based on the ROE
parametrization is developed by Chernick et al. in [5]. Here, the authors extended the results
reported in [3] deriving analytical and semi-analytical solutions for in-plane and out-of-plane
reconfigurations, respectively, in near-circular perturbed and eccentric unperturbed orbits.
Planning continuous reconfiguration maneuvers is usually more challenging. However, con-
tinuous maneuvers might be necessary when spacecraft are equipped with low-thrust actuation
systems. So far, many control approaches have been investigated. In [6] Armellin et al. de-
rived the minimum-fuel formation reconfiguration maneuver using the sequential quadratic
programming (SQP) method. To deal with the orbital perturbations a dynamic refresh of opti-
mal trajectories computed by the aforementioned algorithm is done. The Gauss Pseudospectral
Method (GPM) was employed in [7] whereas a two-stage path planning approach was used
in [8], which combines a bi-directional Rapidly-exploring Random Tree (RRT) planner with
a GPM. A continuous low-thrust control strategy for formations operating in perturbed orbits
of arbitrary eccentricity was proposed by Steindorf et al. [9]. The authors derived a control
law based on the Lyapunov theory and ROE dynamics parameterization, and implemented
algorithms based on the potential fields for the guidance strategy. This approach allowed in-
clusion of the time constraint, thrust level constraint, wall constraints and passive collision
avoidance constraint. Bae et al. [10] designed a controller for spacecraft formation flying
using a sliding mode control scheme with the adaptive gain and neural networks. They con-
sidered a 6DOF spacecraft nonlinear dynamic model and adopted a leader-follower approach.
Imani et al. [11] developed an optimal sliding mode controller based on the linearized two-
body relative dynamics. The optimal control design was based on a linear quadratic method
supplemented by an integral sliding mode control technique to robustify the controller. Di
Mauro et al. [12] proposed a nonlinear controller based on State-Dependent Riccati Equation
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(SDRE) technique to solve the coupled orbital and attitude relative motion control problem for
a 2-satellite formation flying. Here the relative dynamics model used for the controller design
included the J2 and drag perturbing effects. In [13] the 4-satellite formation reconfiguration
problem is tackled as a coordination problem of a 3D second-order non-linear agents forma-
tion under a directed communication. The authors derived a control law for the relative motion
by treating the coordinated orbit-tracking control model for each agent as a cascade system
composed of orbit-tracking subsystem and the formation subsystem with the orbit-tracking
error as input.

Some efforts have been done also to derive the analytical continuous solutions to the relative
motion control problem. In [14] the authors determined the fuel-optimal analytical maneuvers
using the Tschauner—Hempel model whereas in [15] the fuel-optimal analytical solutions are
studied considering several linear relative dynamics models. The differential gravity effects, as
well as the eccentricity and J2 effects are introduced in [16], while some special cases were
taken into account in [17] and [18]. The former focused on projected circular orbits and the
latter considered the Hill Three-Body Dynamics around the L2 Lagrangian point. All these
works were based on the Cartesian description of the relative motion. More recently, Lawn
et al. [19] proposed a continuous low-thrust strategy based on the input-shaping technique
for the short-distance planar spacecraft rephasing and rendezvous maneuvering problems.
The analytical solution was obtained by exploiting the Schweighart and Sedwick (SS) linear
dynamics model. Finally, Larbi et al. [20] derived a control concept for far range formation
flying applications based on ROE parameterization, assuming circular unperturbed reference
orbits.

This paper addresses the derivation of analytical impulsive and piecewise continuous so-
Iutions for the control of spacecraft formation configuration. The analytical solutions are
characterized by a high level of determinism and predictability and are suited for an onboard
implementation, avoiding running computationally burdensome control numerical algorithms.
In this study the relative motion is parameterized in terms of ROE taking into account the
J, perturbation. In the framework of spacecraft relative motion, different dynamics models
have been developed over the years, based on different state representation and subject to a
multitude of constraints and limitations on the inter-satellite range of applicability, the eccen-
tricity of the satellite orbits, and the type of modeled perturbation forces. For a comprehensive
comparison among the different existing dynamics models we address the reader to [21,22].

The main contributions of this work are:

1. the development of a linearized relative dynamics model including the J, perturbation
and the control accelerations and its associated closed-form solution, for near-circular
reference orbits (see Section 2);

2. the derivation of impulsive and piecewise continuous solutions for in-plane and out-
of-plane formation reconfiguration, taking into account the J, perturbation effects (see
Section 3.2-3.3). In further details, starting from the approach presented in [5] and [23],
2- and 3-maneuver strategies are designed for in-plane reconfiguration, whereas a single
maneuver approach is proposed for the out-of-plane maneuvering;

3. the comparison in terms of maneuvering cost and accuracy between the continuous and
impulsive control schemes (see Section 4);

4. the development of a computationally efficient algorithm to modify the analytical 3-
maneuver continuous control solution to be compatible with thrusters that operate in
on/off configuration (see Section 4.1.1).
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The rest of the paper is organized as follows. In Section 2, the nonlinear and linear dynam-
ics models describing the relative motion of two Earth orbiting spacecraft under the effects
of J, and continuous external accelerations are presented. The closed-form solution for the
dynamics is determined for near-circular perturbed orbits, i.e. for very small or zero eccen-
tricity. Section 3 details the mathematical formulation for control solutions through piecewise
continuous and impulsive strategies for in-plane and out-of-plane reconfiguration maneuver-
ing. The results are reported in Section 4, wherein relative trajectories obtained using the
developed control laws are shown, pointing out their performances in terms of maneuver cost
and accuracy. A comparisons between impulsive and continuous schemes is also carried out
and detailed in the same section. Conclusions and final remarks are given in Section 5.

2. Relative dynamics model

In this section the dynamics model describing the relative motion between two Earth
satellites and its associated closed-form solution is presented. The model is formulated using
the dimensionless relative orbit elements defined by D’Amico in [24]. The developed linear
model allows inclusion of the effects of Earth’s oblateness, J,, and those due to the external
constant accelerations. Then, the findings in [25] are extended by computing the input matrix
and the corresponding convolution matrix to count for the control acceleration provided by
the deputy satellite.

2.1. Relative orbit elements

The relative motion of a satellite, referred to as deputy, with respect to another one, referred
to as chief, can be parameterized using the following combination of classical keplerian orbit
elements, o = [a, e, i, w, Q, M]T,

o - Sa
Mg — M) + (0q — o) + (S2a — QL)c;, S
So = €xd — €xc _ Sex (1)
€yd — €yc 56y
ig — lc 8i
(Qa — Qc)si, 3y

known in literature as quasi-nonsingular relative orbit elements, [24,25]. In Eq. (1) the sub-
scripts ¢ and d stand for chief and deputy respectively, whereas s, = sin(-) and ¢, = cos(-).
Moreover, ey, = e()Cw,, and e,.) = e()s,, are the components of the eccentricity and  is
the argument of perigee. The first two elements of the relative state vector, Se, are the relative
semi-major axis, da, and the relative mean longitude, 61, whereas the remaining components
constitute the coordinates of the relative eccentricity vector, de, and relative inclination vec-
tor, 8i. Note that that the above state representation is non-singular for circular orbit (e, = 0),
whereas it is still singular for strictly equatorial orbit (i, = 0). As the above parameterization
is based on a combination of Keplerian orbital elements, it facilitates the inclusion of per-
turbing accelerations (e.g., Earth oblateness J, effects) into the dynamics model through the
well-known GVE, [26,27]. Moreover, it offers an immediate insight into the relative motion
geometry, [28].
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2.2. Non-linear equations of relative motion

The averaged variations of mean ROE (i.e. without short- and long-periodic terms) caused
by J, effects can be derived from the differentiation of chief and deputy mean classical ele-

ments, &, = [ac, e, ic, 0c, Qc, M1 and ag = [aq, eq, i, wg, R, Mg]" respectively, [29,30],
ae 0 ag 0
0 é 0
. [} 0 . [} 0
n=| g |=K| o | en=|, |=K| o 2)
Q. —2cos(i.) Qy —2cos(ig)
Mc ncPc Md nCPd
where
Ly R _ 22 L — [te
Kj= ”?'7!3*’ nj=y =€ n= a 3)

Qj =5cos(i;)* =1, P; =3cos(i;)> — 1, y = 3HR:.

