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Abstract 

This paper presents the control solutions to the spacecraft formation reconfiguration problem when 
impulsive or extended maneuvers are considered, and the reference orbit is circular. The proposed ap- 
proach for the derivation of the control solutions is based on the inversion of the linearized equations 
of relative motion parameterized using the mean relative orbit elements. The use of mean relative orbit 
elements eases the inclusion of perturbing accelerations, such as the Earth’s oblateness effects, and offers 
an immediate insight into the relative motion geometry. Several maneuvering schemes of practical oper- 
ational relevance are considered and the performance of the derived impulsive and piecewise continuous 
control solutions are investigated through the numerical propagation of the nonlinear relative dynamics. 
Finally, the benefits of the new extended maneuvers strategies are assessed through a comparison with 
the corresponding impulsive one. 
© 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
1. Introduction 

Spacecraft formation flying has received great attention in last two decades thanks to 

the advantages it offers in terms of costs, mission flexibility/robustness, and enhanced per- 
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ormance [1,2] . In fact, the distribution of tasks and payload among multiple cooperative
pacecraft gives the opportunity to overcome the limitations due to using a single satellite
ystem for the mission goal accomplishment. Among the various technical challenges involved
n spacecraft formation flying, the design of control laws for reconfiguration represents a key
spect that has been intensively studied over the last years. The reconfiguration problem
ertains to the achievement of a specific relative orbit in a defined time interval given an
nitial formation configuration. So far, many methods have been proposed to solve the afore-
entioned problem, ranging from the impulsive to the continuous control techniques, [3] .

mpulsive strategies have been widely investigated since they provide an analytical solution
o the relative motion control problem. Such solutions are generally based on (1) the use of
he Gauss Variational Equations (GVE), to determine the control influence matrix, and (2) on
he inversion of the state transition matrix (STM) associated with a set of linear equations
f relative motion. Vaddi et al. [1] addressed the issues of establishment and reconfiguration
f a multiple spacecraft formation, consisting of a central chief satellite surrounded by four
eputy spacecraft, for unperturbed orbits using impulsive control. They proposed an analyt-
cal two-impulse control scheme for transferring a deputy spacecraft from a given location
n the initial configuration to any given final configuration, using the GVE. Ichimura et al.
4] developed an analytical open-time minimum fuel impulsive strategy associated with the
ill-Clohessy-Wiltshire equations of relative motion. It involves three in-plane impulses to

chieve the optimal in-plane reconfiguration. Gaias and D’Amico [3] addressed the problem
f multi-impulsive solution schemes for formation reconfiguration in near-circular keplerian
rbits using Relative Orbit Elements (ROE). They proposed a general methodology, based on
he inversion of relative dynamics equations, which led to the straightforward computation
f analytical or numerical control solutions. A similar impulsive approach based on the ROE
arametrization is developed by Chernick et al. in [5] . Here, the authors extended the results
eported in [3] deriving analytical and semi-analytical solutions for in-plane and out-of-plane
econfigurations, respectively, in near-circular perturbed and eccentric unperturbed orbits. 

Planning continuous reconfiguration maneuvers is usually more challenging. However, con-
inuous maneuvers might be necessary when spacecraft are equipped with low-thrust actuation
ystems. So far, many control approaches have been investigated. In [6] Armellin et al. de-
ived the minimum-fuel formation reconfiguration maneuver using the sequential quadratic
rogramming (SQP) method. To deal with the orbital perturbations a dynamic refresh of opti-
al trajectories computed by the aforementioned algorithm is done. The Gauss Pseudospectral
ethod (GPM) was employed in [7] whereas a two-stage path planning approach was used

n [8] , which combines a bi-directional Rapidly-exploring Random Tree (RRT) planner with
 GPM. A continuous low-thrust control strategy for formations operating in perturbed orbits
f arbitrary eccentricity was proposed by Steindorf et al. [9] . The authors derived a control
aw based on the Lyapunov theory and ROE dynamics parameterization, and implemented
lgorithms based on the potential fields for the guidance strategy. This approach allowed in-
lusion of the time constraint, thrust level constraint, wall constraints and passive collision
voidance constraint. Bae et al. [10] designed a controller for spacecraft formation flying
sing a sliding mode control scheme with the adaptive gain and neural networks. They con-
idered a 6DOF spacecraft nonlinear dynamic model and adopted a leader-follower approach.
mani et al. [11] developed an optimal sliding mode controller based on the linearized two-
ody relative dynamics. The optimal control design was based on a linear quadratic method
upplemented by an integral sliding mode control technique to robustify the controller. Di

auro et al. [12] proposed a nonlinear controller based on State-Dependent Riccati Equation
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(SDRE) technique to solve the coupled orbital and attitude relative motion control problem for
a 2-satellite formation flying. Here the relative dynamics model used for the controller design
included the J2 and drag perturbing effects. In [13] the 4-satellite formation reconfiguration 

problem is tackled as a coordination problem of a 3D second-order non-linear agents forma-
tion under a directed communication. The authors derived a control law for the relative motion
by treating the coordinated orbit-tracking control model for each agent as a cascade system
composed of orbit-tracking subsystem and the formation subsystem with the orbit-tracking 

error as input. 
Some efforts have been done also to derive the analytical continuous solutions to the relative

motion control problem. In [14] the authors determined the fuel-optimal analytical maneuvers 
using the Tschauner–Hempel model whereas in [15] the fuel-optimal analytical solutions are 
studied considering several linear relative dynamics models. The differential gravity effects, as 
well as the eccentricity and J2 effects are introduced in [16] , while some special cases were
taken into account in [17] and [18] . The former focused on projected circular orbits and the
latter considered the Hill Three-Body Dynamics around the L2 Lagrangian point. All these 
works were based on the Cartesian description of the relative motion. More recently, Lawn 

et al. [19] proposed a continuous low-thrust strategy based on the input-shaping technique 
for the short-distance planar spacecraft rephasing and rendezvous maneuvering problems. 
The analytical solution was obtained by exploiting the Schweighart and Sedwick (SS) linear 
dynamics model. Finally, Larbi et al. [20] derived a control concept for far range formation
flying applications based on ROE parameterization, assuming circular unperturbed reference 
orbits. 

This paper addresses the derivation of analytical impulsive and piecewise continuous so- 
lutions for the control of spacecraft formation configuration. The analytical solutions are 
characterized by a high level of determinism and predictability and are suited for an onboard
implementation, avoiding running computationally burdensome control numerical algorithms. 
In this study the relative motion is parameterized in terms of ROE taking into account the
J 2 perturbation. In the framework of spacecraft relative motion, different dynamics models 
have been developed over the years, based on different state representation and subject to a
multitude of constraints and limitations on the inter-satellite range of applicability, the eccen- 
tricity of the satellite orbits, and the type of modeled perturbation forces. For a comprehensive
comparison among the different existing dynamics models we address the reader to [21,22] . 

The main contributions of this work are: 

1. the development of a linearized relative dynamics model including the J 2 perturbation 

and the control accelerations and its associated closed-form solution, for near-circular 
reference orbits (see Section 2 ); 

2. the derivation of impulsive and piecewise continuous solutions for in-plane and out- 
of-plane formation reconfiguration, taking into account the J 2 perturbation effects (see 
Section 3.2 –3.3 ). In further details, starting from the approach presented in [5] and [23] ,
2- and 3-maneuver strategies are designed for in-plane reconfiguration, whereas a single 
maneuver approach is proposed for the out-of-plane maneuvering; 

3. the comparison in terms of maneuvering cost and accuracy between the continuous and 

impulsive control schemes (see Section 4 ); 
4. the development of a computationally efficient algorithm to modify the analytical 3- 

maneuver continuous control solution to be compatible with thrusters that operate in 

on/off configuration (see Section 4.1.1 ). 
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The rest of the paper is organized as follows. In Section 2 , the nonlinear and linear dynam-
cs models describing the relative motion of two Earth orbiting spacecraft under the effects
f J 2 and continuous external accelerations are presented. The closed-form solution for the
ynamics is determined for near-circular perturbed orbits, i.e. for very small or zero eccen-
ricity. Section 3 details the mathematical formulation for control solutions through piecewise
ontinuous and impulsive strategies for in-plane and out-of-plane reconfiguration maneuver-
ng. The results are reported in Section 4 , wherein relative trajectories obtained using the
eveloped control laws are shown, pointing out their performances in terms of maneuver cost
nd accuracy. A comparisons between impulsive and continuous schemes is also carried out
nd detailed in the same section. Conclusions and final remarks are given in Section 5 . 

. Relative dynamics model 

In this section the dynamics model describing the relative motion between two Earth
atellites and its associated closed-form solution is presented. The model is formulated using
he dimensionless relative orbit elements defined by D’Amico in [24] . The developed linear
odel allows inclusion of the effects of Earth’s oblateness, J 2 , and those due to the external

onstant accelerations. Then, the findings in [25] are extended by computing the input matrix
nd the corresponding convolution matrix to count for the control acceleration provided by
he deputy satellite. 

