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Abstract 

 

The increase in use of small satellites since their initial development has led to many missions with simple 

attitude and orbit control requirements. For example, a small Earth-imaging satellite may require keeping one 

face nadir pointing within 10 degrees while maintaining a slot in a low Earth orbit within ±100 km. However, 

legacy attitude and orbit control techniques, including reaction wheels and thrusters, can easily cost tens of 

thousands of dollars and provide more control capability than is needed for such a mission. 

This paper introduces a Drag Maneuvering Device (DMD) that could replace such systems on many mis- 

sions. Consisting of four retractable tape spring booms deployed in a dart configuration, the DMD can actively 

modulate the drag area of the host satellite for orbital maneuvering and post-mission disposal while providing 

passive three-axis attitude stability, using aerodynamic and gravity gradient torques. Magnetorquers integrated 

into the DMD damp attitude oscillations and help ensure that the satellite stabilizes with the correct face nadir 

pointing. The current study provides an overview of the DMD design and details the results of the attitude and 

orbit simulations used to characterize the DMD performance and devise a control and operations methodology. 

Emphasis is placed on the attitude stability properties of the DMD in this work. 

 

 Introduction 

 
Attitude and orbit control have been important 

considerations since the early days of space explora-
tion (Roberson, 1979). Traditionally, attitude control 
has been performed using reaction wheels (Steyn and 
Hashida, 1999), control moment gyros, and thrusters; 
and orbit control has been performed using thrusters 
(Curtis, 2009; Markley and Crassidis, 2014). These 
legacy attitude and orbit control systems have been  
 

 

complicated and expensive, but they are also highly 

accurate and capable of rapid response, making them 

well-suited to large, high-budget satellite missions. 

Three-axis attitude control systems have been devel-

oped for small satellites such as CubeSats in recent 

years (Heidt et al., 2000; Mason et al., 2016), but 

these systems can still cost tens of thousands of dol-

lars. Alternative attitude and orbit control methodol-

ogies using environmental forces and torques have 

been proposed (Shrivastava and Modi, 1983), and 
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have become particularly valuable in recent years 

with the introduction of small satellites that lack the 

volume, power, or budget for legacy systems.  

Aerodynamic drag force is a naturally occurring 

effect that is dependent on the satellite’s orientation, 

geometry, and orbital regime (Shrivastava and Modi, 

1983). Aerodynamic drag has been used for orbital 

maneuvering, and methods for using aerodynamic 

torques for attitude control have been investigated in 

prior literature (Pastorelli et al., 2015). Gravity gradi-

ent torques are dependent on the spacecraft moments 

of inertia, and can also be harnessed for attitude sta-

bilization through the use of a gravity gradient boom 

(Arduini and Baiocco, 1997; Curtis, 2009). In low 

Earth orbit, electromagnets (called magnetorquers) 

embedded in the satellite can interact with the Earth’s 

magnetic field to impart torques on the satellite. 

Magnetorquers have commonly been used for de-

tumble and for reaction wheel desaturation (Silani 

and Lovera, 2005). The ZA-AeroSat CubeSat (Steyn 

and Kearney, 2014) used a passively aerodynamically 

stable spacecraft design in tandem with magne-

torquers and a single momentum wheel in a y- 

Thompson spin configuration to provide attitude sta-

bility. A gravity gradient boom was employed by the 

UOSAT-2 mission along with magnetorquers to per-

form two-axis attitude stabilization with one axis na-

dir-pointing (Hodgart, 1989). 