In Eq. (3) the subscript j stands for ¢ and d. J, indicates the second spherical har-
monic of the Earth’s geopotential (J, = 1.082 x 1073), R the Earth’s equatorial radius (Rx =
6378.1363 km) and j1g the Earth gravitational parameter (g = 398600.4415 (km?/s?)). Com-
puting the time derivative of mean ROE as defined in Eq. (1) and substituting Eq. (2) yields

0
(Md - ML) + (wg — @) + (Qd - QC)CiL.
_edswdd)d + ecswc(bc

bay, = FegCosidd — €cCo e =0, (e, ag) “)
0
(Qd — QC)SZ‘C
with
0
(naPaKq — ncPKe) + (KaQa — K.Oc) — 2(Kyci, — Keci)ci,
o, (e, o) = —eyiRaQa + eycK:0; (5)

edede - eXL‘KCQC
0
_Z(chid —_ chic)si(

In this study only the deputy is assumed to be maneuverable and capable of providing a
thrust along x, y, and z directions of its own Radial-Tangential-Normal (RTN) reference frame
(also known as Local Vertical Local Horizontal (LVLH)). The RTN frame consists of a basis
vectors with x pointing radially away from the Earth to the deputy satellite, z pointing along
the direction of the angular momentum of the deputy orbit, and y completing the right-handed
ortho-normal basis. The change of mean ROE caused by a continuous control acceleration
vector F can be determined through the GVE [26,27]. In fact, the mean orbit elements can
be reasonably approximated by the corresponding osculating ones as the Jacobian of the
osculating-mean mapping is approximately a 6 x 6 identity matrix with the off-diagonal terms
being of order J, or smaller, [27]. In light of this, the change in mean ROE due to an external
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force is
da
. ac .
My + w4 + Qqc;,
. e'dc g — €dS d)d
Sagp = | ™ P =op(ag, F) =Tr(ay)F (6)
€iSw, T €dCuw,Wd

ld
Qqs;,

where the control acceleration vector F is expressed in the RTN frame components as
F =[fy, fy» f:]7. The individual terms of the control influence matrix I'r are reported in
Appendix A, [9].

The relative motion between the deputy and the chief satellites is given adding the con-
tributions of the point-mass gravitational field, the J, perturbation and the external force F.
The final set of nonlinear differential equations is

daa = [0,ny — n.,0,0,0, O]T + 0oy, (oc,a0) +0or(ay, F)
= 8(“67 ad(aca 8“)5 F)' (7)

Note that the function &(e., ey(ct., Sar), F) can be reformulated in terms of ¢, and Sa
using the following identities

ag = ada+ac, eg = \/(eccwc +8ec)? + (ecSw, + 8ey)?

. s can— [ €5 + de,
lg =1 Iy, Wg = P —
d c X d €cCo, +8€X
8i,
Qi = Qe+ 2, My =M, +6x — (04 — w) — (2 — L)c, . ®)
Si

¢

such that o = &(et., S, F).

2.3. Linearized equations of relative motion

In order to obtain the linearized equations of relative motion, d& in Eq. (7) can be expanded
about the chief orbit (i.e., o =0 and F = 0) to first order using a Taylor expansion,

d a
Sa(t) = % 5o — 002 + % s = OF () =A@ (0))8e(t) + B(ewe(1))F. ©

F=0 F=0

The matrices A and B represent the plant and input matrices respectively and are [9,29]

0 0 0 0 0 0
_Ac 0 echchPch echchPch _KLESL 0

A Bloe 0 —dewe, KGO  —(1+4e4,GIK.Q.  SeycKS. 0 10)
T L 0 (1442GIK0,  4exey K GQ:  —5eKSe 0
0 0 0 0 0 0
S0 —4eK.G.Se —4ey K.G.S. 2KT. 0
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r 26(-Sfc 2(1+L’c0/’(.) 0 n
Ne Ne
_ meeccs. 22 _neecl+eccy sy ] 0
1+n, I+eccy, (I4nc)(14eccy, )
(2+eccr.)co.+exe NelyeSo. Ze
B— 1 NeSo, Ne (I4eccy,) (I+eccy.) (1 l)
neac —ne Qteccp)soctee  NeexeSo.Ze
NeCo, Ne (I4eccr.) (I+eccyr.)
NcCo,
0 0 (I4eccy.)
NeSoc
L 0 0 (I+eccp)

where f, and 6. = f. + w. are the mean true anomaly and true argument of latitude of the
chief orbit respectively, and the following substitutions are applied for clarity

3 7
Fc =4+ 3770 ’ Ec =1+ Ne s Sc = Sin(Zic) ’ AC = znt‘ + EECKCPC’TC = Sin(iC)2 ’

Z. = ctan(i.), G. = 1/n>. (12)

Due to the explicit dependence on the terms e and ey, the plant matrix and the input
matrix are time-varying and periodic. In fact, both e,. and e,. depend on the variation over
time of the mean argument of perigee of the chief orbit, w.. Assuming that the chief is
moving on a near-circular orbit (i.e. e, — 0), the matrices A and B can be further simplified
neglecting the low-order terms, i.e., cancelling the terms proportional to e, and e as they are
small compared to the others in Eqs. (10) and (11). In light of this, A = Ay¢c and B = By¢
being

0 0 0 0 0 0 cccO 2 0
~A. 0 0 0 —K.E.S. 0 -2 0 0

A 0 0 0 —KO. 0 0| o 1| s, 2 O
N=1 0 0 KO, 0 0 01"~ na | —cu 25, O
0 0 0 0 0 0 0 0 «,

K0 0 0 2K.T. 0 0 0 s

13)

In Eq. (13) u, = w. + M, indicates the mean argument of latitude of the chief orbit. Note
that u, = u.(t) and yields

uc(t) =uc,0+WC(t _tO)s (14)
where W, = n, + K. Q. + n.K.P.. To simplify the notation the quantity u.(f) will be referred

to as u., in the reminder.

2.4. Analytical solution for near-circular linear dynamics model

The solution of the linear system in Eq. (9), da(f), can be expressed as a function of the
initial ROE state vector, da(fy), and the forcing vector, F, i.e.

Sa(t) = ®(t, t0)See(ty) + ¥(t, 10)F (15)

where ®(z, tp) and W(z, ty) indicate the State Transition Matrix (STM) and the convolution
matrix respectively. In [25] the authors derive the STM using the Floquet theory [31]. Here-
after the STM associated with near-circular linear relative dynamics model is reported for
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completeness
1 0 0 0 0 0
—A At 1 0 0 —K.F.S.At 0
_ 0 0 CAw —SAw 0 0
q’NC(t, Z‘0) - O 0 SAa) CAu) O 0 (16)
0 0 0 0 1 0
IK.S.At 0 0 0 2K T.At 1

where Af =t —1ty and Aw = K.Q.At. According to linear dynamics system theory [32],
the corresponding convolution matrix, ¥yc(t, #p), can be computed by solving the following

integral,

Wyc(t, 1) =f ®yc(t, T)Byc(a(T))dr.

fo

A7)

Substituting the STM and Byc reported in Eqgs. (16) and (13), respectively, into

Eq. (17) yields

0 2 0
-2 2A.(t—71) Y1
L[ v 293 0
Wyl 1) = 2 y d 18
ne(t, t) acnc‘/to — 29 0 T (18)
0 0 C(ue0+We (T—t0))
0 TK.S.(t — 1) Yy

where u.( is the mean argument of latitude of the chief orbit at the instant #, and the terms

Vi, i=1,..,4 are

Y1 = —FoKeScCugw.te—io) (= T2 = CK0.(—0)S ot We(r—10)) T K0, 1-1) Clute ot Wz —10) V'3
= CK0 (1) Clte g Wt —10)) — SKoQu 1~ 1) S et Wz —10)) W = S 4 Wz —10))
+ 2K TeC(ue W (r-10) (. — T). (19)
According with Egs. (18) and (19), the convolution matrix Wyc(#, tp) becomes
0 2Au 0 ]
—28u A "
) PAVE) 0
e = | s 2w 0 20
0 0 (Suc, = Suco)
B

being Au = u., —

t
Y = Wc/ Yidt =
]

F.K.S.

c

uco. In Eq. (20) the terms ¢, i =1, ..., 4, are

t
(Cu(-.r_cuc,o_i'suc,oAM) Yo = Wc/ &2‘17 = -
fo

r 1 ro_
= WL/ Y3dt = —(Su(.,, - S(ut.,0+CAu))1ﬂ4 = WL/ Yadt
ty :3 fo

1
= W <(WC +2K.T.)(cy,, — Cuy) + 2KCTCSMCVOAM)

c

(cuf_, _C(uf_owLCAu)) 1/’3

2y
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Fig. 1. Example of continuous on/off control profile.

whereas 8 and C are constant coefficients that depend on mean semi-major axis, eccentricity,
and inclination of the chief orbit as follows

_KCQC o _
C= W, , Bp=1-C. (22)

3. Reconfiguration control problem

This section reports the piecewise continuous and impulsive control solutions derived for
the in-plane and out-of-plane spacecraft formation reconfiguration, pointing out the similarities
and the differences between the aforementioned formulations. First, the general methodology
used to obtain both impulsive and continuous solutions is presented. It consists of the following
steps: (1) the expression of the final mean ROE state, a(7), is derived, (2) then, given a
desired mean relative orbit, e, the expression da(7T) = daty,s is solved for the parameters
that describe the control profile, i.e. the maneuvers’ locations and amplitudes. In further details,
2- and 3-maneuver strategies are investigated for in-plane relative motion control, whereas a
single cross-track maneuver is considered for the out-of-plane formation reconfiguration. As
discussed in the following sections, the boundary condition da(7) = Saz.s cannot be always
solved analytically, therefore, some of the presented control strategies involve an iterative
numerical algorithm to determine the control acceleration profile.