.1. Relative orbit elements 

The relative motion of a satellite, referred to as deputy , with respect to another one, referred
o as chief , can be parameterized using the following combination of classical keplerian orbit
lements, α = [ a, e, i, ω, �, M] T , 

α = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

a d 
a c 

− 1 

(M d − M c ) + (ω d − ω c ) + (�d − �c ) c i c 
e xd − e xc 

e yd − e yc 

i d − i c 
(�d − �c ) s i c 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

δa 

δλ

δe x 
δe y 
δi x 
δi y 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(1)

nown in literature as quasi-nonsingular relative orbit elements, [24,25] . In Eq. (1) the sub-
cripts c and d stand for chief and deputy respectively, whereas s (·) = sin (·) and c (·) = cos (·) .
oreover, e x(·) = e (·) c ω (·) and e y(·) = e (·) s ω (·) are the components of the eccentricity and ω is

he argument of perigee. The first two elements of the relative state vector, δα, are the relative
emi-major axis, δa , and the relative mean longitude, δλ, whereas the remaining components
onstitute the coordinates of the relative eccentricity vector, δe , and relative inclination vec-
or, δi . Note that that the above state representation is non-singular for circular orbit ( e c = 0),
hereas it is still singular for strictly equatorial orbit ( i c = 0). As the above parameterization

s based on a combination of Keplerian orbital elements, it facilitates the inclusion of per-
urbing accelerations (e.g., Earth oblateness J 2 effects) into the dynamics model through the
ell-known GVE, [26,27] . Moreover, it offers an immediate insight into the relative motion
eometry, [28] . 
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2.2. Non-linear equations of relative motion 

The averaged variations of mean ROE (i.e. without short- and long-periodic terms) caused 

by J 2 effects can be derived from the differentiation of chief and deputy mean classical ele-
ments, αc = [ a c , e c , i c , ω c , �c , M c ] T and αd = [ a d , e d , i d , ω d , �d , M d ] T respectively, [29,30] , 

˙ αc,J 2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˙ a c 

˙ e c 
˙ i c 
˙ ω c 
˙ �c 
˙ M c 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= K c 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

0 

Q c 

−2cos(i c ) 
ηc P c 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, ˙ αd,J 2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˙ a d 

˙ e d 
˙ i d 
˙ ω d 
˙ �d 
˙ M d 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= K d 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

0 

Q d 

−2cos(i d ) 
ηc P d 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(2) 

where 

K j = 

γ n j 
a 2 j η

4 
j 
, η j = 

√ 

1 − e 2 j , n j = 

√ 

μ�

a 3 j 
, 

Q j = 5 cos(i j ) 2 − 1 , P j = 3 cos(i j ) 2 − 1 , γ = 

3 
4 J 2 R 

2 
E . 

(3) 

In Eq. (3) the subscript j stands for c and d . J 2 indicates the second spherical har-
monic of the Earth’s geopotential ( J 2 = 1 . 082 × 10 

−3 ), R E the Earth’s equatorial radius ( R E =
6378 . 1363 km) and μ� the Earth gravitational parameter ( μ� = 398600. 4415 (km 

3 /s 2 )). Com-
puting the time derivative of mean ROE as defined in Eq. (1) and substituting Eq. (2) yields

δ ˙ αJ 2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 ( ˙ M d − ˙ M c 
) + ( ̇  ω d − ˙ ω c ) + 

( ˙ �d − ˙ �c 
)
c i c 

−e d s ω d ˙ ω d + e c s ω c ̇  ω c 

+ e d c ω d ˙ ω d − e c c ω c ̇  ω c 

0 ( ˙ �d − ˙ �c 
)
s i c 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= σJ 2 ( αc , αd ) (4) 

with 

σJ 2 ( αc , αd ) = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

( ηd P d K d − ηc P c K c ) + ( K d Q d − K c Q c ) − 2 

(
K d c i d − K c c i c 

)
c i c 

−e yd K d Q d + e yc K c Q c 

e xd K d Q d − e xc K c Q c 

0 

−2 

(
K d c i d − K c c i c 

)
s i c 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(5) 

In this study only the deputy is assumed to be maneuverable and capable of providing a
thrust along x , y , and z directions of its own Radial-Tangential-Normal (RTN) reference frame
(also known as Local Vertical Local Horizontal (LVLH)). The RTN frame consists of a basis
vectors with x pointing radially away from the Earth to the deputy satellite, z pointing along
the direction of the angular momentum of the deputy orbit, and y completing the right-handed
ortho-normal basis. The change of mean ROE caused by a continuous control acceleration 

vector F can be determined through the GVE [26,27] . In fact, the mean orbit elements can
be reasonably approximated by the corresponding osculating ones as the Jacobian of the 
osculating-mean mapping is approximately a 6 ×6 identity matrix with the off-diagonal terms 
being of order J 2 or smaller, [27] . In light of this, the change in mean ROE due to an external



G. Di Mauro et al. / Journal of the Franklin Institute 356 (2019) 3474–3507 3479 

f

δ  

w  

F  

A
 

t  

T

δ

 

u

�  

s

2

 

a

δ  

A  
orce is 

˙ αF = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˙ a d 
a c ˙ M d + ˙ ω d + 

˙ �d c i c 
˙ e d c ω d − e d s ω d ˙ ω d 

˙ e d s ω d + e d c ω d ˙ ω d 
˙ i d 

˙ �d s i c 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= σF ( αd , F ) = �F ( αd ) F (6)

here the control acceleration vector F is expressed in the RTN frame components as
 = [ f x , f y , f z ] T . The individual terms of the control influence matrix �F are reported in
ppendix A , [9] . 
The relative motion between the deputy and the chief satellites is given adding the con-

ributions of the point-mass gravitational field, the J 2 perturbation and the external force F .
he final set of nonlinear differential equations is 

˙ α = [0, n d − n c , 0, 0, 0, 0] T + σJ 2 ( αc , αd ) + σF ( αd , F ) 

= ξ( αc , αd ( αc , δα) , F ) . (7)

Note that the function ξ( αc , αd ( αc , δα), F ) can be reformulated in terms of αc and δα

sing the following identities 

a d = a c δa + a c , e d = 

√ 

(e c c ω c + δe x ) 2 + (e c s ω c + δe y ) 2 

i d = i c + δi x , ω d = tan 

−1 

(
e c s ω c + δe y 
e c c ω c + δe x 

)
d = �c + 

δi y 
s i c 

, M d = M c + δλ − (ω d − ω c ) − (�d − �c ) c i c , (8)

uch that δ ˙ α = ξ( αc , δα, F ) . 

.3. Linearized equations of relative motion 

In order to obtain the linearized equations of relative motion, δ ˙ α in Eq. (7) can be expanded
bout the chief orbit (i.e., δα = 0 and F = 0) to first order using a Taylor expansion, 

˙ α(t ) = 

∂ ξ

∂δα

∣∣∣∣δα = 0 

F = 0 

δα(t ) + 

∂ ξ

∂ F 

∣∣∣∣δα = 0 

F = 0 

F (t ) = A ( αc (t )) δα(t ) + B ( αc (t )) F . (9)

The matrices A and B represent the plant and input matrices respectively and are [9,29] 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 0 

−	c 0 e xc K c G c P c F c e yc K c G c P c F c −K c F c S c 0 

7 K c Q c e yc 

2 0 −4e xc e yc K c G c Q c −(1 + 4e 2 yc G c ) K c Q c 5 e yc K c S c 0 

− 7 K c Q c e xc 

2 0 (1 + 4e 2 xc G c ) K c Q c 4e xc e yc K c G c Q c −5 e xc K c S c 0 

0 0 0 0 0 0 

7 K c S c 
2 0 −4e xc K c G c S c −4e yc K c G c S c 2K c T c 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(10)
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B = 

1 

n c a c 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2e c s f c 
ηc 

2(1+ e c c f c ) 
ηc 

0 

− ηc e c c f c 
1+ ηc 

− 2η2 
c 

1+ e c c f c 
− ηc e c [(2+ e c c f c ) s f c ] 

(1+ ηc )(1+ e c c f c ) 
0 

ηc s θc ηc 
(2+ e c c f c ) c θc + e xc 

(1+ e c c f c ) 
ηc e yc s θc Z c 
(1+ e c c f c ) 

−ηc c θc ηc 
(2+ e c c f c ) s θc + e yc 

(1+ e c c f c ) 
− ηc e xc s θc Z c 

(1+ e c c f c ) 

0 0 

ηc c θc 
(1+ e c c f c ) 

0 0 

ηc s θc 
(1+ e c c f c ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(11) 

where f c and θc = f c + ω c are the mean true anomaly and true argument of latitude of the
chief orbit respectively, and the following substitutions are applied for clarity 

F c = 4 + 3 ηc , E c = 1 + ηc , S c = sin (2i c ) , 	c = 

3 

2 

n c + 

7 

2 

E c K c P c T c = sin (i c ) 
2 , 

Z c = ctan (i c ) , G c = 1 /η2 
c . (12) 

Due to the explicit dependence on the terms e xc and e yc , the plant matrix and the input
matrix are time-varying and periodic. In fact, both e xc and e yc depend on the variation over
time of the mean argument of perigee of the chief orbit, ω c . Assuming that the chief is
moving on a near-circular orbit (i.e. e c → 0), the matrices A and B can be further simplified
neglecting the low-order terms, i.e., cancelling the terms proportional to e c and e 2 c as they are
small compared to the others in Eqs. (10) and (11) . In light of this, A = A NC and B = B NC 

being 

A NC = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 0 

−	c 0 0 0 −K c F c S c 0 

0 0 0 −K c Q c 0 0 

0 0 K c Q c 0 0 0 

0 0 0 0 0 0 

7 K c S c 
2 0 0 0 2K c T c 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, B NC = 

1 

n c a c 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ccc0 2 0 

−2 0 0 

s u c 2c u c 0 

−c u c 2s u c 0 

0 0 c u c 
0 0 s u c 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

(13) 

In Eq. (13) u c = ω c + M c indicates the mean argument of latitude of the chief orbit. Note
that u c = u c (t ) and yields 

u c (t ) = u c, 0 + W c (t − t 0 ) , (14) 

where W c = n c + K c Q c + ηc K c P c . To simplify the notation the quantity u c ( t ) will be referred
to as u c , t in the reminder. 

2.4. Analytical solution for near-circular linear dynamics model 

The solution of the linear system in Eq. (9) , δα( t ), can be expressed as a function of the
initial ROE state vector, δα( t 0 ), and the forcing vector, F , i.e. 