Though environmental torques have been used on 

prior satellite missions for attitude control, and vari-

ous control solutions have been investigated in the 

literature, most current solutions either do not pro-

vide three-axis attitude control or require additional 

actuators, like thrusters or wheels, to provide com-

plete control that is robust and reliable. Methods that 

do investigate three-axis attitude control generally 

require costly sensors to provide three-axis attitude 

determination. At a minimum, Kalman filtering of 

magnetometer measurements is needed, coupled with 

knowledge of the spacecraft’s position and the 

Earth’s magnetic field at that position to determine 

the spacecraft’s attitude (Hodgart, 1989). This im-

poses an additional computational burden and re-

quires precise magnetometer calibration and a means 

of satellite position determination. Techniques that 

use aerodynamic torques for ram-alignment (Pasto-

relli et al., 2015), gravity gradient torques for zenith 

alignment (Arduini and Baiocco, 1997), or magnetic 

torques for magnetic field alignment (Kumar et al., 

1995) all leave one axis of rotation unconstrained.  

 To date, there is no device or control solution to 

the authors’ knowledge that facilitates aerodynami-

cally-based orbital maneuvering while enabling 

three-axis attitude stabilization using environmental 

torques without the need for attitude determination. 

This paper introduces a Drag Maneuvering 

Device (DMD) that provides such an attitude and 

orbit control solution. While the use of aerodynamic, 

gravity gradient, and magnetic torques to facilitate 

attitude stability is not itself a novel concept, the 

combined use of these torques by the DMD for semi-

passive three-axis attitude stability is. The DMD uses 

aerodynamic torques to align the z-axis (see Figure 1) 

with the velocity direction, while simultaneously 

generating a gravity gradient effect through 

differential boom deployment to align an axis in the 

x-y plane with the nadir vector. Fully and partially 

deployed DMDs integrated into two-unit (10 x 10 x 

23 cm) CubeSats are shown in Figure 2. 

 

 

Figure 1. Drag Maneuvering Device (DMD) CAD model and proto-

type. 

 

 

Figure 2. Partially and fully deployed DMD mounted on a 2U CubeSat. 
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Use of only gravity gradient effects would allow 

an unconstrained rotation about the nadir-pointing 

axis (Hodgart, 1989), while use of solely aerodynam-

ic effects would allow an unconstrained rotation 

about the ram-aligned axis (Underwood et al., 2019). 

However, use of both effects simultaneously creates 

an equilibrium condition with all three axes con-

strained. To aid in the attitude stabilization, the mag-

netorquer BDot de-tumble controller (Lovera, 2015) 

can be used, which does not require magnetometer 

calibration or knowledge of the satellite’s position. 

To the author’s knowledge, no other such device ex-

ists that provides this kind of semi-passive, three-axis 

attitude stability without the need for attitude deter-

mination, wheels, or thrusters. The design, operation, 

and control methodology behind the DMD are dis-

cussed in this paper, and a 6DOF (degree of free-

dom), high fidelity attitude and orbit model is intro-

duced to verify the semi-passive, three-axis attitude 

stability properties of the DMD. 
 

 Drag Maneuvering Device (DMD) Design  
 

The Drag Maneuvering Device (DMD), formerly 

called the Drag De-Orbit Device (D3) (Guglielmo et 

al., 2019), consists of four tape spring booms, each 

3.7 m long and 4 cm wide, inclined at a 20-degree 

angle relative to the face of the satellite to which the 

DMD is attached (x-y plane), as shown in Figures 1 

and 2. The booms are deployed in this shuttlecock 

configuration to provide passive aerodynamic attitude 

stability. Three magnetorquers (one along each axis) 

are wrapped around the blue 3D-printed brackets 

shown in the right-side image in Figure 1 to aid in 

attitude stabilization. Depending on the structure of 

the host CubeSat and the presence of magnetorquers 

elsewhere on the satellite, the DMD can optionally be 

built without the adapter stage and magnetorquers, 

reducing its length in the z-direction from 11.3 cm to 

7 cm. Because the torques acting on the DMD system 

will be small (micro-Newton-meters) and of a low 

frequency, these torques are not expected to induce 

significant boom oscillations. Additionally, one pair 

of opposing booms can be partially retracted while 

the other pair is fully deployed, to create a minimum 

moment of inertia axis along the direction of the de-

ployed booms. Gravity gradient torques will then 

work to passively align this axis with the nadir or 

zenith vector. Running the BDot de-tumble law (Ar-

duini and Baiocco, 1997) using magnetorquers em-

bedded in the DMD serves to damp initial satellite 

rotation rates and the attitude oscillations that will 

persist after boom deployment. The combination of 

aerodynamic, gravity gradient, and magnetic torques 

generated by the DMD provide three-axis attitude 

stabilization and ensure that a single face of the satel-

lite is pointing toward Earth with negligible power 

usage after the initial detumble and stabilization. 