3.1. Mathematical formulation

Let us consider n extended maneuvers of magnitude F; = [f, ;, fy.), f.,;]’ and duration
Atj, with j =1, ..., n, as illustrated in Fig. 1 for a generic axis (-). Using the near-circular
linearized model discussed in the previous section, the relative state at the end of each j-th
maneuver So(f) can be expressed as a function of da(#o), the maneuver durations At;, and
thrust magnitudes as follows (see Eq. (15)),

Saj;f =8a(tj,f) = q’(ljyf,ljyo)aﬁl(ljﬁo)-i-‘I’(lj’f,lﬁo)Fj, j=1,..,n (23)

where #;o and #;; indicate the initial and the final instants of the j-th maneuver respec-
tively. Note that the instant f;; can be expressed as a function of the firing duration At; as
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tjr =tjo+ At;. According to Eq. (23), the mean ROE at the end of maneuvering inter-
val, da(T), depends on the mean ROE at the initial maneuver time Sw(fy), the n maneuver
durations, Ay, and the thrust vector, F},

day 0 = dee(ty0) = Pnc(t1,0, f0)det(to) = Pyc (1,0, f0)Seo
Saty p = ®yc(tr,r, ti0)d0 o+ Wne(t r, t1,0)F
= ®yc(t1y, to)dag + Wnc(ti,p, t1,0)F
dotz 0 = Prc(t2,0,t1,7)00t1 f = P (12,0, 10)d0
+ ®rc(t2,0, 1, ) Wne () t,0)F
Soy r = ®yc(tar. 1208020 + Wy (ta, 7, 12,0)F 2
= ®nc(ta,r, 10)dog + Pnc(tar, b1, r)Wne (5, t0)F 1
+ Wnc(ta, 5, 00)F2

Sar = P (T, ty)darg + Z ®rnc(T,tj ) ¥nc(Ej r,tj,0)F (24)
=1

Note that Eq. (24) is valid if #;o > #;_1 ;. If detp is fixed and Ay is considered an user-
defined parameter, the reconfiguration problem is to find the thrust magnitudes, F;, and their
application times, ;o (or alternatively the maneuver mid-point instant, i.e. t; = (¢j0 + 1 7)/2),
that satisfy the following equation

Abatges =8040s — Pnc (T, 19)dag

=Y Oy (T. 1) ¥nc (tjp. tj0)F ). (25)
j=1

The term Ja, is the desired mean ROE vector at the end of the maneuvering interval.
Eq. (25) represents a set of 6 nonlinear equations in (3+1)n unknowns (i.e., F; and ¢ with
Jj=1,...,n). Note that the maneuver duration Az is assumed to be known. Accordingly, at
least two maneuvers are needed to obtain a finite number of solutions. The control thrust
profile is a function of de, the maneuver durations, At;, and desired ROE state, detg,. It is
noteworthy that when a sequence of n impulsive maneuvers is considered to accomplish the
formation reconfiguration, the approach described by Eq. (24) leads to, [5]

Abatges =804es — Puc (T, t9)dag

= ®yc (T, 1)Byc(uc, ) Av,. (26)

j=1

where Av; = [Avy j, Avy j, Av, ;17 denotes the impulses vector whereas u.; is the mean ar-
gument of latitude at the maneuver time, #. In [5] the authors derived the analytical control
solutions in near-circular perturbed orbits using three along-track impulses and one cross-track
impulse for in-plane and out-of-plane reconfigurations respectively, whereas in [23] the au-
thors of this paper derived the corresponding analytical piecewise continuous solutions. This
paper aims at extending the aforementioned previous works by determining the 2- and 3-
maneuver continuous and impulsive solutions for in-plane reconfiguration control. Moreover,
this work will present a comparison between the proposed control strategies, identifying the
related pros and cons.
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3.2. In-plane reconfiguration

In this section the in-plane reconfiguration problem is addressed, i.e. only the relative
mean semi-major axis, the relative mean longitude, and the relative eccentricity vector are
assumed to be controlled over the maneuvering interval. Note that the in-plane reconfigu-
ration problem involves the solution of 4 nonlinear equations (i.e., the first four rows of
Eq. (25) or Eq. (26) for piecewise continuous and impulsive strategies respectively) in (2 4+ 1)n
unknowns (i.e., 2n in-plane components of thrust or impulses vectors and n maneuvers’ loca-
tions). If a sequence of in-plane finite-time maneuvers, F; = [f, ;, 3./, 01" with j=1,...,n
is considered, Eq. (25) becomes

n
. w
> i f; = 2 Abages (27a)
j=1 B
[ (A . 0
Do (il gy e =)+ fe ) | = 5 A8k (27b)
j=1* ¢
sin (ﬂﬂj) <cos (CuT + ,Bﬁj)fy’j + sin (CuT + ﬂﬁj) X’j)i| = WASey des 27¢)
=1t
Z sin (,Bﬁj)<sin (CuT + ,Bzij)fy,j — cos (CuT + ﬂﬁj) x,j)i| = Adey e (27d)
j=1=
wher
W.ne.a.
w=7p ) (28)
and
PN, +ujo g Wi —Hjo j=1,..3 (29)

o2
being ;o and u;, the mean argument of latitude of the chief orbit at the instants ;o and #;,
respectively. Accordingly, i;, is the mid-point maneuver location and ii; , is half the duration
of the j-th maneuver. It is worth remarking that the extended maneuvers along x and y axes
of the RTN reference are assumed to last the same interval of time. Eq. (27) can be simplifed
by defining the following variables,

Ujo = Bujo+ Cur, Uj s = Bujys+Cur,
~ U, r—U,; B —~ Uir+U; ~
Uj — J.f > J,0 — IBMJ’ UJ — % — CMT + IBu/ (30)

The term U can be seen as a perturbed mean argument of latitude due to the J>. Hence,
U is related to half the duration of the j-th maneuver and U is related to the mid-point
maneuver location. Substituting Eq. (30) in Eq. (27) yields,

> Uifyj = 1A8aue (31a)
j=1
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n ro A R
Oi( 2o (ur = 0) fug + 1 )] = A8 (31b)
| ]<ﬂWc i)y j
[~ ~ L. = i
sinU;{ cosU; f,; + 5 sin Uifej || = nAdex ges (31c)
=1t .
[~ =~ 1 ~ |
sinU;| sinUjfy; — 3 cosUjfyj | | = nAdey ges (31d)

j=1

Similarly, the equations governing the variation of the mean ROE due to a sequence of
impulsive maneuvers are (see Eq. 26)

23 Avyj = neacAdage (32a)
j=1
2 ( )Avy, + Av,, ]> = —neA: ASAges (32b)
j=1
<2 cos U}-Avy,j + sin l7jAvx’j) = NeacAdex des (32¢)
j=1
(2 sinU;Avy, ; — cos U;Av,, j) = n,a,ASey 4o (32d)
j=1

It is worth pointing out that Eq. (31) converges to Eq. (32) when U i — 0. This is straight-
forward by recognizing that

(33)

and s1nU ~ U when U — 0. This means that even the piecewise continuous in-plane so-
lutions w1ll tend to the correspondmg impulsive ones for U — 0.

The following sections present the mathematical expressions of in-plane control solutions
given by 2- and 3-maneuver schemes, considering different combinations of tangential (T) and
radial (R) maneuvers. Note that the 2-maneuver solutions accomplish the final in-plane for-
mation reconfiguration through the minimum number of maneuvers. However, as discussed in
Section 3.2.2, when only radial maneuvers are performed only three ROEs can be established.
In addition, the 3-maneuver scheme through tangential impulses leads to the minimum delta-v
solution for the corresponding fuel-optimal impulsive reconfiguration problem, as discussed
by Chernick et al. in [5].
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3.2.1. T-T-T maneuver
Let us consider that only three tangential impulses are performed by the deputy spacecraft,
ie.,

Av] =10, Av,;, 01" with j=1,..,3. (34)

As discussed by Chernick et al. in [5], this choice allows one to find a minimum delta-V
solution when the reconfiguration cost is driven by the variation of relative eccentricity vec-

tor (i.e., Abdeges > ABages and Abeges > 2A8Ages/3Au With Aeyps = \/ABeides + A(Se;des

and

Au = (ur — up)). The solution of Eq. (27) for the impulses’ locations, U;, and magnitudes,
Avy j, is given by

U=Uy+kin, Up=U +knr, Us=U +k= (35)

acnck
2nAc(kz(1 —=1") k(1= (=D*)

where the following quantities have been introduced for clarity

Av,; =— L ji=1,2,3 (36)

T, = tan""! ( ig?j ) (37
£ = (=101 — (=1)%@r + (D" m A Adeges (ks — ko) (38a)
£ =g — (=1)"@s + (=1)"k3m A Adeges (38b)
E =0 — (—DPg3 + (=D kom A Adeges (38¢)
@; = (ur — U)AcAS8ages + PWASAges, j=1,2,3 (39)

Note that the above solution coincides with that one derived in [5]. However a differ-
ent representation is used here to point out the similarity with the continuous formulation.
Eq. (36) becomes singular when k, = 2n, and k3 = 2 n3, with ny, n3 € N.