δα(t ) = �(t, t 0 ) δα(t 0 ) + �(t, t 0 ) F (15) 

where �( t , t 0 ) and �( t , t 0 ) indicate the State Transition Matrix (STM) and the convolution
matrix respectively. In [25] the authors derive the STM using the Floquet theory [31] . Here-
after the STM associated with near-circular linear relative dynamics model is reported for 
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1) 
ompleteness 

NC (t, t 0 ) = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 0 0 0 

−	c �t 1 0 0 −K c F c S c �t 0 

0 0 c �ω −s �ω 0 0 

0 0 s �ω c �ω 0 0 

0 0 0 0 1 0 

7 
2 K c S c �t 0 0 0 2K c T c �t 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(16)

here �t = t − t 0 and �ω = K c Q c �t . According to linear dynamics system theory [32] ,
he corresponding convolution matrix, �NC 

( t , t 0 ), can be computed by solving the following
ntegral, 

NC (t, t 0 ) = 

∫ t 

t 0 

�NC (t, τ ) B NC ( αc (τ )) dτ. (17)

Substituting the STM and B NC 

reported in Eqs. (16) and (13) , respectively, into
q. (17) yields 

NC (t, t 0 ) = 

1 

a c n c 

∫ t 

t 0 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 2 0 

−2 −2	c (t − τ ) ψ̄ 1 

ψ̄ 2 2 ψ̄ 3 0 

−ψ̄ 3 2 ψ̄ 2 0 

0 0 c (u c, 0 + W c (τ−t 0 )) 

0 7 K c S c (t − τ ) ψ̄ 4 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

dτ (18)

here u c ,0 is the mean argument of latitude of the chief orbit at the instant t 0 and the terms
¯
 i , i = 1 , ..., 4 are 

¯
 1 = −F c K c S c c (u c, 0 + W c (τ−t 0 )) (t − τ ) ψ̄ 2 = c K c Q c (t−τ ) s (u c, 0 + W c (τ−t 0 )) + s K c Q c (t−τ ) c (u c, 0 + W c (τ−t 0 )) ψ̄ 3 

= c K c Q c (t−τ ) c (u c, 0 + W c (τ−t 0 )) − s K c Q c (t−τ ) s (u c, 0 + W c (τ−t 0 )) ψ̄ 4 = s (u c, 0 + W c (τ−t 0 )) 

+ 2K c T c c (u c, 0 + W c (τ−t 0 )) (t − τ ) . (19)

According with Eqs. (18) and (19) , the convolution matrix �NC 

( t , t 0 ) becomes 

NC (t, t 0 ) = 

1 

a c n c W c 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 2�u 0 

−2�u −	c �u 2 

W c 
ψ 1 

ψ 2 2ψ 3 0 

−ψ 3 2ψ 2 0 

0 0 (s u c,t − s u c, 0 ) 
0 

7 
2 

K c S c �u 2 

W c 
ψ 4 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(20)

eing �u = u c,t − u c, 0 . In Eq. (20) the terms ψ i , i = 1 , ..., 4, are 

 1 = W c 

∫ t 

t 0 

ψ̄ 1 dτ = 

F c K c S c 

W c 

(
c u c,t −c u c, 0 + s u c, 0 �u 

)
ψ 2 = W c 

∫ t 

t 0 

ψ̄ 2 dτ = − 1 

β

(
c u c,t −c (u c, 0 + C�u) 

)
= W c 

∫ t 

t 0 

ψ̄ 3 dτ = 

1 

β

(
s u c,t − s (u c, 0 + C�u) 

)
ψ 4 = W c 

∫ t 

t 0 

ψ̄ 4 dτ

= − 1 

W c 

(
(W c + 2K c T c )(c u c,t − c u c, 0 ) + 2K c T c s u c, 0 �u 

)
(2
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Fig. 1. Example of continuous on/off control profile. 
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whereas β and C are constant coefficients that depend on mean semi-major axis, eccentricity, 
and inclination of the chief orbit as follows 

 = 

K c Q c 

W c 
, β = 1 − C. (22) 

3. Reconfiguration control problem 

This section reports the piecewise continuous and impulsive control solutions derived for 
the in-plane and out-of-plane spacecraft formation reconfiguration, pointing out the similarities 
and the differences between the aforementioned formulations. First, the general methodology 

used to obtain both impulsive and continuous solutions is presented. It consists of the following
steps: (1) the expression of the final mean ROE state, δα( T ), is derived, (2) then, given a
desired mean relative orbit, δαdes , the expression δα(T ) = δαdes is solved for the parameters
that describe the control profile, i.e. the maneuvers’ locations and amplitudes. In further details,
2- and 3-maneuver strategies are investigated for in-plane relative motion control, whereas a 
single cross-track maneuver is considered for the out-of-plane formation reconfiguration. As 
discussed in the following sections, the boundary condition δα(T ) = δαdes cannot be always
solved analytically, therefore, some of the presented control strategies involve an iterative 
numerical algorithm to determine the control acceleration profile. 

3.1. Mathematical formulation 

Let us consider n extended maneuvers of magnitude F j = [ f x, j , f y, j , f z, j ] T and duration
�t j , with j = 1 , ... , n, as illustrated in Fig. 1 for a generic axis ( ·). Using the near-circular
linearized model discussed in the previous section, the relative state at the end of each j -th
maneuver δα( t j , f ) can be expressed as a function of δα( t j ,0 ), the maneuver durations �t j , and
thrust magnitudes as follows (see Eq. (15) ), 

δα j, f = δα(t j, f ) = �(t j, f , t j, 0 ) δα(t j, 0 ) + �(t j, f , t j, 0 ) F j , j = 1 , ..., n (23)

where t j ,0 and t j , f indicate the initial and the final instants of the j -th maneuver respec-
tively. Note that the instant t j , f can be expressed as a function of the firing duration �t j as
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 j, f = t j, 0 + �t j . According to Eq. (23) , the mean ROE at the end of maneuvering inter-
al, δα( T ), depends on the mean ROE at the initial maneuver time δα( t 0 ), the n maneuver
urations, �t j , and the thrust vector, F j , 

δα1 , 0 = δα(t 1 , 0 ) = �NC (t 1 , 0 , t 0 ) δα(t 0 ) = �NC (t 1 , 0 , t 0 ) δα0 

α1 , f = �NC (t 1 , f , t 1 , 0 ) δα1 , 0 + �NC (t 1 , f , t 1 , 0 ) F 1 

= �NC (t 1 , f , t 0 ) δα0 + �NC (t 1 , f , t 1 , 0 ) F 1 

δα2, 0 = �NC (t 2, 0 , t 1 , f ) δα1 , f = �NC (t 2, 0 , t 0 ) δα0 

+ �NC (t 2, 0 , t 1 , f ) �NC (t 1 , f , t 1 , 0 ) F 1 

α2, f = �NC (t 2, f , t 2, 0 ) δα2, 0 + �NC (t 2, f , t 2, 0 ) F 2 

= �NC (t 2, f , t 0 ) δα0 + �NC (t 2, f , t 1 , f ) �NC (t 1 , f , t 1 , 0 ) F 1 

+ �NC (t 2, f , t 2, 0 ) F 2 

δαT = �NC (T , t 0 ) δα0 + 

n ∑ 

j=1 

�NC (T , t j, f ) �NC (t j, f , t j, 0 ) F j (24)

Note that Eq. (24) is valid if t j, 0 ≥ t j−1 , f . If δα0 is fixed and �t j is considered an user-
efined parameter, the reconfiguration problem is to find the thrust magnitudes, F j , and their
pplication times, t j ,0 (or alternatively the maneuver mid-point instant, i.e. t j = (t j, 0 + t j, f ) / 2),
hat satisfy the following equation 

δαdes = δαdes − �NC (T , t 0 ) δα0 

= 

n ∑ 

j=1 

�NC (T , t j, f ) �NC (t j, f , t j, 0 ) F j . (25)

The term δαdes is the desired mean ROE vector at the end of the maneuvering interval.
q. (25) represents a set of 6 nonlinear equations in (3+1) n unknowns (i.e., F j and t j with

j = 1 , ..., n). Note that the maneuver duration �t j is assumed to be known. Accordingly, at
east two maneuvers are needed to obtain a finite number of solutions. The control thrust
rofile is a function of δα0 , the maneuver durations, �t j , and desired ROE state, δαdes . It is
oteworthy that when a sequence of n impulsive maneuvers is considered to accomplish the
ormation reconfiguration, the approach described by Eq. (24) leads to, [5] 

δαdes = δαdes − �NC (T , t 0 ) δα0 

= 

n ∑ 

j=1 

�NC (T , t j ) B NC (u c, j )�v j . (26)

here �v j = [�v x, j , �v y, j , �v z, j ] T denotes the impulses vector whereas u c , j is the mean ar-
ument of latitude at the maneuver time, t j . In [5] the authors derived the analytical control
olutions in near-circular perturbed orbits using three along-track impulses and one cross-track
mpulse for in-plane and out-of-plane reconfigurations respectively, whereas in [23] the au-
hors of this paper derived the corresponding analytical piecewise continuous solutions. This
aper aims at extending the aforementioned previous works by determining the 2- and 3-
aneuver continuous and impulsive solutions for in-plane reconfiguration control. Moreover,

his work will present a comparison between the proposed control strategies, identifying the
elated pros and cons. 
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3.2. In-plane reconfiguration 