As a bonus, the DMD booms can be collectively 

deployed or retracted to vary the cumulative aerody-

namic drag experienced by the satellite, which can be 

used for orbital maneuvering, constellation phasing, 

collision avoidance, and controlled re-entry (Omar 

and Bevilacqua, 2019). No other device, to the au-

thor’s knowledge, leverages both aerodynamic and 

gravity gradient torques to provide three-axis attitude 

stabilization with no unconstrained axis of rotation. 

In addition, because the BDot magnetorquer control 

law is the only active control utilized during the atti- 

tude stabilization, complete attitude determination is 

not necessary. This greatly simplifies the control log-

ic and eliminates the need for magnetometer calibra-

tion, position knowledge, or onboard lookup tables 

with magnetic field information such as the IGRF 

(International Geomagnetic Reference Field) 

(Thébault et al., 2015). Each DMD deployer (Figure 

3) contains a brushed DC motor (Faulhaber 1516-

006SR with 262:1 spur gearbox) that drives a drum to 

which a boom is connected. As the motor rotates, the 

boom extends and drives a silicone roller attached to 

the shaft of a rotary encoder that precisely measures 

the amount of boom deployment.  
The DMD attaches to a host CubeSat via a struc-

tural interface adapter that also contains magne-
torquers wrapped around 3D-printed Ultem brackets 
(brackets in blue in Figure 4). The DMD with adapter 
weighs approximately 1.3 kg, increases the un-
deployed size of the host satellite by 1U (10 x 10 x 
11.35 cm), and increases the drag area by up to .5 m2. 
Figure 4 shows a DMD prototype with magnetorquer 
brackets 3D-printed in blue attached to a 1U CubeSat 
structure to conform to the 2U (10 x 10 x 22.7 cm) 
CubeSat form factor. 



Omar, S. R. et al. 

 
Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 1, p. 946 

 

Figure 3. DMD deployer expanded view. 

A key benefit of the DMD is its low cost, ease of 

assembly, and ease of operations compared with tra-

ditional wheel-based, three-axis attitude control sys-

tems. The cost to professionally manufacture or pro-

cure off-the-shelf all DMD components is less than 

$5,000 USD. All machined DMD components were 

designed to be manufacturable with the capabilities 

of the average university machine shop, which reduc-

es the cost of the DMD hardware to under $2,000 

USD. Approximately one week of full-time work is 

required for a student with a typical undergraduate 

engineering education to assemble and test the DMD. 

Though the DMD may appear more mechanically 

complex than a reaction wheel system, it does not 

require the complex interplay between sensors, esti-

mators, controllers, and actuators associated with a 

traditional ADCS system that typically takes a team 

of highly skilled GNC engineers to perfect. It is for 

this reason that wheel-based ADCS units for Cu-

beSats usually cost tens of thousands of dollars and 

are generally beyond the scope of what a university 

team or an inexperienced company can produce (see 

Table 1). 

The mechanical functionality of DMD boom 

deployment, in contrast, can be fully verified on the 

ground and does not require the expertise to assemble 

or test that is needed for conventional ADCS 

systems. Prior laboratory tests conducted on a DMD 

deployer prototype (Guglielmo et al., 2019) showed 

the deployer capable of performing 500 deploy-

retract cycles with no jams or hang-ups, giving 

confidence that the system will perform without 

failure in space. The BDot magnetorquer control law 

is among the simplest of ADCS algorithms and is 

 

Figure 4. Prototype of DMD with CubeSat structure. 