The piecewise continuous solution is obtained by solving the system of nonlinear equations
(31), assuming that f, ; = 0 with j =1, .., 3. One solution family among the possible infinite
solutions is given by

ﬁ]:Uy+k]7T7 Uy=U+km, Up=0U +kmn (40)
TR
fri=—58 =123, (41)

where ki, k; € N and the quantities D and &; are defined as follows
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D = JTAC <k2l72 (ﬁ3 sin ﬁl — (—l)k3l71 sin ﬁ3>

— ksl (ﬁz sin0y, — (=120, sin 172)> (42)

E] :(_1)k2ﬁ3 sin ﬁchl — (—1)k3l72 sin (73@2

+(=1D) 1 U,Ust AcASeges (ks — k) (43a)
By =UssinUy®1 — (=BT, sin Uz @3 + (— 1)U, Usksw A Adeges (43b)
B3 =UssinU @, — (—1)PU, sin U @3 + (— 1) U, Uskot AcAdeges (43c¢)
= (ur — U;)AeAS8ages + PWeAShaes, j=1,2,3 (44)

8, and @; represent the continuous counterpart of the impulsive quantities &;, and ¢;. It is
noteworthy that in this case when k, = 2n2 and k3 = 2 n3, with ny, n3 € N, the denominator
in Eq. (41), D, does not go to zero if U, #* U, #* Us. Differently form the impulsive solution,
the piecewise one exists even when the quantities k, and k3 are even.

The solution given by Eqs. (40) and (41) can be modified to include the thrust level con-
straint that might arise from the operational limitations of onboard thrusters. For the sake of
the example, let us assume that the maneuverable satellite is equipped with thrusters capa-
ble of operating only in on/off configurations with a specific acceleration magnitude, f.;-
The problem is to update the maneuvers’ durations, U;, such that the control profile has
the user-defined magnitude f,,,.. In order to find the updated values U j'.”’ with j =1, ..., 3,

Egs. (3la-d) (with f,; =0 and fy”’j’ = sgn(fy,j) fmax) have to be solved for (7/”. Since

~

Egs. (31a-b) are linear in the unknows U ;" the expressions of U and U} can be found as
function of U.”. Being 17 = sgn(fy, ])fmaxa ? and U} can be computed as follows
o AATT (U — Us) + BPWeHe AdAges — AcHeAdages(ur — PU)

Uup 45
! @A S0 (U — Un)) )

4A Uup up(Ul ﬁS) + ﬁchHcAS)‘des - ACHCAaadeS(uT B ’BUI)

U = — (46)
(@A S5 U — Uh))

with

H, =W.a.n,. ()]

Substituting Eqgs. (45) and (46) into Eq. (31d) gives the following nonlinear equation in the
unknown U;”

UD .+ T i TTUD up 77 o up - 77 - _
fy’3 sinUs sin U™ + ny sinU; sin p; — fy,2 sinUs sin py = Adey 4o (48)
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where
AL 15O —T3) 4 B*WeHe A8k ges — Ao He ASages (ur —0)
101 - (4/\1‘-{.":’1)([]1 _UZ)) (49)
AN 1150, —T3) 4 B*W,He A8k ges — Ao He ASages (ur —0) )
P2 = @A T —0n)

and the quantity p is given by Eq. (28). An iterative algorithm can be used to solve
Eq. (48). An initial guess that guarantees a fast convergence of the algorithm can be chosen
by analyzing the error function J,

J= f}ug sin U sin ﬁ;’p + f}"f sin U, sin o1 — f;‘g sin U5 sin P2 — WASey ges. (50)

Note that the quantity l73” ? has to be such that the control profile is included in the interval
[uo, url, i.e. the following inequalities have to be satisfied,

U < U, — cur (51a)
U < ur — Us (51b)
U+ U0 < U, - U, (5lo)
U+ U < Us — U, (51d)

Finally, the method described above for the correction of the analytical solution can be
summarized as follows:

. set the value of available contr~ol acceleration, fy.x; ~
. compute the error function J(U;”) from Eq. (50) with U;” € (0, ur);

. evaluate Eq. (51) to find the feasible values of maneuver duration, U; ’;.ws‘ c U,

. evaluate tkie sign of J (173"”}6”&_) at the boundaries of the domain, a = min(ﬁ;’}m_) and
b:max(U;";em_); B B
5. if sgn(J(a)) # sgn(J(b)), find Uﬁfg that minimizes |J(U3”f;.w&
to compute the root of J (ﬁ;’}ms_), otherwise go to step 1 and change the value of f,,

(if it is compatible with the actuator capability).

N O R R

)| and run the fzero routine

3.2.2. R-R maneuver

The entire ROE state cannot be controlled using two radial maneuvers, thus the in-plane
reconfiguration problem as defined in Section 3.2 does not admit solutions. In fact, the relative
drift can be changed only using tangential maneuvers. However, a couple of pure radial
maneuvers still enables the adjustment of AdA, Ade, and Ade,. Hence, solving Eq. (32) (with
Av,, ; = 0) for the maneuvers locations, U;, and velocity changes, Av, ;, leads to the following
expressions

U =U,+kir, Uy=U, +ky, (52)

acnte (=12 A8 ges — 2(— 1M Adeyes)
2(1 = (=D)k)

Avy = ; (53)
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_ acne (_A(S)"des +2 (_l)kl Asedes)

Avep = 54
2 21— (—DF) (54)
where ki, k, € N and
- A(S x,des
U, = —tan~! | 22%des ) (55)
A(Sey,des

The continuous solution can be obtained by considering the same maneuvers’ separation,
ie.,

U=U+kin, Uy=0U, +kym, (56)

and solving the Eq. (31) (with f, ; = 0). Then, the thrust amplitudes are given by the following
expressions
( 1) ASAges sin Us — 2(—1)M A(SedesU2

1= (57
Jxa UzsmUl (— 1)2U1 smUz

—ASAges sin U + 2(—1)" ASeges U

ﬁgsinﬁl —(—l)kzﬁl Sil’lﬁz ’

As for the T-T-T maneuver combination, also in this case the continuous solution extends
the domain of the solution. In fact, comparing Eqs. (53) and (54) with Eqs. (57) and (58),
when k, = 2ny7 with np € N, the impulsive solution is singular, whereas the continuous one
still exists if U1 #* U2

It is noteworthy that the maneuver cost for the impulsive and the piecewise contin-
uous schemes are the same. In fact, it can be proven that Av;,+ Av,, :2(ﬁ1 Sea+
l72 fx2)/(BW,). The above statement is valid only for the R-R scheme and is assessed by
numerical simulations reported in Section 4.

fio=n (58)

3.2.3. RT-RT maneuver

Here, a couple of radial/tangential maneuvers is considered to control the relative config-
uration of the formation. According with the approach proposed in this paper, a solution of
Eq. (32) can be determined imposing a separation between the impulses of k,, i.e.

U]ZUy+k17T, U, =U, + ko, (59)

with ki, k; € N and U, defined by Eq. (40). The four impulses are computed by the following
formulas,

aene( = o1+ (=1 + (=DM (=) Ac Abeses)

4pwe(1 - (=1)%)

Avy | = (60)

aene((=DF1 = g2 = (—1) ko Ao ASeues )

4pwe(1 - (=1)%)

Avyy = 61)

Aache ky
Avyy = (A(Sadm + (1) ASe‘dm) (62)
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Ache
AVy,Z =

(Abdges — (=D Adeyey). (63)

In light of the above, the impulsive solution exists only if k, #2n,, n, € N. If the exponents
k, and k3 in Eqgs. (60) and (61) are odd, the quantities Av, ; and Av,, are equal in magnitude
and direction, i.e., Av, | — Av,, = 0. In addition, when Aa,.; = 0, the sum of the tangential
components must be equal to zero to meet the constraints on the final formation configuration,
ie., Avy + Avy,, =0.

Given the similarity between the impulsive and continuous formulations, a class of solutions
among the infinite available ones for the Eq. (31) can be derived as follows,

ﬁ|=ﬁy+k1ﬂ, ﬁ2=ﬁ1+k2ﬂ (64)
e sinUs 8
fx’l _ _ fl’l s Uy l _ (65)
4(Ul sinly — (—1)20), sin U1>2
cnesinU; 8
fx’zz _ fl/l s Uy i _ (66)
4(U1 sin 0, — (—1) 0, sin U1)2
1 ((sin ToAbages — (1) (~1) T Aseues )
for = 67)

ﬁl sin (72 — (—l)kzijz sin 01

— (=10 (sin 01 Adaues — (=1 T Adeaes)

= AN R 68
Fr 0, sin U, — (=)0, sin 0, (65)

where
El = — 01 sin [72(1)1 + (—1)k2ﬁ2 sin ﬁlq)z

+ (=DM (= 1)U, Uskart AcAbe e (69)
By =(= 1)U, sinU,®; — Uy sin Uy @5 — (— D) U Uskot Ap ASe s (70)

F~r0m Eqs (65)—(68), it is clear that the solution exists only if k; #2n,, with ny € N,
or U; # U,. Again, the continuous formulation allows extending the domain of the solution
by introducing further design parameters such as the maneuvers’ durations. In other words,
the piecewise continuous solution still exists even though the critical separation between the
maneuvers, k, = 2n,, is chosen, if 171 * l72.

Similarly to the impulsive RT-RT strategy, when k;, #2n, the radial and tangential compo-
nents of the maneuvers are correlated through the following relationships

Uifyi + Usfyr = WAS8dges (71)

Sfe1sin U, = Sfr2sin U,. (72)
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In the case in which U | = l72 and Adag.; = 0, the difference of the x-component of thrust
and the sum of the y-component of thrust must be zero in order to accomplish the reconfig-
uration.