In this section the in-plane reconfiguration problem is addressed, i.e. only the relative 
mean semi-major axis, the relative mean longitude, and the relative eccentricity vector are 
assumed to be controlled over the maneuvering interval. Note that the in-plane reconfigu- 
ration problem involves the solution of 4 nonlinear equations (i.e., the first four rows of
Eq. (25) or Eq. (26) for piecewise continuous and impulsive strategies respectively) in (2 + 1) n
unknowns (i.e., 2 n in-plane components of thrust or impulses vectors and n maneuvers’ loca-
tions). If a sequence of in-plane finite-time maneuvers, F j = [ f x, j , f y, j , 0] T with j = 1 , ..., n,

is considered, Eq. (25) becomes 
n ∑ 

j=1 

˜ u j f y, j = 

μ

β
�δa des (27a) 

n ∑ 

j=1 

[
˜ u j 

(
	c 

W c 

(
u T − ˆ u j 

)
f y, j + f x, j 

)]
= −μ

β
�δλdes (27b) 

n ∑ 

j=1 

[
sin 

(
β ˜ u j 

)(
cos 

(
Cu T + β ˆ u j 

)
f y, j + sin 

(
Cu T + β ˆ u j 

) f x, j 

2 

)]
= μ�δe x,des (27c) 

n ∑ 

j=1 

[
sin 

(
β ˜ u j 

)(
sin 

(
Cu T + β ˆ u j 

)
f y, j − cos 

(
Cu T + β ˆ u j 

) f x, j 

2 

)]
= μ�δe y,des (27d) 

where 

μ = β
W c n c a c 

4 

(28) 

and 

ˆ u j = 

u j, f + u j, 0 

2 

, ˜ u j = 

u j, f − u j, 0 

2 

, j = 1 , ..., 3 (29) 

being u j ,0 and u j , f the mean argument of latitude of the chief orbit at the instants t j ,0 and t j , f ,
respectively. Accordingly, ˆ u j,y is the mid-point maneuver location and ˜ u j,y is half the duration 

of the j -th maneuver. It is worth remarking that the extended maneuvers along x and y axes
of the RTN reference are assumed to last the same interval of time. Eq. (27) can be simplifed
by defining the following variables, 

 j, 0 = βu j, 0 + Cu T , U j, f = βu j, f + Cu T , ˜ U j = 

U j, f − U j, 0 

2 

= β ˜ u j , ̂ U j = 

U j, f + U j, 0 

2 

= Cu T + β ˆ u j . (30) 

The term U can be seen as a perturbed mean argument of latitude due to the J 2 . Hence,˜ 

 j is related to half the duration of the j -th maneuver and 

̂ U j is related to the mid-point
maneuver location. Substituting Eq. (30) in Eq. (27) yields, 

n ∑ 

j=1 

˜ U j f y, j = μ�δa des (31a) 
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n ∑ 

j=1 

[˜ U j 

(
	c 

βW c 

(
u T − ̂ U j 

)
f y, j + f x, j 

)]
= −μ�δλdes (31b)

n ∑ 

j=1 

[
sin ̃

 U j 

(
cos ̂  U j f y, j + 

1 

2 

sin ̂

 U j f x, j 

)]
= μ�δe x,des (31c)

n ∑ 

j=1 

[
sin ̃

 U j 

(
sin ̂

 U j f y, j − 1 

2 

cos ̂  U j f x, j 

)]
= μ�δe y,des (31d)

Similarly, the equations governing the variation of the mean ROE due to a sequence of
mpulsive maneuvers are (see Eq. 26 ) 

 

n ∑ 

j=1 

�v y, j = n c a c �δa des (32a)

 

n ∑ 

j=1 

(
	c 

W c β

(
u T − ̂ U j 

)
�v y, j + �v x, j 

)
= −n c a c �δλdes (32b)

n ∑ 

j=1 

(
2 cos ̂  U j �v y, j + sin ̂

 U j �v x, j 

)
= n c a c �δe x,des (32c)

n ∑ 

j=1 

(
2 sin ̂

 U j �v y, j − cos ̂  U j �v x, j 

)
= n c a c �δe y,des (32d)

It is worth pointing out that Eq. (31) converges to Eq. (32) when 

˜ U j → 0. This is straight-
orward by recognizing that 

v (·) = 2 

˜ u f (·) 
W c 

= 2 ̃

 U f (·) 
βW c 

(33)

nd sin ̃

 U j ≈ ˜ U j when 

˜ U j → 0. This means that even the piecewise continuous in-plane so-
utions will tend to the corresponding impulsive ones for ˜ U j → 0. 

The following sections present the mathematical expressions of in-plane control solutions
iven by 2- and 3-maneuver schemes, considering different combinations of tangential (T) and
adial (R) maneuvers. Note that the 2-maneuver solutions accomplish the final in-plane for-
ation reconfiguration through the minimum number of maneuvers. However, as discussed in
ection 3.2.2 , when only radial maneuvers are performed only three ROEs can be established.
n addition, the 3-maneuver scheme through tangential impulses leads to the minimum delta-v
olution for the corresponding fuel-optimal impulsive reconfiguration problem, as discussed
y Chernick et al. in [5] . 
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3.2.1. T-T-T maneuver 
Let us consider that only three tangential impulses are performed by the deputy spacecraft,

i.e., 

�v T j = [0, �v y, j , 0] T with j = 1 , ..., 3 . (34)

As discussed by Chernick et al. in [5] , this choice allows one to find a minimum delta-V
solution when the reconfiguration cost is driven by the variation of relative eccentricity vec- 

tor (i.e., �δe des > �δa des and �δe des > 2 �δλdes /3 �u with �δe des = 

√ 

�δe 2 x,des + �δe 2 y,des and

�u = (u T − u 0 ) ). The solution of Eq. (27) for the impulses’ locations, U j , and magnitudes, 
�v y, j , is given by 

 1 = U y + k 1 π , U 2 = U 1 + k 2 π , U 3 = U 1 + k 3 π (35) 

�v y, j = − a c n c ξ j 

2 π	c 

(
k 2 

(
1 − ( −1 ) k 3 

)
− k 3 

(
1 − ( −1 ) k 2 

) , j = 1 , 2, 3 (36) 

where the following quantities have been introduced for clarity 

 y = tan 

−1 

(
�δe y,des 

�δe x,des 

)
(37) 

ξ1 = ( −1 ) k 2 ϕ 1 − ( −1 ) k 3 ϕ 2 + ( −1 ) k 1 π	c �δe des (k 3 − k 2 ) (38a) 

ξ2 = ϕ 1 − ( −1 ) k 3 ϕ 3 + ( −1 ) k 1 k 3 π	c �δe des (38b) 

ξ3 = ϕ 2 − ( −1 ) k 2 ϕ 3 + ( −1 ) k 1 k 2 π	c �δe des (38c) 

ϕ j = (u T − U j )	c �δa des + βW c �δλdes , j = 1 , 2, 3 (39)

Note that the above solution coincides with that one derived in [5] . However a differ-
ent representation is used here to point out the similarity with the continuous formulation.
Eq. (36) becomes singular when k 2 = 2 n 2 and k 3 = 2 n 3 , with n 2 , n 3 ∈ N . 

The piecewise continuous solution is obtained by solving the system of nonlinear equations 
(31) , assuming that f x, j = 0 with j = 1 , .., 3 . One solution family among the possible infinite
solutions is given by ̂ 

 1 = U y + k 1 π , ̂ U 2 = 

̂ U 1 + k 2 π, ̂ U 3 = 

̂ U 1 + k 3 π (40) 

f y, j = −μ

D 

� j , j = 1 , 2, 3 , (41) 

where k 1 , k 2 ∈ N and the quantities D and �j are defined as follows 
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 = π	c 

(
k 2 ̃  U 2 

(˜ U 3 sin ̃

 U 1 − ( −1 ) k 3 ˜ U 1 sin ̃

 U 3 

)
− k 3 ̃  U 3 

(˜ U 2 sin ̃

 U 1 − ( −1 ) k 2 ˜ U 1 sin ̃

 U 2 

))
(42)

1 = ( −1 ) k 2 ˜ U 3 sin ̃

 U 2 �1 − ( −1 ) k 3 ˜ U 2 sin ̃

 U 3 �2 

+ ( −1 ) k 1 ˜ U 2 ̃  U 3 π	c �δe des (k 3 − k 2 ) (43a)

2 = ̃

 U 3 sin ̃

 U 1 �1 − ( −1 ) k 3 ˜ U 1 sin ̃

 U 3 �3 + ( −1 ) k 1 ˜ U 1 ̃  U 3 k 3 π	c �δe des (43b)

3 = ̃

 U 2 sin ̃

 U 1 �2 − ( −1 ) k 2 ˜ U 1 sin ̃

 U 2 �3 + ( −1 ) k 1 ˜ U 1 ̃  U 2 k 2 π	c �δe des (43c)

j = (u T − ̂ U j )	c �δa des + βW c �δλdes , j = 1 , 2, 3 (44)

�j , and �j represent the continuous counterpart of the impulsive quantities ξ j , and ϕj . It is
oteworthy that in this case when k 2 = 2 n 2 and k 3 = 2 n 3 , with n 2 , n 3 ∈ N , the denominator
n Eq. (41) , D , does not go to zero if ˜ U 1 � = 

˜ U 2 � = 

˜ U 3 . Differently form the impulsive solution,
he piecewise one exists even when the quantities k 2 and k 3 are even. 

The solution given by Eqs. (40) and (41) can be modified to include the thrust level con-
traint that might arise from the operational limitations of onboard thrusters. For the sake of
he example, let us assume that the maneuverable satellite is equipped with thrusters capa-
le of operating only in on/off configurations with a specific acceleration magnitude, f max .
he problem is to update the maneuvers’ durations, ˜ U j , such that the control profile has

he user-defined magnitude f max . In order to find the updated values ˜ U 

up 
j with j = 1 , ..., 3 ,

qs. (31a-d) (with f x, j = 0 and f up 
y, j = sgn( f y, j ) f max ) have to be solved for ˜ U 

up 
j . Since

qs. (31a-b) are linear in the unknows ˜ U 

up 
j , the expressions of ˜ U 

up 
1 and 

˜ U 

up 
2 can be found as

unction of ˜ U 

up 
3 . Being f up 

y, j = sgn( f y, j ) f max , ˜ U 

up 
1 and 

˜ U 

up 
2 can be computed as follows 

˜ 

 

up 
1 = 

4	c ̃  U 

up 
3 f up 

y, 3 

(̂ U 2 − ̂ U 3 
) + β2 W c H c �δλdes − 	c H c �δa des 

(
u T − β̂ U 2 

)
(4	c f 

up 
y, 1 ( ̂

 U 1 − ̂ U 2 )) 
(45)

˜ 

 

up 
2 = −4	c ̃  U 

up 
3 f up 

y, 3 

(̂ U 1 − ̂ U 3 
) + β2 W c H c �δλdes − 	c H c �δa des 

(
u T − β̂ U 1 

)
(4	c f 

up 
y, 2 ( ̂

 U 1 − ̂ U 2 )) 
(46)

ith 

 c = W c a c n c . (47)

ubstituting Eqs. (45) and (46) into Eq. (31d) gives the following nonlinear equation in the
nknown 