Table 1. DMD Compared to Legacy ADCS Solutions (Small Spacecraft Systems Virtual Institute, 2020) 

 DMD BCT XACT-151 MAI-4002 
CubeSpace 

CubeADCS3 

Cost4 $2k-$5k $100k+ $50k+ $37.4k 

Pointing error <20 deg, 6 deg expected .007 deg 1 deg 1 deg 

Steady state power draw 0 (passive) <4.0 W 1.1W 1.0 W 

Manufacturable at university Yes No No No 

1 https://bluecanyontech.com/components 
2 https://www.adcolemai.com/wp-content/uploads/2019/02/AMA-MAI-400-Datasheet.pdf 
3 https://www.cubespace.co.za/products/integrated-adcs/3-axis/ 
4 BCT XACT and MAI-400 approximate costs based on unofficial conversations with vendors and CubeSat builders 

http://www.adcolemai.com/wp-content/uploads/2019/02/AMA-MAI-400-Datasheet.pdf
http://www.adcolemai.com/wp-content/uploads/2019/02/AMA-MAI-400-Datasheet.pdf
http://www.adcolemai.com/wp-content/uploads/2019/02/AMA-MAI-400-Datasheet.pdf
http://www.cubespace.co.za/products/integrated-adcs/3-axis/
http://www.cubespace.co.za/products/integrated-adcs/3-axis/
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within the capability of an undergraduate student in 

engineering to implement. The low cost and relative 

simplicity of building, testing, and operating the 

DMD make it well suited for university CubeSat 

projects where a satellite face must remain nadir-

pointing for communication or science purposes but 

precise attitude control is not required. Small 

companies without significant GNC expertise that are 

looking to build low-cost satellites without strict 

attitude control requirements may also benefit from 

the DMD. Table 1 provides a comparison of DMD 

cost, performance, and properties to those of off-the-

shelf ADCS units currently available for CubeSats. 

 

 Attitude and Orbit Simulation Framework 

 

To simulate the attitude and orbital dynamics of 

the satellite, a six-degree-of-freedom numerical atti-

tude and orbit propagator was created. The satellite 

state vector was 𝒙 = [𝒓𝑻 𝒗𝑻 𝒒𝑻 𝝎𝑻]𝑇, where 𝒓 is the 

satellite position vector in the ECI (Earth Centered 

Inertial) frame, 𝒗 is the ECI velocity vector, 𝝎 is the 

angular velocity of the satellite body frame with re-

spect to the ECI frame, and 𝒒 is the quaternion defin-

ing the rotation from the ECI frame to the satellite 

body frame. The variable 𝒒 is defined by Crane and 

Duffy (2008) and Wie (2008) as: 

 

 𝒒 = [
𝒆̂ sin(𝜃/2)

cos(𝜃/2)
] = [𝑞1 𝑞2 𝑞3 𝑞4]𝑇 , (1) 

 

such that a rotation of the ECI frame by angle 𝜃 about 

axis 𝒆̂ would align it with the spacecraft body frame. 

At each time step, the state derivative is computed 

and numerically integrated using the RK78 numerical 

integration method (Montenbruck and Gill, 2005). 

The state derivative is calculated as: 

 

 𝒙̇ = [𝒗𝑻 𝒗̇𝑻 𝒒̇𝑻 𝝎̇𝑻]𝑇 , (2) 

 

with the following definitions given by Wie (2008): 

 

 𝒒̇ =
1

2
[

𝑞4 −𝑞3 𝑞2 𝑞1
𝑞3 𝑞4 −𝑞1 𝑞2
−𝑞2 𝑞1 𝑞4 𝑞3
−𝑞1 −𝑞2 −𝑞3 𝑞4

] [

𝜔𝑥

𝜔𝑦

𝜔𝑧

0

], (3) 