Finally, it is noteworthy that another class of continuous solutions can be derived consid-
ering the following maneuvers’ locations

ﬁlzﬁx+k1n, ﬁ2=ﬁ1+k27l. (73)

The corresponding thrust magnitudes are omitted here for brevity. However they can be
determined by solving the system of equations (31) for f;; and f,; with j = 1, 2. It is straight-
forward that a similar choice for the separation of the impulses leads to a feasible impulsive
control solution.

3.2.4. T-T maneuver

When the in-plane reconfiguration is performed through a couple of pure tan-
gential maneuvers, the analytical solutions of Eq. (31) (with f,;=0,j=1,2)
and Eq. (32) (with Av,;=0,j=1,2) do not exist. This means that an itera-
tive algorithm is required to determine the thrust/impulses amplitude as well as
the maneuvers’ location over time. However, the problem might be simplified by
recognizing that the unknowns f,; and l/]\j are linearly dependent through the
Eqgs. (31a-b) and, similarly, Av, ; and U; through the Eqs. (32a-b). In light of this, the mag-
nitude of impulsive and extended maneuvers can be determined as a function of maneuvers’
locations as follows

ﬁWcacnc (ﬁWcAa)\des + AaadesAc(uT - 02))

1= ~——=——= 74
ot 40,0 - Oa) 7
ﬂWcacnc (,BWCAS)\des + A(Sadesl\c (uT - ﬁl))
9= — e 75
ha 40, (T - 0n) 7
Aache (IBWCA(S)\‘dCS + A(SadesAc(uT - U2)>
Avy | = 76
i 20U — Un) 7o
ache (ﬂVVL'A(S)\des + AaadesAc (uT - Ul))
Avy, = — (77)

2A.(U; — Us)

The maneuvers’ locations, (7/ and U; for finite-tme and impulsive schemes, can
be obtained by substituting Eqs. (74) and (75) and Egs. (76) and (77) into
Eqgs. (31c-d) and Egs. (32c-d) respectively, and solving numerically. In this study the Mat-
lab fsolve routine provided by the Global Optimization Toolbox [33] and implementing the
Levenberg—Marquardt algorithm [34] is used to solve Eqs. (31c-d) and Egs. (32c-d). The
iterative algorithm is initialized by analyzing the error functions, Jc,, and Ji,,, defined as
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follows
Foo— Zi:l (sin ﬁj cos l’]\jfy,j) — pAberdes | |:01| 78)
con — 2 P =
ijl (sm U; sin Ujfy,j) — LASey ges 0
_ g
Jeon =/ F (0, F con (79
and

Fo - Z§=1 (2 cos l/]\jAvy,j) —neacAdeyges | [0 (80)
mp Z§=1 (2 sin @Avy,j) — NeacAdey ges — 10

Jimp = \/Fg;onimp (81)

The above choice allows one to determine an initial guess that guaranteees the convergence
of the numerical algorithm in a limited number of iterations.

3.3. Out-of-plane reconfiguration

The out-of-plane reconfiguration problem foresees the correction of only the relative in-
clination vector, thus it requires the solution of two nonlinear equations (i.e., the last two
rows of Eq. (25) or Eq. (26) for piecewise continuous and impulsive strategies respectively)
in (1 4 1)n unknowns (i.e., the cross-track component of thrust or impulses vectors and the
corresponding maneuver location).

. In order to achieve the desired x and y components of the relative inclination vector at
the end of the maneuver, the control solution must include a component in the cross-track
(z) direction. In fact, the only way to modify the difference of inclinations of the satellites’
orbits (i.e., diy) is to provide a control action along the z-axis of the deputy RTN frame, as
it is evident from the analysis of the linearized equations of relative motion (see Eq. (13)).

Assuming that a single time-finite cross-track maneuver is performed by the deputy satellite,
ie. F1 =10,0, f.1]7, the equations governing the change of relative inclination vector are
(see Eq. (25))

W.n.a
fo1cosily sinit; = ——— ASiy ges, (82a)
K.T. N - oA . -
2f1 W ((uT — Uy, ) COS Uy SIn iy + Sinitg Sin iy — sin ul,om)—l- (82b)
c
W.n.a
foqsindy sini; = 625 < A8iy, ges (82¢)

where u;o and u; s are the mean argument of latitude of the chief orbit at the instants ;o and
11, respectively, whereas u; and u; are defined in Eq. (29). Similarly, considering a single
out-of-plane impulse, the change of mean ROE is governed by the following set of equations,
[5]

Av;cosu; = ncaCASix,des (83a)
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. K. T,
(smul +2 ‘;C

c

(ur — uy)cos u1>Av1,1 = Ncac ASiy, ges (83b)

As for the in-plane case, Eqs. (82a-b) reduce to Eqgs. (83a-b) when u, — O.

A full analytical solution does not exist in this case, neither for impulsive or extended
maneuvers models. However, Av,; and f;; can be computed as a function of the impulses’
location and maneuver mid-point by inverting Eqs. (82a-b) respectively,

W.n.a,

fz, 1 A‘Six,dex (84)

2. cos i sin it

Av, | = ————. (85)

The location of the impulsive and extended maneuver can be found by substituting
Eqgs. (84) and (85) into Egs. (82b) and (83b) to obtain the following transcendental ex-
pressions,

K.T, . sin uy ot . Adi

2wy~ +tandy — ——— )t tandy = — 20 (86)
W, COS i1 Sin it Abix des
K.T. ASL, ges

22 (up — wy) + tanuy = —24° (87)
Wc A81x,des

Eqgs. (86) and (87) can be numerically solved by using an iterative algorithm. The re-
sults obtained with the Matlab built-in routine fzero are presented in Section 4. A good
initial guess that guarantees a fast convergence of the iterative approach is i), = u;, =
tan‘l(A(Siy,d&Y /Ay 4e5), Which is the location of maneuver corresponding to the single im-
pulse maneuver scheme for unperturbed orbits, as proved in [5] and [23]. However, a graphical
method is used in this study to define the initial guess for the fzero solver. In further details
the follolwing error functions,

K.T,. . sin uy ol . Adi
me =2 ¢ Uur — uj f 4+ tan uy — % + tan u — .y’des (88)
A g cos i1 sin i Ay ges
KCTC Aaiv des
Jimp = 2 ur —uy) +tanu; — - 89
imp W, (ur 1) 1 ASiy ges (89)

are computed varying the variables 4; and u;, and the corresponding zeros are graphically
determined to be used as initial guess for the numerical solver.

4. Numerical validation of the control solutions

In this section the relative trajectories obtained using the developed control solutions are
presented, pointing out their performances in terms of maneuver cost and accuracy. Fig. 2
illustrates the simulation setup exploited for the validation of the proposed maneuvering so-
lutions.

First, the initial mean orbit elements of the chief and the mean ROE state are set. Then, the
initial mean orbit elements of the deputy are computed using the identities (8). A numerical
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ac(to) Brouwer Linear Conversion from Conversion from ECI Brouwer Linear
Sa(to) R Mapping Osculating Element to ECI to Osculating Elements Mapping
ay(ty) = Qgosc(to) g o5c(to) = Ta Vg 1q(t), v4(t) = agosc(t) Qg osc(t) = ag(t)
ac(to) = ac,osc(to) ac,osc(to) =T Vg T,:(t),‘l]c(t) = uc,usc(t) ac,osc(t) = ac(t)
i Compute the
Control Solution Orbital p ‘
{F{,Fy,..Fy} ¥ Mean ROE History
Pl Propagator
{ty, Uy,... 0y} Sa(t)

Fig. 2. Scheme for numerical validation.

propagator including the Earth’s oblateness J, effects is used to obtain the history of position
and velocity of chief and deputy spacecraft expressed in the Earth Centered Inertial (ECI)
reference frame (J2000). The initial Cartesian states of both satellites are derived using the
linear mapping developed by Brouwer and Lyddane to transform the mean orbit elements
into osculating and the nonlinear relations between Cartesian state and osculating elements
[35-37]. The control thrust profile is projected in ECI and added as external accelerations to
the deputy’s motion. After the simulation, the absolute position and velocity of the spacecraft
are converted into the mean orbit elements to compute the accuracy at the end of the maneuver,
defined as

ASa™ (T) — Aday, ges
|A8ak,des|

Ense, (T) = ac(ty), k=1,...,6. (90)
To compare the maneuvering performances deriving from impulsive and finite-time control
strategies, the instantaneous velocity change computed by the impulsive scheme, Av;; with
i =x,y,z, is spread over a finite-time maneuver through the following relationship
imp __ AVj,iva

In fact, the impulsive scheme implies an instantaneous variation of the deputy velocity
with no change of position, i.e. an instantaneous change of mean ROE. Then, the impulsive
approach can be adopted only when the firing interval is small as compared with the orbital
period, otherwise it might fail in achieving the desired level of accuracy. However, many real
applications might need a long time maneuver in order to meet some specific constraints, e.g.
the maximum thrust provided by onboard actuators, requiring the Av;;-to-f;}” conversion in
Eq. (91).

In order to verify the effectiveness of the developed control solutions two test cases are
carried out, one for in-plane and the other for out-of-plane reconfiguration problem defined
in the previous sections.