˜ U 

up 
3 , 

f up 
y, 3 sin ̂

 U 3 sin ̃

 U 

up 
3 + f up 

y, 1 sin ̂

 U 1 sin ρ1 − f up 
y, 2 sin ̂

 U 2 sin ρ2 = μ�δe y,des (48)
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where 

ρ1 = 

4	c ̃  U 

up 
3 f up 

y, 3 ( ̂
 U 2 −̂ U 3 )+ β2 W c H c �δλdes −	c H c �δa des 

(
u T −β̂ U 2 

)
(4	c f 

up 
y, 1 ( ̂

 U 1 −̂ U 2 )) 

ρ2 = 

4	c ̃  U 

up 
3 f up 

y, 3 ( ̂
 U 1 −̂ U 3 )+ β2 W c H c �δλdes −	c H c �δa des 

(
u T −β̂ U 1 

)
(4	c f 

up 
y, 2 ( ̂

 U 1 −̂ U 2 )) 

(49) 

and the quantity μ is given by Eq. (28) . An iterative algorithm can be used to solve
Eq. (48) . An initial guess that guarantees a fast convergence of the algorithm can be chosen
by analyzing the error function J , 

J = f up 
y, 3 sin ̂

 U 3 sin ̃

 U 

up 
3 + f up 

y, 1 sin ̂

 U 1 sin ρ1 − f up 
y, 2 sin ̂

 U 2 sin ρ2 − μ�δe y,des , (50) 

Note that the quantity 

˜ U 

up 
3 has to be such that the control profile is included in the interval

[ u 0 , u T ], i.e. the following inequalities have to be satisfied, ˜ U 

up 
1 < 

̂ U 1 − cu T (51a) 

˜ U 

up 
3 < u T − ̂ U 3 (51b) 

˜ 

 

up 
1 + 

˜ U 

up 
2 < 

̂ U 2 − ̂ U 1 (51c) 

˜ 

 

up 
2 + 

˜ U 

up 
3 < 

̂ U 3 − ̂ U 2 . (51d) 

Finally, the method described above for the correction of the analytical solution can be
summarized as follows: 

1. set the value of available control acceleration, f max ; 
2. compute the error function J ( ̃  U 

up 
3 ) from Eq. (50) with 

˜ U 

up 
3 ∈ (0, u T ) ; 

3. evaluate Eq. (51) to find the feasible values of maneuver duration, ˜ U 

up 
3 , f eas. ⊂ ˜ U 

up 
3 ; 

4. evaluate the sign of J ( ̃  U 

up 
3 , f eas. ) at the boundaries of the domain, a = min( ̃  U 

up 
3 , f eas. ) and

b = max( ̃  U 

up 
3 , f eas. ) ; 

5. if sgn ( J ( a )) � = sgn ( J ( b )), find 

˜ U 

up 
3 ,ig that minimizes | J ( ̃  U 

up 
3 , f eas. ) | and run the fzero routine

to compute the root of J ( ̃  U 

up 
3 , f eas. ) , otherwise go to step 1 and change the value of f max 

(if it is compatible with the actuator capability). 

3.2.2. R-R maneuver 
The entire ROE state cannot be controlled using two radial maneuvers, thus the in-plane 

reconfiguration problem as defined in Section 3.2 does not admit solutions. In fact, the relative
drift can be changed only using tangential maneuvers. However, a couple of pure radial
maneuvers still enables the adjustment of �δλ, �δe x and �δe y . Hence, solving Eq. (32) (with
�v y, j = 0) for the maneuvers locations, U j , and velocity changes, �v x, j , leads to the following
expressions 

U 1 = U x + k 1 π , U 2 = U 1 + k 2 π, (52) 

�v x, 1 = 

a c n c 
(
( −1 ) k 2 �δλdes − 2 ( −1 ) k 1 �δe des 

)
2 

(
1 − ( −1 ) k 2 

) , (53) 
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�v x, 2 = 

a c n c 
(−�δλdes + 2 ( −1 ) k 1 �δe des 

)
2 

(
1 − ( −1 ) k 2 

) . (54)

here k 1 , k 2 ∈ N and 

 x = − tan 

−1 

(
�δe x,des 

�δe y,des 

)
. (55)

The continuous solution can be obtained by considering the same maneuvers’ separation,
.e., ̂ 

 1 = U x + k 1 π , ̂ U 2 = 

̂ U 1 + k 2 π, (56)

nd solving the Eq. (31) (with f y, j = 0). Then, the thrust amplitudes are given by the following
xpressions 

f x, 1 = μ
( −1 ) k 2 �δλdes sin ̃

 U 2 − 2 ( −1 ) k 1 �δe des ̃  U 2 ˜ U 2 sin ̃

 U 1 − ( −1 ) k 2 ˜ U 1 sin ̃

 U 2 
, (57)

f x, 2 = μ
−�δλdes sin ̃

 U 1 + 2 ( −1 ) k 1 �δe des ̃  U 1 ˜ U 2 sin ̃

 U 1 − ( −1 ) k 2 ˜ U 1 sin ̃

 U 2 
. (58)

As for the T-T-T maneuver combination, also in this case the continuous solution extends
he domain of the solution. In fact, comparing Eqs. (53) and (54) with Eqs. (57) and (58) ,
hen k 2 = 2n 2 π with n 2 ∈ N , the impulsive solution is singular, whereas the continuous one

till exists if ˜ U 1 � = 

˜ U 2 . 
It is noteworthy that the maneuver cost for the impulsive and the piecewise contin-

ous schemes are the same. In fact, it can be proven that �v 1 ,x + �v 2,x = 2( ̃  U 1 f x, 1 +˜ 

 2 f x, 2 ) / (βW c ) . The above statement is valid only for the R-R scheme and is assessed by
umerical simulations reported in Section 4 . 

.2.3. RT-RT maneuver 
Here, a couple of radial/tangential maneuvers is considered to control the relative config-

ration of the formation. According with the approach proposed in this paper, a solution of
q. (32) can be determined imposing a separation between the impulses of k 2 π , i.e. 

 1 = U y + k 1 π , U 2 = U 1 + k 2 π, (59)

ith k 1 , k 2 ∈ N and U y defined by Eq. (40) . The four impulses are computed by the following
ormulas, 

v x, 1 = 

a c n c 

(
− ϕ 1 + ( −1 ) k 2 ϕ 2 + ( −1 ) k 1 ( −1 ) k 2 k 2 π	c �δe des 

)
4βW c 

(
1 − (−1) k 2 

) (60)

�v x, 2 = 

a c n c 

(
( −1 ) k 2 ϕ 1 − ϕ 2 − ( −1 ) k 1 k 2 π	c �δe des 

)
4βW c 

(
1 − (−1) k 2 

) (61)

�v y, 1 = 

a c n c (
�δa des + ( −1 ) k 1 �δe des 

)
(62)
4 
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U

�v y, 2 = 

a c n c 

4 

(
�δa des − ( −1 ) k 1 �δe des 

)
, (63) 

In light of the above, the impulsive solution exists only if k 2 � = 2 n 2 , n 2 ∈ N . If the exponents
k 2 and k 3 in Eqs. (60) and (61) are odd, the quantities �v x, 1 and �v x, 2 are equal in magnitude
and direction, i.e., �v x, 1 − �v x, 2 = 0. In addition, when �a des = 0, the sum of the tangential
components must be equal to zero to meet the constraints on the final formation configuration,
i.e., �v y, 1 + �v y, 2 = 0. 

Given the similarity between the impulsive and continuous formulations, a class of solutions 
among the infinite available ones for the Eq. (31) can be derived as follows, ̂ U 1 = U y + k 1 π , ̂ U 2 = 

̂ U 1 + k 2 π (64) 

f x, 1 = 

a c n c sin ̃

 U 2 �1 

4 

(˜ U 1 sin ̃

 U 2 − ( −1 ) k 2 ˜ U 2 sin ̃

 U 1 

)
2 

(65) 

f x, 2 = 

a c n c sin ̃

 U 1 �2 

4 

(˜ U 1 sin ̃

 U 2 − ( −1 ) k 2 ˜ U 2 sin ̃

 U 1 

)
2 

(66) 

f y, 1 = 

μ
(

sin ̃

 U 2 �δa des − ( −1 ) k 1 ( −1 ) k 2 ˜ U 2 �δe des 

)
˜ U 1 sin ̃

 U 2 − ( −1 ) k 2 ˜ U 2 sin ̃

 U 1 
(67) 

f y, 2 = 

−μ(−1) k 2 
(

sin ̃

 U 1 �δa des − ( −1 ) k 1 ˜ U 1 �δe des 

)
˜ U 1 sin ̃

 U 2 − ( −1 ) k 2 ˜ U 2 sin ̃

 U 1 
(68) 

where 

�1 = − ˜ U 1 sin ̃

 U 2 �1 + ( −1 ) k 2 ˜ U 2 sin ̃

 U 1 �2 

+ ( −1 ) k 1 ( −1 ) k 2 ˜ U 1 ̃  U 2 k 2 π	c �δe des (69) 

�2 = ( −1 ) k 2 ˜ U 1 sin ̃

 U 2 �1 − ˜ U 2 sin ̃

 U 1 �2 − ( −1 ) k 1 ˜ U 1 ̃  U 2 k 2 π	c �δe des . (70) 

From Eqs. (65) –(68) , it is clear that the solution exists only if k 2 � = 2 n 2 , with n 2 ∈ N ,

or ˜ U 1 � = 

˜ U 2 . Again, the continuous formulation allows extending the domain of the solution
by introducing further design parameters such as the maneuvers’ durations. In other words, 
the piecewise continuous solution still exists even though the critical separation between the 
maneuvers, k 2 = 2n 2 , is chosen, if ˜ U 1 � = 

˜ U 2 . 
Similarly to the impulsive RT-RT strategy, when k 2 � = 2 n 2 the radial and tangential compo-

nents of the maneuvers are correlated through the following relationships ˜ 

 1 f y, 1 + 

˜ U 2 f y, 2 = μ�δa des (71) 

f x, 1 sin ̃

 U 1 = f x, 2 sin ̃

 U 2 . (72) 
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In the case in which 

˜ U 1 = 

˜ U 2 and �δa des = 0, the difference of the x -component of thrust
nd the sum of the y -component of thrust must be zero in order to accomplish the reconfig-
ration. 