 𝝎̇ = 𝑱−𝟏(𝝉𝒏𝒆𝒕 −𝝎× (𝑱𝝎)), (4) 

 

 𝒗̇ =
𝑭𝒏𝒆𝒕

𝑚
. (5) 

 

where 𝑱 is the satellite moment of inertia about the 

center of mass, 𝝉𝒏𝒆𝒕 is the net torque, 𝑭𝒏𝒆𝒕 is the net 

force, and 𝑚 is the satellite mass. In this study, 𝝉𝑛𝑒𝑡 is 

the sum of aerodynamic torque (𝝉𝑝), gravity gradient 

torque (𝝉gg), magnetic torque (𝝉mag), and pseudo-

random disturbance torques (𝝉dist), while 𝑭𝑛𝑒𝑡 is the 

sum of aerodynamic force (𝑭𝑝) and gravitational 

force (𝑭𝑔). Further, 𝝉𝑑𝑖𝑠𝑡 captures the torque effects of 

uncertain parameters such as internal magnetic hyste-

resis, magnetorquer misalignments, inertia uncertain-

ties, imprecise boom deployment levels, and boom 

misalignments. It is expected that 𝝉𝑑𝑖𝑠𝑡 will be signifi-

cantly smaller in magnitude than the primary torques 

that are relied upon for spacecraft stability (𝝉𝑝, 𝝉gg, 

and 𝝉𝑚𝑎𝑔). 

The effects of Earth’s non-uniform gravitational 

field on the orbit are modeled using the EMG2008 

gravitational model with spherical harmonics through 

degree and order ten (Pavlis et al., 2008). The gravi-

tational force, including the most significant pertur-

bation (𝐽2), can be computed according to Bate et al. 

(1971) by: 
 

 𝑭𝒈 = −
𝜇𝑒

𝑟3
𝒓 + (

3𝐽2𝜇𝑒𝑅𝑒
2

2𝑟5
[

𝑟𝑥(5𝑟𝑧
2/𝑟2 − 1)

𝑟𝑦(5𝑟𝑧
2/𝑟2 − 1)

𝑟𝑧(5𝑟𝑧
2/𝑟2 − 3)

]), (6) 

 

where 𝑅𝑒 is the equatorial radius of the Earth, 𝑟 =
|𝒓|, 𝜇𝑒 is earth’s gravitational parameter, and 𝐽2 is a 

constant related to the oblateness of the Earth. To 

compute the aerodynamic force and torque acting on 

the spacecraft, the satellite is discretized into a collec-

tion of rectangular panels. The aerodynamic force 

acting at the centroid of each panel under the assump-

tion of specular reflection is calculated by: 

 

 𝑭𝒑 = −
1

2
𝐶𝑝𝐴𝜌𝑣⊥𝒗⊥, (7) 

 

where 𝐶𝑝 is the pressure coefficient, 𝜌 is ambient 

density, 𝐴 is the surface area of the panel, and 𝒗⊥ is 
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the projection of the velocity vector relative to the 

atmosphere 𝒗∞ along the panel normal vector 𝒏̂𝒑. 

Density is given by the NRLMSISE-00 model 

(Picone et al., 2002), which is dependent on the solar 

and geomagnetic activity as well as the latitude, lon-

gitude, altitude, and time. Figure 5 shows the varia-

tion in density over time at a given point at a 400 km 

altitude, highlighting the need for a high-fidelity den-

sity model and underscoring the differences in aero-

dynamic drag force that can occur based on the simu-

lation epoch. 

Figure 5. NRLMSISE-00 density over time at ECI position: [-5008.02, 

1902.25, 4148.42] km. 

 

When completely specular reflection is assumed, 

the drag force acting on each panel is perpendicular 

to the sur- face of the panel and the pressure coeffi-

cient is equal to four (Omar and Wersinger, 2014). 