4.1. In-plane reconfiguration control problem

This section presents the trajectories obtained using the 2- and 3-maneuver strategies de-
scribed in Section 3.2. The initial conditions used in the simulations below are listed in
Tables 1 and 2 (see first row), along with the desired mean ROE vector. Note that the initial
mean state of the chief is expressed in terms of quasi-nonsingular orbital elements, [26]. The
chief orbit is assumed to be circular at 200 km of altitude and the reconfiguration maneuver
lasts 6 chief orbital periods, i.e. ur = 127 corresponding to 7 = 528.6 (min), with the initial
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Table 1
Initial mean chief orbit.
ac (km) exc (dim) ey (dim) ic (deg) Qe (deg) Jeo (deg)
6578 0 0 8 0 0
Table 2
Initial and desired mean relative orbits.
asda acoh acdey acdey
(m) (m) (m) (m)
Initial relative orbit, dag 30 —11x10° 0 -50
Desired relative orbit, S,y 0 -10.5x 103 45 70
Table 3
Design parameters for in-plane continuous strategies.
2u, (rad) 21y (rad) 243 (rad) T (orbits) kj (dim)
R-R b4 1.57 0 6 [1,3]
RT-RT b4 1.57 0 6 [1,3]
T-T b4 1.57 0 6 -
T-T-T /2 T 1.57 6 [1,4,7]

mean argument of latitude equal to zero, i.e. up = 0. The values of day and Say; lead to
AcA8&yes = ac[A8Uges, AdMies, A€y dos, Adey aes])” = [—0.03,2.2,0.0394,0.11968]7 (km).

Table 3 reports the durations, if; with j=1,...,3, as well as the locations, k;, used in
the analyses for all maneuvers’ combinations, i.e. R-R, RT-RT, T-T, and T-T-T. Note that
the parameters k; are not reported in the table for the T-T in-plane maneuver. In fact, this
control scheme does not enable finding the maneuver location analytically, as discussed in
Section 3.2.4.

Fig. 3 shows the mean ROE state variation over time for all four in-plane extended ma-
neuvers. Note that the ROE are scaled by the final desired ROE correction as

ASap"™ (t) — Adok ges
|A8ak,des|

From the figure, the piecewise continuous solutions allow achieving the desired relative
configuration in the defined interval of time. Note that the R-R scheme is not able to control
the variation of mean relative semi-major axis. With reference to Eq. (31), it is clear that
an along-track maneuver is necessary to modify the orbital energy of the deputy and, then,
the mean relative semi-major axis. In addition, let us recall that the maneuvers’ locations
associated with the T-T strategy are computed using the Matlab routine fsolve, as discussed
in Section 3.2.4. The initial guess for the iterative algorithm was determined by analyzing the
error functions, J.,, and J;,, reported in Eqs. (79) and (81). Fig. 4(a) and (b) depict J.,, and
Jimp when ﬁl, l72 € [Cur + ljl, ur — []2] with ﬁz > ﬁl. The red point indicates the selected
initial guess and corresponds to I/J\L,-g = 16.63 (rad) and l//\z,,-g = 21.51 (rad) for both extended
and impulsive T-T maneuvers. This choice allows the iterative algorithm to converge in 14
iterations.

Fig. 5 illustrates the evolution of the relative position projected on the along-track/cross-
track plane of the RTN reference plane. In the same figure the extended maneuvers are

Ensey (1) = ac(ty), k=1,...,6. (92)
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Fig. 3. Accuracy of the in-plane extended maneuvers: (a) R-R, (b) RT-RT, (c) T-T, (d) T-T-T.

depicted (see magenta, green and cyan markers corresponding to the first, the second and
the third maneuver). The initial and the aimed relative positions are indicated by the red
and black markers, respectively. Finally, Fig. 6 shows the thrust profile along the x and y
directions of the RTN reference frame. It is worth noting that the radial maneuvers provide
the highest values of accelerations (e.g., the R-R maneuver requires a maximum acceleration
of [f"| =2.62 x 1077 (km/s?), whereas RT-RT requires a maximum acceleration of | S| =
0.93 x 1077 (km/s?)).

The results in terms of maneuver cost are summarized in Tables 4 and 5 for finite-time and
impulsive solutions, respectively. Given the thrust value from the piecewise control model,
the total maneuver delta-V is computed using the following expression

B\ 2fe il 2fy il 2f. i
A — »J7 »J7T <) ]. 93
vr Z W, + W, + m (93)

j=1
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Fig. 5. x — y trajectory of the in-plane extended maneuvers: (a) R-R, (b) RT-RT, (c¢) T-T, (d) T-T-T. (For interpretation
of the references to color in this figure, the reader is referred to the web version of this article.)

From the results summarized in Tables 4 and 5, it can be observed that the finite-duration
maneuver solutions require higher delta-V than the corresponding impulsive ones, except for
the R-R scheme that provides the same delta-V for continuous and impulsive approaches,
as proved in Section 3.2.2. In addition, it is noteworthy that the maximum cost is given
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Fig. 6. Thrust profile of the in-plane extended maneuvers: (a) R-R, (b) RT-RT, (c¢) T-T, (d) T-T-T.
Table 4
Costs of the in-plane extended maneuvers.
R-R RT-RT T-T T-T-T
Avy | (m/s) —0.261 0.175 0 0
Avyo (m/s) —1.04 0.369 0 0
Avy (m/s) 0 —0.0849 —0.117 0.0138
Avyo (m/s) 0 0.0671 0.0992 —0.103
Avy 3 (m/s) 0 0 0 0.0710
Avp (m/s) 1.30 0.696 0.216 0.187

by 2-maneuver radial strategy, wheras the minimum delta-V is obtained by the 3-maneuver
tangential scheme, for both impulsive and finite-time approaches.

Finally, Table 6 shows a comparison in terms of accuracy between the piecewise continuous
and impulsive solutions. Here, the impulses, Av, ; and Av, ;, given by the impulsive solutions
are transformed in a finite-time maneuver through Eq. (91). The last column in Table 6 lists
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Table 5
Costs of the in-plane impulsive maneuvers.
R-R RT-RT T-T T-T-T
Avy g (m/s) —0.577 —3.37x1073 0 0
Avyo (m/s) —0.726 -3.37x 1073 0 0
Avy (m/s) 0 —0.0462 —0.105 —0.0181
Avyo (m/s) 0 0.0284 0.0869 —0.0281
Avy3 (m/s) 0 0 0 0.0284
Avr (m/s) 1.30 0.0813 0.192 0.0746
Table 6
In-plane accuracies of extended and impulsive maneuvers.
e asa(T)| e as2(T)| lease, (T)] [€ase, (T)] eT
(m) (m) (m) (m) (m)
Extended maneuvers
R-R - 1.84 x 1073 1.30 x 1073 1.49 x 1073 2.70 x 1073
RT-RT 1.55 x 1073 237 x 1073 4.86 x 1073 530 x 107 5.64 x 1073
T-T 1.50 x 1073 1.11 x 1073 4.72 x 1073 2.32 x 1074 5.08 x 1073
T-T-T 1.51 x 1073 1.12 x 1073 474 x 1073 3.25 x 10~ 5.11 % 1073
Impulsive maneuvers
R-R - 1.70 x 1073 2.00 1.99 2.82
RT-RT 1.48 x 1073 1.11 x 1073 4.64 x 107! 4.92 x 107! 6.76 x 107!
T-T 1.51 x 1073 1.12 x 1073 7.47 x 107! 5.54 x 107! 9.30 x 107!
TT-T 1.49 x 1073 1.12 x 1073 4.23 x 107! 4.25 x 107! 6.00 x 107!
-7
x 1
5 0

~ 0

N

K%

€

<

72

Feasible Solutions
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-4 . . .
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Us; (rad)
Fig. 7. Error function for the derivation of constrained T-T-T solution.

the total error defined as
er = \/(lSASa(T)DZ + (leasn (TN (e ase, (TID? 4 (lease, (TH) (94)

The piecewise control solution provides an accuracy 2 orders of magnitude greater than
the corresponding impulsive solution. More specifically, the impulsive strategy produces a
high error on the final relative eccentricity, while it provides the same accuracy level on
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Fig. 8. Updated control thrust profile.

the mean relative semi-major axis and longitude. This fact can be justified by looking
at the equations governing the mean ROE variation for finite-time and impulsive models,
Egs. (31) and (32) respectively. In fact, substituting Eq. (91) into Eq. (31), Egs. (31a-b) and
Egs. (32a-b) coincide. On the contrary, the equations governing the change of relative eccen-
tricity vector for both models are not the same when the mapping (91) is used.

4.1.1. T-T-T maneuver with thrust constraint

This section is meant to present the results obtained by the T-T-T control strategy
with thrust constraint discussed in Section 3.2.1. Without affecting the generality of the
method, the scenario described in Section 4.1 (see Tables 1 and 2) is considered. The
analytical approach gives the thrust profile showed in Fig. 10(d), with the accelerations
fo1 = 1.047 x 1078 (km/s?), f,» = —3.88 x 107® (km/s?), and fy3 =1.791 x 1078 (km/s?)
located at U1 = arctan(Me‘ "“‘) +  (rad), U2 U1 + 47 (rad), and Ug U1 + 7 (rad). The
updated T-T-T control scheme is computed by numerically solving Eq. (48) through the Matlab
built-in routine fzero. Fig. 7 illustrates the error function obtained imposing fiax =5 X 1078
km/s> and U, U € (0, ur). The green markers in the figure indicate the values of Us cor-
responding to the feasible solutions (see Eq. (51)). The initial guess U3" f' . = 1.605 (rad)
allows fzero routine to converge in 6 iterations and leads to the values of maneuvers’
durations U“” 0.737 (rad), U,” =2.552 (rad) and U;” =1.605 (rad), corresponding to
AP = [At1“1’ AR"P, At3"P] = [20.71,71.77,45.14] (min). Fig. 8 shows the updated thrust
profile (dashed line) along with the analytical control solution (solid line). From this figure,
it is clear that the updated T-T-T maneuver requires a higher delta-V than the analytical solu-
tion, i.e. Av}¥ = 0.412 (m/s). Fig. 9 shows the trajectories projected in the x — y plane of the
RTN reference plane for updated (dashed line) and analytical (solid line) solutions. Finally,
Table 7 reports the value of maneuver accuracy corresponding to the new control solution.
As can be observed, the updated control solution guarantees the achievement of the desired
ROE correction with the same accuracy of the analytical one.
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Table 7

Accuracy for updated T-T-T maneuver scheme.