Finally, it is noteworthy that another class of continuous solutions can be derived consid-
ring the following maneuvers’ locations ̂ 

 1 = U x + k 1 π , ̂ U 2 = 

̂ U 1 + k 2 π. (73)

The corresponding thrust magnitudes are omitted here for brevity. However they can be
etermined by solving the system of equations (31) for f x , j and f y , j with j = 1 , 2. It is straight-
orward that a similar choice for the separation of the impulses leads to a feasible impulsive
ontrol solution. 

.2.4. T-T maneuver 
When the in-plane reconfiguration is performed through a couple of pure tan-

ential maneuvers, the analytical solutions of Eq. (31) (with f x, j = 0, j = 1 , 2)
nd Eq. (32) (with �v x, j = 0, j = 1 , 2) do not exist. This means that an itera-
ive algorithm is required to determine the thrust/impulses amplitude as well as
he maneuvers’ location over time. However, the problem might be simplified by
ecognizing that the unknowns f y , j and 

̂ U j are linearly dependent through the
qs. (31a-b) and, similarly, �v y, j and U j through the Eqs. (32a-b) . In light of this, the mag-
itude of impulsive and extended maneuvers can be determined as a function of maneuvers’
ocations as follows 

f y, 1 = 

βW c a c n c 

(
βW c �δλdes + �δa des 	c (u T − ̂ U 2 ) 

)
4	c ̃  U 1 ( ̂  U 1 − ̂ U 2 ) 

(74)

f y, 2 = −
βW c a c n c 

(
βW c �δλdes + �δa des 	c (u T − ̂ U 1 ) 

)
4	c ̃  U 1 ( ̂  U 1 − ̂ U 2 ) 

(75)

v y, 1 = 

a c n c 

(
βW c �δλdes + �δa des 	c (u T − U 2 ) 

)
2	c (U 1 − U 2 ) 

(76)

v y, 2 = −
a c n c 

(
βW c �δλdes + �δa des 	c (u T − U 1 ) 

)
2	c (U 1 − U 2 ) 

(77)

The maneuvers’ locations, ̂ U j and U j for finite-tme and impulsive schemes, can
e obtained by substituting Eqs. (74) and (75) and Eqs. (76) and (77) into
qs. (31c-d) and Eqs. (32c-d) respectively, and solving numerically. In this study the Mat-

ab f solve routine provided by the Global Optimization Toolbox [33] and implementing the
evenberg–Marquardt algorithm [34] is used to solve Eqs. (31c-d) and Eqs. (32c-d) . The

terative algorithm is initialized by analyzing the error functions, J con and J imp , defined as
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follows 

F con = 

[ ∑ 2 
j=1 

(
sin ̃

 U j cos ̂  U j f y, j 
) − μ�δe x,des ∑ 2 

j=1 

(
sin ̃

 U j sin ̂

 U j f y, j 
) − μ�δe y,des 

] 

= 

[
0 

0 

]
(78) 

J con = 

√ 

F 

T 
con F con (79) 

and 

F imp = 

[ ∑ 2 
j=1 

(
2 cos ̂  U j �v y, j 

) − n c a c �δe x,des ∑ 2 
j=1 

(
2 sin ̂

 U j �v y, j 
) − n c a c �δe y,des 

] 

= 

[
0 

0 

]
(80) 

J imp = 

√ 

F 

T 
imp F imp (81) 

The above choice allows one to determine an initial guess that guaranteees the convergence 
of the numerical algorithm in a limited number of iterations. 

3.3. Out-of-plane reconfiguration 

The out-of-plane reconfiguration problem foresees the correction of only the relative in- 
clination vector, thus it requires the solution of two nonlinear equations (i.e., the last two
rows of Eq. (25) or Eq. (26) for piecewise continuous and impulsive strategies respectively) 
in (1 + 1) n unknowns (i.e., the cross-track component of thrust or impulses vectors and the
corresponding maneuver location). 

. In order to achieve the desired x and y components of the relative inclination vector at
the end of the maneuver, the control solution must include a component in the cross-track
( z ) direction. In fact, the only way to modify the difference of inclinations of the satellites’
orbits (i.e., δi x ) is to provide a control action along the z -axis of the deputy RTN frame, as
it is evident from the analysis of the linearized equations of relative motion (see Eq. (13) ). 

Assuming that a single time-finite cross-track maneuver is performed by the deputy satellite, 
i.e. F 1 = [0, 0, f z, 1 ] T , the equations governing the change of relative inclination vector are
(see Eq. (25) ) 

f z, 1 cos ˆ u 1 sin ˜ u 1 = 

W c n c a c 

2 

�δi x,des , (82a) 

2 f z, 1 
K c T c 
W c 

(
(u T − u 1 , f ) cos ˆ u 1 sin ˜ u 1 + sin ˆ u 1 sin ˜ u 1 − sin u 1 , 0 ̃  u 1 

)
+ (82b) 

f z, 1 sin ˆ u 1 sin ˜ u 1 = 

W c n c a c 

2 

�δi y,des (82c) 

where u 1,0 and u 1, f are the mean argument of latitude of the chief orbit at the instants t 1,0 and
t 1, f , respectively, whereas ̂ u 1 and ˜ u 1 are defined in Eq. (29) . Similarly, considering a single
out-of-plane impulse, the change of mean ROE is governed by the following set of equations,
[5] 

�v z, 1 cos u 1 = n c a c �δi x,des (83a) 
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sin u 1 + 2 

K c T c 
W c 

(
u T − u 1 

)
cos u 1 

)
�v z, 1 = n c a c �δi y,des (83b)

As for the in-plane case, Eqs. (82a-b) reduce to Eqs. (83a-b) when ˜ u z → 0. 
A full analytical solution does not exist in this case, neither for impulsive or extended

aneuvers models. However, �v z, 1 and f z ,1 can be computed as a function of the impulses’
ocation and maneuver mid-point by inverting Eqs. (82a-b) respectively, 

f z, 1 = 

W c n c a c 

2 cos ˆ u 1 sin ˜ u 1 
�δi x,des (84)

�v z, 1 = 

n c a c 

cos ˆ u 1 
. (85)

The location of the impulsive and extended maneuver can be found by substituting
qs. (84) and (85) into Eqs. (82b) and (83b) to obtain the following transcendental ex-
ressions, 

 

K c T c 
W c 

(
u T − u 1 , f + tan ˆ u 1 − sin u 1 , 0 ̃  u 1 

cos ˆ u 1 sin ˜ u 1 

)
+ tan ˆ u 1 = 

�δi y,des 

�δi x,des 
(86)

 

K c T c 
W c 

(u T − u 1 ) + tan u 1 = 

�δi y,des 

�δi x,des 
(87)

Eqs. (86) and (87) can be numerically solved by using an iterative algorithm. The re-
ults obtained with the Matlab built-in routine fzero are presented in Section 4 . A good
nitial guess that guarantees a fast convergence of the iterative approach is ˆ u 1 ,z = u 1 ,z =
an 

−1 (�δi y,des / �δi x,des ) , which is the location of maneuver corresponding to the single im-
ulse maneuver scheme for unperturbed orbits, as proved in [5] and [23] . However, a graphical
ethod is used in this study to define the initial guess for the fzero solver. In further details

he follolwing error functions, 

 cont = 2 

K c T c 
W c 

(
u T − u 1 , f + tan ˆ u 1 − sin u 1 , 0 ̃  u 1 

cos ˆ u 1 sin ˜ u 1 

)
+ tan ˆ u 1 − �δi y,des 

�δi x,des 
(88)

J imp = 2 

K c T c 
W c 

(u T − u 1 ) + tan u 1 − �δi y,des 

�δi x,des 
(89)

re computed varying the variables ˆ u 1 and u 1 , and the corresponding zeros are graphically
etermined to be used as initial guess for the numerical solver. 

. Numerical validation of the control solutions 

In this section the relative trajectories obtained using the developed control solutions are
resented, pointing out their performances in terms of maneuver cost and accuracy. Fig. 2
llustrates the simulation setup exploited for the validation of the proposed maneuvering so-
utions. 

First, the initial mean orbit elements of the chief and the mean ROE state are set. Then, the
nitial mean orbit elements of the deputy are computed using the identities (8) . A numerical
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Fig. 2. Scheme for numerical validation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

propagator including the Earth’s oblateness J 2 effects is used to obtain the history of position
and velocity of chief and deputy spacecraft expressed in the Earth Centered Inertial (ECI)
reference frame (J2000). The initial Cartesian states of both satellites are derived using the
linear mapping developed by Brouwer and Lyddane to transform the mean orbit elements 
into osculating and the nonlinear relations between Cartesian state and osculating elements 
[35–37] . The control thrust profile is projected in ECI and added as external accelerations to
the deputy’s motion. After the simulation, the absolute position and velocity of the spacecraft 
are converted into the mean orbit elements to compute the accuracy at the end of the maneuver,
defined as 

ε �δαk (T ) = 

�δαnum 

k (T ) − �δαk,des 

| �δαk,des | a c (t 0 ) , k = 1 , . . . , 6 . (90)

To compare the maneuvering performances deriving from impulsive and finite-time control 
strategies, the instantaneous velocity change computed by the impulsive scheme, �v j,i with 

i = x, y, z, is spread over a finite-time maneuver through the following relationship 

f imp 
j,i = 

�v j,i W c 

2 ̃  u j 
(91) 

In fact, the impulsive scheme implies an instantaneous variation of the deputy velocity 

with no change of position, i.e. an instantaneous change of mean ROE. Then, the impulsive
approach can be adopted only when the firing interval is small as compared with the orbital
period, otherwise it might fail in achieving the desired level of accuracy. However, many real
applications might need a long time maneuver in order to meet some specific constraints, e.g.
the maximum thrust provided by onboard actuators, requiring the �v j,i -to- f imp 

j,i conversion in
Eq. (91) . 