More advanced aerodynamic models, including spec-

ular and diffuse reflections of particles, will be con-

sidered in future work (Vallado and Finkleman, 

2014). The overarching aerodynamics stability prop-

erties of the DMD are not expected to change with 

the use of these high-fidelity models. If 𝒗∞ and 𝒏̂𝒑 

are more than 90 degrees apart, the panel does not 

experience any drag force and 𝒗⊥ is set to zero. The 

variables 𝒗∞ and 𝒗⊥ are computed as: 

 

 𝒗∞ = 𝒗 −𝝎𝒆 × 𝒓, (8) 

 𝒗⊥ = max⁡(𝒗∞⁡ ∙ 𝒏̂𝒑, 0), (9) 

 

where 𝝎𝒆 is the rotation rate of the Earth. If 𝒓𝒑 is the 

vector from the satellite center of mass to the panel 

centroid, the aerodynamic torque resulting from the 

panel is: 

 

 𝝉𝒑 = 𝒓𝒑 × 𝑭𝒑. (10) 

 

The calculated aerodynamic forces and torques gen-

erated by each panel are combined to derive the net 

aerodynamic force and torque. The spacecraft’s atti-

tude, position, and moment of inertia tensor are used 

to compute the gravity gradient torques with Eq. 

3.155 in the work by Markley and Crassidis (2014): 

 

 𝝉𝒈𝒈 =
3𝜇𝑒

𝑟3
𝒏̂ × (𝑱𝒏̂), (11) 

 

where 𝑟 is the distance from the center of the Earth to 

the satellite center of mass, 𝒏̂ is the nadir vector ex-

pressed in the spacecraft body frame, and 𝑱 is the sat-

ellite moment of inertia tensor about the center of 

mass expressed in the spacecraft body frame. Finally, 

the magnetic torques acting on the satellite are given 

by Markley and Crassidis (2014) as: 

 

 𝝉𝒎𝒂𝒈 = 𝝁 × 𝑩, (12) 

 

where 𝝁 is the spacecraft magnetic moment vector 

and 𝑩 is the Earth’s magnetic field vector at the satel-

lite’s location. 

 

 Control Methodology 

 

The satellite will begin in a tumbling state after 

deployment into space with the DMD booms retract-

ed. At this point, as discussed by Stickler and Al-

friend (1976), the BDot de-tumble controller will be 

activated and the magnetorquers will be used to set 

the spacecraft magnetic moment to: 

 

 𝝁𝒃𝒅𝒐𝒕 = −𝐾𝑩̇̂ = −𝐾(𝑩̂ × 𝝎) ≈ −𝐾
𝑩̂2−𝑩̂1

𝛥𝑡
, (13) 



The Drag Maneuvering Device for the Semi-Passive Three-Axis Attitude Stabilization of Low Earth Orbit Nanosatellites 

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 10, No. 1, p. 949 

where 𝐾 is a user-defined, positive gain and 𝑩̇̂ is the 

rate of change of the unit Earth magnetic field vector 

in the spacecraft body frame as measured by a mag-

netometer. As shown in Figure 6, the BDot law en-

sures that the direction of the resulting magnetic 

torque vector given by Eq. (12) will be as close as 

possible to –𝝎, and thus will reduce spacecraft angu-

lar velocity to the extent possible for a given magnet-

ic moment magnitude. This can be proven more for-

mally as follows: Substituting Eq. (13) into Eq. (12) 

gives the magnetic torque vector from the BDot law: 

 

 𝝉𝒃𝒅𝒐𝒕 = −𝐾(𝑩̂ × 𝝎) × 𝑩. (14) 

 

The triple vector product rule discussed by 

Arfken (1985) states that for any three vectors 𝑨,𝑩, 
and 𝑪, 

 

 (𝑨 × 𝑩) × 𝑪 = −𝑨(𝑩 ∙ 𝑪) + 𝑩(𝑨 ∙ 𝑪). (15) 

 

Applying this to Eq. (14) yields: 

 

 𝝉𝒃𝒅𝒐𝒕 = 𝐾𝑩̂(𝜔𝐵cos(𝜃)) − 𝐾𝝎𝐵, (16) 