EAsa EASA EASey 5A89y eT
(m) (m) (m) (m) (m)
T-T-T 1.47e-3 1.09e-3 4.48e-3 2.37e-4 4.84e-3
Table 8
Initial mean chief orbit.
ac (km) exc (dim) ey (dim) ic (deg) Q. (deg) fe (deg)
6828 0 0 40 0 0
Table 9
Initial and desired mean relative orbits.
ac8iy acdiy
(m) (m)
Initial relative orbit, Sag 5 70
Desired relative orbit, daes 40 120

4.2. Out-of-plane reconfiguration control problem

In this section, the results relative to the out-of-plane reconfiguration obtained by a single
cross-track maneuver (N) are presented. Here, the chief moves on a circular orbit at an altitude
of 450 (km) and an inclination of i = 40 (deg) (see Table 8). The reconfiguration maneuver
has to occur in 6 chief orbital periods, i.e. ur = 12w corresponding to 7 = 560.4 (min).
The initial mean argument of latitude is assumed to be zero, i.e. uyp = 0. The final desired
mean ROE is listed in Table 9. Accordingly, the values of day and Sy yield the correc-
tion of mean ROE, a,Ad@&yes = ac[ASix ges, Adiyaes]” = [35,49.9]" (m). Here, a maneuver
duration of 70.05 (min) is assumed, corresponding to i; = 1.5z (rad). As discussed in Sec-
tion 3.3, the location of the cross-track maneuver has to be determined by solving numerically
Eqgs. (82) and (83) for finite-time and impulsive methodologies respectively. Recall that the
Matlab built-in routine fzero is exploited to solve the aforementioned nonlinear equations in
the unknows #; and u;. A parametric analysis of the error functions reported in Eq. (86) and
Eq. (87) is carried out yielding it; j, = u1 ;, = 16.65 (rad).
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Fig. 10 depicts the mean ROE variation over the maneuver interval (Fig. 10(a)) and the
corresponding thrust profile (Fig. 10(b)) along the cross-track direction of the RTN refer-
ence frame. The obtained amplitude of finite-time maneuver is f, | = —5.368 x 1078 (km/s?).
Fig. 11 illustrates the trajectory projected on the coss-track/radial plane of the RTN reference
frame, along with its location. The initial and the aimed relative positions are indicated by
the red and black markers, respectively. The derived piecewise continuous and impulsive so-
lutions provide a delta-V of Av, = —2.2563 x 10~ (m/s) and Av, = —6.7801 x 1072 (m/s)
respectively. Again, the impulsive solution is less demanding in terms of delta-V. However,
when the impulse is converted into a finite-duration maneuver through Eq. (91), a decreased
accuracy is achieved as compared with that obtained using the finite-time model. As showed
by the results listed in Table 10, the impulsive approach provides an error at the end of the

maneuvering interval, er = \/ (Ieasi, (TY)D? 4 (leasi, (T)])?, two orders of magnitudes higher
than the one given by the finite-time strategy.
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Table 10
Out-of-plane accuracies of extended and impulsive maneuvers.
lensi, (T))] leasi, (T)] er
(m) (m) (m)
Extended maneuver
N 1.07 x 1073 7.86 x 1074 132 x 1073
Impulsive maneuver
N 7.00 x 107! 7.00 x 107! 9.90 x 107!

5. Conclusion

This paper addressed the spacecraft formation reconfiguration problem over a limited and
defined interval of time by using impulsive and extended maneuver strategies, in near-circular
J2-perturbed orbits. The analytical impulsive and piecewise continuous control solutions for
in-plane and out-of-plane reconfigurations (i.e. the maneuvers’ locations and the corresponding
magnitudes) have been derived by inverting the closed-form solution of relative dynamics, pa-
rameterized through the relative orbit elements. More specifically, 2- and 3-maneuver schemes
have been investigated for the in-plane reconfiguration, whereas single maneuver strategy have
been considered for the out-of-plane reconfiguration.

It has been rigorously proven that the piecewise continuous solutions converge to the
impulsive one when the durations of the maneuvers tend to zero. Moreover, special focus has
been given to the range of applicability of the proposed solutions. It has been observed that
the extended maneuver approach allows increasing the domain of the solution by considering
the maneuver duration as additional design paramenter.

Finally, numerical simulations have been carried out to assess the effectiveness of the
derived solutions. A critical comparison of continuous and impulsive schemes have been
performed to show the benefits of considering the dynamical effect of thruster firing in the
derivation of the control solution. It has been showed that, while the impulsive strategy
requires lower delta-V for formation maneuvering, the piecewise continuous approach always
guarantees a higher accuracy, reducing the relative positon and velocity errors at the end
of reconfiguration maneuver. In further details, the piecewise control solution provides an
accuracy 2 orders of magnitude greater than the corresponding impulsive one. Then, the thrust
profile can be computed according to the new analytical piecewise control solution that, thanks
to its negligible computational burden, is ideally suited for an onboard implementation.

Possible future works include a thorough analysis of optimality of the derived control
solutions as well as the extension of such piecewise continuous solutions for orbits with an
arbitrary eccentricity, perturbed by the atmospheric drag and solar radiation pressure.
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Appendix A. Control influence matrix T’

The elements of control influence matrix I'r (see Eq. (6)) are

Y3=Ya=Vs1=V52=Ve2 =0
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2€ded 2(1 + edcfd)
Yn=—-—, p=—""7"
ngNddc ngNadc
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where f; and 0, represent the true anomaly and true argument of latitude of the deputy
respectively.

References

[1] S.S. Vaddi, K.T. Alfriend, S.R. Vadali, P. Sengupta, Formation establishment and reconfiguration using impulsive
control, J. Guidance Control Dyn. 28 (2) (2005) 262-268, doi:10.2514/1.6687.

[2] K. Alfriend, S. Vadali, P. Gurfil, J. How, L. Breger, Spacecraft Formation Flying: Dynamics, Control
and Navigation, Elsevier Astrodynamics Series, Elsevier Science, 2009. https://books.google.com/books?id=
6EidgM-aX_oC.

[3] G. Gaias, S. D’Amico, Impulsive maneuvers for formation reconfiguration using relative orbital elements, J.
Guidance Control Dyn. 38 (6) (2015) 1036-1049, doi:10.2514/1.G000189.

[4] Y. Ichimura, A. Ichikawa, Optimal impulsive relative orbit transfer along a circular orbit, J. Guidance Control
Dyn. 31 (4) (2008) 1014-1027, doi:10.2514/1.32820.

[5] M. Chernick, S. D’Amico, New closed-form solutions for optimal impulsive control of spacecraft relative
motion, in: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, AIAA SPACE Forum, 2016,
doi:10.2514/6.2016-5659.

[6] M.M. Armellin Roberto, A.E. Finzi, Optimal formation flying reconfiguration and station keeping maneuvers
using low thrust propulsion, in: Proceedings of the 18th International Symposium on Space Flight Dynamics
(ESA SP-548), 2004, pp. 429-434.

[7] G.T. Huntington, D. Benson, A.V. Rao, Optimal configuration of tetrahedral spacecraft formations, J. Astronaut.
Sci. 55 (2) (2007) 141-169, doi:10.1007/BF03256518.

[8] G.S. Aoude, J.P. How, .M. Garcia, Two-stage path planning approach for solving multiple spacecraft reconfig-
uration maneuvers, J. Astronauti. Sci. 56 (4) (2008) 515-544, doi:10.1007/BF03256564.

[9] L.M. Steindorf, S. D’Amico, J. Scharnagl, F. Kempf, K. Schilling, Constrained low-thrust satellite formation-
flying using relative orbit elements, in: Proceedings of the 27th AAS/AIAA Space Flight Mechanics Meeting,
San Antonio, Texas, 2017. https://people.stanford.edu/damicos/sites/default/files/sfm2017_steindorfdamico.pdf.