In order to verify the effectiveness of the developed control solutions two test cases are
carried out, one for in-plane and the other for out-of-plane reconfiguration problem defined 

in the previous sections. 

4.1. In-plane reconfiguration control problem 

This section presents the trajectories obtained using the 2- and 3-maneuver strategies de- 
scribed in Section 3.2 . The initial conditions used in the simulations below are listed in
Tables 1 and 2 (see first row), along with the desired mean ROE vector. Note that the initial
mean state of the chief is expressed in terms of quasi-nonsingular orbital elements, [26] . The
chief orbit is assumed to be circular at 200 km of altitude and the reconfiguration maneuver
lasts 6 chief orbital periods, i.e. u T = 12π corresponding to T = 528 . 6 (min), with the initial
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Table 1 
Initial mean chief orbit. 

a c (km) e xc (dim) e yc (dim) i c (deg) �c (deg) f c ,0 (deg) 

6578 0 0 8 0 0 

Table 2 
Initial and desired mean relative orbits. 

a c δa a c δλ a c δe x a c δe y 
(m) (m) (m) (m) 

Initial relative orbit, δα0 30 −11 ×10 3 0 −50 
Desired relative orbit, δαdes 0 −10.5 ×10 3 45 70 

Table 3 
Design parameters for in-plane continuous strategies. 

2 ̃ u 1 (rad) 2 ̃ u 2 (rad) 2 ̃ u 3 (rad) T (orbits) k j (dim) 

R-R π 1.5 π 0 6 [1,3] 
RT-RT π 1.5 π 0 6 [1,3] 
T-T π 1.5 π 0 6 - 
T-T-T π /2 π 1.5 π 6 [1,4,7] 

m  
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t  
ean argument of latitude equal to zero, i.e. u 0 = 0. The values of δα0 and δαdes lead to
 c �δ ˆ αdes = a c [�δa des , �δλdes , �δe x,des , �δe y,des ] T = [ −0. 03 , 2. 2, 0. 0394, 0. 11968] T (km). 

Table 3 reports the durations, ˜ u j with j = 1 , ..., 3 , as well as the locations, k j , used in
he analyses for all maneuvers’ combinations, i.e. R-R, RT-RT, T-T, and T-T-T. Note that
he parameters k j are not reported in the table for the T-T in-plane maneuver. In fact, this
ontrol scheme does not enable finding the maneuver location analytically, as discussed in
ection 3.2.4 . 

Fig. 3 shows the mean ROE state variation over time for all four in-plane extended ma-
euvers. Note that the ROE are scaled by the final desired ROE correction as 

 �δαk (t ) = 

�δαnum 

k (t ) − �δαk,des 

| �δαk,des | a c (t 0 ) , k = 1 , . . . , 6 . (92)

From the figure, the piecewise continuous solutions allow achieving the desired relative
onfiguration in the defined interval of time. Note that the R-R scheme is not able to control
he variation of mean relative semi-major axis. With reference to Eq. (31) , it is clear that
n along-track maneuver is necessary to modify the orbital energy of the deputy and, then,
he mean relative semi-major axis. In addition, let us recall that the maneuvers’ locations
ssociated with the T-T strategy are computed using the Matlab routine fsolve , as discussed
n Section 3.2.4 . The initial guess for the iterative algorithm was determined by analyzing the
rror functions, J con and J imp reported in Eqs. (79) and (81) . Fig. 4 (a) and (b) depict J con and
 imp when 

̂ U 1 , ̂ U 2 ∈ [ Cu T + 

˜ U 1 , u T − ˜ U 2 ] with 

̂ U 2 > 

̂ U 1 . The red point indicates the selected
nitial guess and corresponds to 

̂ U 1 ,ig = 16 . 63 (rad) and 

̂ U 2,ig = 21 . 51 (rad) for both extended
nd impulsive T-T maneuvers. This choice allows the iterative algorithm to converge in 14
terations. 

Fig. 5 illustrates the evolution of the relative position projected on the along-track/cross-
rack plane of the RTN reference plane. In the same figure the extended maneuvers are
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a b

c d

Fig. 3. Accuracy of the in-plane extended maneuvers: (a) R-R, (b) RT-RT, (c) T-T, (d) T-T-T. 

 

 

 

 

 

depicted (see magenta, green and cyan markers corresponding to the first, the second and 

the third maneuver). The initial and the aimed relative positions are indicated by the red
and black markers, respectively. Finally, Fig. 6 shows the thrust profile along the x and y
directions of the RTN reference frame. It is worth noting that the radial maneuvers provide
the highest values of accelerations (e.g., the R-R maneuver requires a maximum acceleration 

of | f max 
x | = 2. 62 × 10 

−7 (km/s 2 ), whereas RT-RT requires a maximum acceleration of | f max 
x | =

0. 93 × 10 

−7 (km/s 2 )). 
The results in terms of maneuver cost are summarized in Tables 4 and 5 for finite-time and

impulsive solutions, respectively. Given the thrust value from the piecewise control model, 
the total maneuver delta-V is computed using the following expression 

�v T = 

n ∑ 

j=1 

2 f x, j ̃  u j 

W c 
+ 

2 f y, j ̃  u j 

W c 
+ 

2 f z, j ̃  u j 

W c 
. (93) 
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Fig. 4. Error functions for T-T solution derivation: (a) J con , (b) J imp . 
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a

b

c

d

Fig. 5. x − y trajectory of the in-plane extended maneuvers: (a) R-R, (b) RT-RT, (c) T-T, (d) T-T-T. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of this article.) 

 

 

From the results summarized in Tables 4 and 5 , it can be observed that the finite-duration
maneuver solutions require higher delta-V than the corresponding impulsive ones, except for 
the R-R scheme that provides the same delta-V for continuous and impulsive approaches, 
as proved in Section 3.2.2 . In addition, it is noteworthy that the maximum cost is given
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Fig. 6. Thrust profile of the in-plane extended maneuvers: (a) R-R, (b) RT-RT, (c) T-T, (d) T-T-T. 

Table 4 
Costs of the in-plane extended maneuvers. 

R-R RT-RT T-T T-T-T 

�v x, 1 (m/s) −0. 261 0.175 0 0 
�v x, 2 (m/s) −1 . 04 0.369 0 0 
�v y, 1 (m/s) 0 −0. 0849 −0. 117 0.0138 
�v y, 2 (m/s) 0 0.0671 0.0992 −0. 103 
�v y, 3 (m/s) 0 0 0 0.0710 
�v T (m/s) 1.30 0.696 0.216 0.187 

b  

t
 

a  

a  
y 2-maneuver radial strategy, wheras the minimum delta-V is obtained by the 3-maneuver
angential scheme, for both impulsive and finite-time approaches. 

Finally, Table 6 shows a comparison in terms of accuracy between the piecewise continuous
nd impulsive solutions. Here, the impulses, �v x, j and �v y, j , given by the impulsive solutions
re transformed in a finite-time maneuver through Eq. (91) . The last column in Table 6 lists
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Table 5 
Costs of the in-plane impulsive maneuvers. 

R-R RT-RT T-T T-T-T 

�v x, 1 (m/s) −0. 577 −3 . 37 × 10 −3 0 0 
�v x, 2 (m/s) −0. 726 −3 . 37 × 10 −3 0 0 
�v y, 1 (m/s) 0 −0. 0462 −0. 105 −0. 0181 
�v y, 2 (m/s) 0 0.0284 0.0869 −0. 0281 
�v y, 3 (m/s) 0 0 0 0.0284 
�v T (m/s) 1.30 0.0813 0.192 0.0746 

Table 6 
In-plane accuracies of extended and impulsive maneuvers. 

| ε �δa ( T )| | ε �δλ( T )| | ε �δe x (T ) | | ε �δe y (T ) | εT 

(m) (m) (m) (m) (m) 

Extended maneuvers 

R-R - 1 . 84 × 10 −3 1 . 30 × 10 −3 1 . 49 × 10 −3 2. 70 × 10 −3 

RT-RT 1 . 55 × 10 −3 2. 37 × 10 −3 4. 86 × 10 −3 5 . 30 × 10 −4 5 . 64 × 10 −3 

T-T 1 . 50 × 10 −3 1 . 11 × 10 −3 4. 72 × 10 −3 2. 32 × 10 −4 5 . 08 × 10 −3 

T-T-T 1 . 51 × 10 −3 1 . 12 × 10 −3 4. 74 × 10 −3 3 . 25 × 10 −4 5 . 11 × 10 −3 

Impulsive maneuvers 

R-R - 1 . 70 × 10 −3 2.00 1.99 2.82 
RT-RT 1 . 48 × 10 −3 1 . 11 × 10 −3 4. 64 × 10 −1 4. 92 × 10 −1 6 . 76 × 10 −1 

T-T 1 . 51 × 10 −3 1 . 12 × 10 −3 7 . 47 × 10 −1 5 . 54 × 10 −1 9 . 30 × 10 −1 

T-T-T 1 . 49 × 10 −3 1 . 12 × 10 −3 4. 23 × 10 −1 4. 25 × 10 −1 6 . 00 × 10 −1 

Feasible Solutions
Initial Guess

Fig. 7. Error function for the derivation of constrained T-T-T solution. 

 

the total error defined as 

ε T = 

√ 

(| ε �δa (T ) | ) 2 + (| ε �δλ(T ) | ) 2 (| ε �δe x (T ) | ) 2 + (| ε �δe y (T ) | ) 2 . (94) 

The piecewise control solution provides an accuracy 2 orders of magnitude greater than 

the corresponding impulsive solution. More specifically, the impulsive strategy produces a 
high error on the final relative eccentricity, while it provides the same accuracy level on
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he mean relative semi-major axis and longitude. This fact can be justified by looking
t the equations governing the mean ROE variation for finite-time and impulsive models,
qs. (31) and (32) respectively. In fact, substituting Eq. (91) into Eq. (31) , Eqs. (31a-b) and
qs. (32a-b) coincide. On the contrary, the equations governing the change of relative eccen-

ricity vector for both models are not the same when the mapping (91) is used. 

.1.1. T-T-T maneuver with thrust constraint 
This section is meant to present the results obtained by the T-T-T control strategy

ith thrust constraint discussed in Section 3.2.1 . Without affecting the generality of the
ethod, the scenario described in Section 4.1 (see Tables 1 and 2 ) is considered. The

nalytical approach gives the thrust profile showed in Fig. 10 (d), with the accelerations
f y, 1 = 1 . 047 × 10 

−8 (km/s 2 ), f y, 2 = −3 . 88 × 10 

−8 (km/s 2 ), and f y, 3 = 1 . 791 × 10 

−8 (km/s 2 )
ocated at ̂ U 1 = arctan ( 

�δe y,des 

�δe x,des 
) + π (rad), ̂ U 2 = 

̂ U 1 + 4π (rad), and 

̂ U 3 = 

̂ U 1 + 7 π (rad). The
pdated T-T-T control scheme is computed by numerically solving Eq. (48) through the Matlab
uilt-in routine fzero . Fig. 7 illustrates the error function obtained imposing f max = 5 × 10 

−8

m/s 2 and 

˜ U 

up 
3 ∈ (0, u T ) . The green markers in the figure indicate the values of ˜ U 3 cor-

esponding to the feasible solutions (see Eq. (51) ). The initial guess ˜ U 

up 
3 ,ig = 1 . 605 (rad)

llows fzero routine to converge in 6 iterations and leads to the values of maneuvers’
urations ˜ U 

up 
1 = 0. 737 (rad), ˜ U 

up 
2 = 2. 552 (rad) and 

˜ U 

up 
3 = 1 . 605 (rad), corresponding to

t up = [�t 1 up , �t 2 up , �t 3 up ] = [20. 71 , 71 . 77 , 45 . 14] (min). Fig. 8 shows the updated thrust
rofile (dashed line) along with the analytical control solution (solid line). From this figure,
t is clear that the updated T-T-T maneuver requires a higher delta-V than the analytical solu-
ion, i.e. �v up 

T = 0. 412 (m/s). Fig. 9 shows the trajectories projected in the x − y plane of the
TN reference plane for updated (dashed line) and analytical (solid line) solutions. Finally,
able 7 reports the value of maneuver accuracy corresponding to the new control solution.
s can be observed, the updated control solution guarantees the achievement of the desired
OE correction with the same accuracy of the analytical one. 
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Fig. 9. x − y trajectory of the updated T-T-T extended maneuvers. 

Table 7 
Accuracy for updated T-T-T maneuver scheme. 

ε �δa ε �δλ ε �δe x ε �δe y εT 

(m) (m) (m) (m) (m) 

T-T-T 1.47e-3 1.09e-3 4.48e-3 2.37e-4 4.84e-3 

Table 8 
Initial mean chief orbit. 

a c (km) e xc (dim) e yc (dim) i c (deg) �c (deg) f c (deg) 

6828 0 0 40 0 0 

Table 9 
Initial and desired mean relative orbits. 

a c δi x a c δi y 
(m) (m) 

Initial relative orbit, δα0 5 70 
Desired relative orbit, δαdes 40 120 

 

 

 

 

 

 

 

 

 

 

4.2. Out-of-plane reconfiguration control problem 

In this section, the results relative to the out-of-plane reconfiguration obtained by a single
cross-track maneuver (N) are presented. Here, the chief moves on a circular orbit at an altitude
of 450 (km) and an inclination of i = 40 (deg) (see Table 8 ). The reconfiguration maneuver
has to occur in 6 chief orbital periods, i.e. u T = 12π corresponding to T = 560. 4 (min).
The initial mean argument of latitude is assumed to be zero, i.e. u 0 = 0. The final desired
mean ROE is listed in Table 9 . Accordingly, the values of δα0 and δαdes yield the correc-
tion of mean ROE, a c �δ ˆ αdes = a c [�δi x,des , �δi y,des ] T = [35 , 49 . 9] T (m). Here, a maneuver
duration of 70.05 (min) is assumed, corresponding to ˜ u 1 = 1 . 5 π (rad). As discussed in Sec-
tion 3.3 , the location of the cross-track maneuver has to be determined by solving numerically
Eqs. (82) and (83) for finite-time and impulsive methodologies respectively. Recall that the 
Matlab built-in routine fzero is exploited to solve the aforementioned nonlinear equations in 

the unknows ˆ u j and u j . A parametric analysis of the error functions reported in Eq. (86) and
Eq. (87) is carried out yielding ˆ u 1 ,ig = u 1 ,ig = 16 . 65 (rad). 
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Fig. 10. Accuracy (a) and thrust profile (b) for N extended maneuver. 
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Fig. 11. z − x trajectory of the out-of-plane (N) extended maneuver. 
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Fig. 10 depicts the mean ROE variation over the maneuver interval ( Fig. 10 (a)) and the
orresponding thrust profile ( Fig. 10 (b)) along the cross-track direction of the RTN refer-
nce frame. The obtained amplitude of finite-time maneuver is f z, 1 = −5 . 368 × 10 

−8 (km/s 2 ).
ig. 11 illustrates the trajectory projected on the coss-track/radial plane of the RTN reference
rame, along with its location. The initial and the aimed relative positions are indicated by
he red and black markers, respectively. The derived piecewise continuous and impulsive so-
utions provide a delta-V of �v z = −2. 2563 × 10 

−1 (m/s) and �v z = −6 . 7801 × 10 

−2 (m/s)
espectively. Again, the impulsive solution is less demanding in terms of delta-V. However,
hen the impulse is converted into a finite-duration maneuver through Eq. (91) , a decreased

ccuracy is achieved as compared with that obtained using the finite-time model. As showed
y the results listed in Table 10 , the impulsive approach provides an error at the end of the

aneuvering interval, ε T = 

√ 

(| ε �δi x (T ) | ) 2 + (| ε �δi y (T ) | ) 2 , two orders of magnitudes higher

han the one given by the finite-time strategy. 
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Table 10 
Out-of-plane accuracies of extended and impulsive maneuvers. 

| ε �δi x (T ) | | ε �δi y (T ) | εT 

(m) (m) (m) 

Extended maneuver 
N 1 . 07 × 10 −3 7 . 86 × 10 −4 1 . 32 × 10 −3 

Impulsive maneuver 
N 7 . 00 × 10 −1 7 . 00 × 10 −1 9 . 90 × 10 −1 

 

 

 

 

 

 

 

5. Conclusion 

This paper addressed the spacecraft formation reconfiguration problem over a limited and 

defined interval of time by using impulsive and extended maneuver strategies, in near-circular 
J2-perturbed orbits. The analytical impulsive and piecewise continuous control solutions for 
in-plane and out-of-plane reconfigurations (i.e. the maneuvers’ locations and the corresponding 

magnitudes) have been derived by inverting the closed-form solution of relative dynamics, pa- 
rameterized through the relative orbit elements. More specifically, 2- and 3-maneuver schemes 
have been investigated for the in-plane reconfiguration, whereas single maneuver strategy have 
been considered for the out-of-plane reconfiguration. 

It has been rigorously proven that the piecewise continuous solutions converge to the 
impulsive one when the durations of the maneuvers tend to zero. Moreover, special focus has
been given to the range of applicability of the proposed solutions. It has been observed that
the extended maneuver approach allows increasing the domain of the solution by considering 

the maneuver duration as additional design paramenter. 
Finally, numerical simulations have been carried out to assess the effectiveness of the 

derived solutions. A critical comparison of continuous and impulsive schemes have been 

performed to show the benefits of considering the dynamical effect of thruster firing in the
derivation of the control solution. It has been showed that, while the impulsive strategy
requires lower delta-V for formation maneuvering, the piecewise continuous approach always 
guarantees a higher accuracy, reducing the relative positon and velocity errors at the end 

of reconfiguration maneuver. In further details, the piecewise control solution provides an 

accuracy 2 orders of magnitude greater than the corresponding impulsive one. Then, the thrust
profile can be computed according to the new analytical piecewise control solution that, thanks
to its negligible computational burden, is ideally suited for an onboard implementation. 

Possible future works include a thorough analysis of optimality of the derived control 
solutions as well as the extension of such piecewise continuous solutions for orbits with an
arbitrary eccentricity, perturbed by the atmospheric drag and solar radiation pressure. 
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Appendix A. Control influence matrix �

The elements of control influence matrix �F (see Eq. (6) ) are 

γ13 = γ41 = γ51 = γ52 = γ62 = 0 
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[  
11 = 

2e d s f d 
n d ηd a c 

, γ12 = 

2(1 + e d c f d ) 

n d ηd a c 

21 = − ηd e d c f d 
a d n d (1 + ηd ) 

− 2η2 
d 

a d n d (1 + e d c f d ) 

22 = − ηd e d [(2 + e d c f d ) s f d ] 

a d n d (1 + ηd )(1 + e d c f d ) 

23 = − ηs θd (c i c − c i d ) 

a d n d (1 + e d c f d ) s i d 

31 = 

ηd s θd 

a d n d 
, γ32 = 

ηd (2 + e d c f d ) c θd + ηd e xd 

a d n d (1 + e d c f d ) 

33 = 

ηd e yd s θd cotg(i d ) 

a d n d (1 + e d c f d ) 

41 = −ηd c θd 

a d n d 
, γ42 = 

ηd (2 + e d c f d ) s θd + ηd e yd 

a d n d (1 + e d c f d ) 

43 = − ηd e xd s θd cot (i d ) 

a d n d (1 + e d c f d ) 

53 = 

ηd s θd 

a d n d (1 + e d c f d ) 
, γ63 = 

ηd c θd s i c 
a d n d (1 + e d c f d ) s i d 

(A.1)

here f d and θd represent the true anomaly and true argument of latitude of the deputy
espectively. 
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