[10] J. Bae, Y. Kim, Adaptive controller design for spacecraft formation flying using sliding mode controller and
neural networks, J. Frankl. Inst. 349 (2) (2012) 578-603, doi:10.1016/j.jfranklin.2011.08.009.


https://doi.org/10.2514/1.6687
https://books.google.com/books?id=6EidgM-aX_oC
https://doi.org/10.2514/1.G000189
https://doi.org/10.2514/1.32820
https://doi.org/10.2514/6.2016-5659
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0006
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0006
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0006
https://doi.org/10.1007/BF03256518
https://doi.org/10.1007/BF03256564
https://people.stanford.edu/damicos/sites/default/files/sfm2017_steindorfdamico.pdf
https://doi.org/10.1016/j.jfranklin.2011.08.009

3506 G. Di Mauro et al./Journal of the Franklin Institute 356 (2019) 3474-3507

[11] A. Imani, M. Bahrami, Optimal sliding mode control for spacecraft formation flying in eccentric orbits, in:
Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering,
2013, pp. 474-481, doi:10.1177/0959651813477786.

[12] G. Di Mauro, P. Di Lizia, M. Lavagna, Control of relative motion via state-dependent Riccati equation technique,
Adv. Astronaut. Sci. 142 (4) (2012) 909-928.

[13] Y.-Y. Chen, Y. Zhang, C.-L. Liu, P. Wei, Coordinated orbit-tracking control of second-order non-linear agents
with directed communication topologies, Int. J. Syst. Sci. 47 (16) (2016) 3929-3939, doi:10.1080/00207721.
2016.1139759.

[14] H.-C. Cho, S.-Y. Park, K.-H. Choi, Application of analytic solution in relative motion to spacecraft formation
flying in elliptic orbit, J. Astron. Space Sci. 25 (3) (2008) 255-266, doi:10.5140/JASS.2008.25.3.255.

[15] H.-C. Cho, S.-Y. Park, Analytic solution for fuel-optimal reconfiguration in relative motion, J. Optim. Theory
Appl. 141 (3) (2009) 495-512, doi:10.1007/s10957-008-9482-3.

[16] S. Lee, S.-Y. Park, Approximate analytical solutions to optimal reconfiguration problems in perturbed satellite
relative motion, J. Guidance Control Dyn. 34 (4) (2011) 1097-1111, doi:10.2514/1.52283.

[17] S.-M. Yoo, S. Lee, C. Park, S.-Y. Park, Spacecraft fuel-optimal and balancing maneuvers for a class of formation
reconfiguration problems, Adv. Space Res. 52 (8) (2013) 1476-1488, doi:10.1016/j.asr.2013.07.019.

[18] C. Park, J.H. Yang, D.J. Scheeres, Optimal formation reconfigurations subject to hill three-body dynamics, J.
Guidance Control Dyn. 37 (2) (2014) 700-704, doi:10.2514/1.60944.

[19] M. Lawn, G. Di Mauro, R. Bevilacqua, Guidance solutions for spacecraft planar rephasing and rendezvous
using input shaping control, J. Guidance Control Dyn. (2017) 1-13, doi:10.2514/1.G002910.

[20] M.K.B. Larbi, E. Stoll, Spacecraft formation control using analytical finite-duration approaches, CEAS Space
J. (2017) 1-15, doi:10.1007/s12567-017-0162-8.

[21] K.T. Alfried, H. Yan, Evaluation and comparison of relative motion theories, J. Guidance Control Dyn. 28 (2)
(2005) 254-261, doi:10.2514/1.6691.

[22] J. Sullivan, S. Grimberg, S. D’Amico, Comprehensive survey and assessment of spacecraft relative motion
dynamics models, J. Guidance Control Dyn. 40 (82) (2014) 1837-1859, doi:10.2514/1.G002309.

[23] G. Di Mauro, R. Bevilacqua, D. Spiller, J. Sullivan, S. D’ Amico, Continuous maneuvers for spacecraft formation
flying using relative orbit elements, in: Proceedings of the 9th International Workshop on Spacecraft Formation
Flying, Boulder, Colorado, 2017. http://www.riccardobevilacqua.com/Di%20Mauro_ID76_v2.pdf.

[24] S. D’Amico, Autonomous Formation Flying in Low Earth Orbit, Delft University of Tech-
nology, Delft, Netherlands, 2010 Ph.D. thesis. https://repository.tudelft.nl/islandora/object/uuid:
a10e2d63-399d-48e5-884b-402e9a105c¢70?collection=research.

[25] A.W. Koenig, T. Guffanti, S. D’Amico, New state transition matrices for spacecraft relative motion in perturbed
orbits, J. Guidance Control Dyn. 40 (7) (2017) 1749-1768, doi:10.2514/1.G002409.

[26] C.W.T. Roscoe, J.J. Westphal, J.D. Griesbach, H. Schaub, Formation establishment and reconfiguration using
differential elements in j2-perturbed orbits, J. Guidance Control Dyn. 38 (9) (2015) 1725-1740, doi:10.2514/1.
G000999.

[27] H. Schaub, J. Junkins, Analytical Mechanics of Space Systems, American Institute of Aeronautics and Astro-
nautics, 2003. ISBN: 9781600860270.

[28] S. D’Amico, Relative Orbital Elements as Integration Constants of Hills Equations, Technical Report,
DLR, Oberpfaffenhofen, 2010. https://www.researchgate.net/publication/265495397_Relative_Orbital _Elements_
as_Integration_Constants_of _Hill’s_Equations.

[29] J. Sullivan, A.W. Koening, S. D’Amico, Improved maneuver free approach angles-only navigation for space
rendezvous, Adv. Astronaut. Sci. Spaceflight Mech. 158 (2016). https://people.stanford.edu/damicos/sites/default/
files/aassfm2016_sullivankoenigdamico.pdf.

[30] G. Gaias, J.-S. Ardaens, O. Montenbruck, Model of j2 perturbed satellite relative motion with time-varying
differential drag, Celestial Mechanics and Dynamical Astronomy 123 (4) (2015) 411-433, doi:10.1007/
$10569-015-9643-2.

[31] M. Farkas, Periodic Motions, Springer-Verlag, 1994. ISBN: 978-1441928382.

[32] J. Crassidis, J. Junkins, Optimal Estimation of Dynamic Systems, CRC Press, 2004. ISBN: 9780203509128
https://books.google.com/books?id=EeSQjQfJgkUC.

[33] Matworks, MathWorks, Global Optimization Toolbox: Users Guide R2017a, The MathWorks, Inc, 2017. https:
/Iwww.mathworks.com/help/pdf_doc/gads/gads_tb.pdf.

[34] J.J. More, The Levenberg-Marquardt algorithm: Implementation and theory, Lecture notes in mathematics 630,
ed., 1977, pp. 105-116.


https://doi.org/10.1177/0959651813477786
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0012
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0012
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0012
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0012
https://doi.org/10.1080/00207721.2016.1139759
https://doi.org/10.5140/JASS.2008.25.3.255
https://doi.org/10.1007/s10957-008-9482-3
https://doi.org/10.2514/1.52283
https://doi.org/10.1016/j.asr.2013.07.019
https://doi.org/10.2514/1.60944
https://doi.org/10.2514/1.G002910
https://doi.org/10.1007/s12567-017-0162-8
https://doi.org/10.2514/1.6691
https://doi.org/10.2514/1.G002309
http://www.riccardobevilacqua.com/Di%20Mauro_ID76_v2.pdf
https://repository.tudelft.nl/islandora/object/uuid:a10e2d63-399d-48e5-884b-402e9a105c70?collection=research
https://doi.org/10.2514/1.G002409
https://doi.org/10.2514/1.G000999
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0027
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0027
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0027
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0027
https://www.researchgate.net/publication/265495397_Relative_Orbital_Elements_as_Integration_Constants_of_Hill12s_Equations
https://people.stanford.edu/damicos/sites/default/files/aassfm2016_sullivankoenigdamico.pdf
https://doi.org/10.1007/s10569-015-9643-2
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0031
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0031
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0031
https://books.google.com/books?id=EeSQjQfJgkUC
https://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0034
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0034

G. Di Mauro et al./Journal of the Franklin Institute 356 (2019) 3474-3507 3507

[35] D. Brouwer, Solution of the problem of artificial satellite theory without drag, Astronaut. J. 64 (1963) 378-397,
doi:10.1086/107958.

[36] R. Lyddane, Small eccentricities or inclinations in the brouwer theory of the artificial satellite, Astronaut. J. 68
(1963) 555-558, doi:10.1086/109179.

[37] D. Vallado, W. McClain, Fundamentals of astrodynamics and applications, Microcosm Press, 2001. ISBN:
9781881883128.


https://doi.org/10.1086/107958
https://doi.org/10.1086/109179
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0037
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0037
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0037
http://refhub.elsevier.com/S0016-0032(19)30142-5/sbref0037

	Spacecraft formation flying reconfiguration with extended and impulsive maneuvers
	1 Introduction
	2 Relative dynamics model
	2.1 Relative orbit elements
	2.2 Non-linear equations of relative motion
	2.3 Linearized equations of relative motion
	2.4 Analytical solution for near-circular linear dynamics model

	3 Reconfiguration control problem
	3.1 Mathematical formulation
	3.2 In-plane reconfiguration
	3.2.1 T-T-T maneuver
	3.2.2 R-R maneuver
	3.2.3 RT-RT maneuver
	3.2.4 T-T maneuver

	3.3 Out-of-plane reconfiguration

	4 Numerical validation of the control solutions
	4.1 In-plane reconfiguration control problem
	4.1.1 T-T-T maneuver with thrust constraint

	4.2 Out-of-plane reconfiguration control problem

	5 Conclusion
	Acknowledgments
	Appendix A Control influence matrix &#x0393;
	References