 

where 𝜃 is the angle between 𝝎 and 𝑩. Taking the 

dot product of Eq. (16) and 𝝎̂ gives the component of 

𝝉𝒃𝒅𝒐𝒕 along the 𝝎 direction. If this component is neg-

ative, then 𝝎 will be reduced in magnitude: 

 

𝝉𝒃𝒅𝒐𝒕 ∙ 𝝎 = 𝐾 cos(𝜃) (𝜔𝐵cos(𝜃)) − 𝐾𝜔𝐵 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= −𝐾𝐵𝜔(1 − cos2(𝜃)) ≤ 0. (17) 

 

Eq. (17) will be less than zero in all cases except 

for when 𝜃 equals zero. This occurs when the mag-

netic field is aligned with angular velocity vector, and 

will result in zero magnetic torque (no reduction in 

angular velocity). However, because the direction of 

the magnetic field vector changes along the orbit, a 

condition with 𝜃 = 0 will not persist for any signifi-

cant time. This ensures that the BDot law will be able 

to reliably reduce the angular velocity of the satellite. 

Optionally, additional logic can be included to 

scale down the magnitude of 𝝁𝒃𝒅𝒐𝒕, when necessary 

to ensure that the power consumed by the magne-

torquers does not exceed a specified threshold 𝑃𝑚𝑎𝑥. 

The magnetic moment generated by a magnetorquer 

is defined by Silani and Lovera (2005) as: 

 

 𝜇𝑚 = 𝐼𝑚𝐴𝑚𝑛𝑚, (18) 

 

where 𝐼𝑚 is the current flowing through the magne-

torquer, 𝐴𝑚 is the magnetorquer loop area, and 𝑛𝑚 is 

the number of wire loops in the magnetorquer. This 

magnetic moment vector acts perpendicular to the 

magnetorquer coil along the direction of the thumb of 

one’s right hand when the fingers are curled in the 

direction of the current. The electrical power con-

sumed by a magnetorquer is given by: 

 

 𝑃𝑚 = 𝐼𝑚
2 𝑅𝑚. (19) 

 

For a given 𝝁𝒃𝒅𝒐𝒕, the power required from each 

magnetorquer can be calculated using Eq. (18) and 

(19) and a priori knowledge of 𝐴𝑚, 𝑛𝑚, and 𝑅𝑚 for 

each magnetorquer as: 

 

 𝑃𝑟𝑒𝑞 = (
𝜇𝑚

𝐴𝑚𝑛𝑚
)
2

𝑅𝑚. (20) 

 

If the cumulative required magnetorquer power con-

sumption 𝑃𝑟𝑒𝑞 would greater than 𝑃𝑚𝑎𝑥 the desired 

BDot magnetic moment vector can be scaled down 

via the following relation: 

 

 𝝁𝒃𝒅𝒐𝒕
′ = 𝒖𝒃𝒅𝒐𝒕√

𝑃𝑚𝑎𝑥

𝑃𝑟𝑒𝑞
. (21) 

 

 

Figure 6. BDot de-tumble controller.  
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The spacecraft magnetic moment vector 𝝁′𝒃𝒅𝒐𝒕 will 

now require power 𝑃𝑚𝑎𝑥 to achieve. Because the di-

rection of 𝝁𝒃𝒅𝒐𝒕 does not change after this operation, 

Eq. (17) still holds, and the BDot law will continue to 

reduce spacecraft angular velocity, as long as 𝑩 and 

𝝎 are not aligned. 

In addition to 𝝁𝒃𝒅𝒐𝒕, a fixed magnetic moment 

vector along the desired zenith-pointing satellite axis 

(in this case, the 𝑥-axis in Figure 1), will be superim-

posed on 𝝁𝒃𝒅𝒐𝒕 after de-tumble and partial boom de-

ployment. This fixed magnetic moment will work to 

align the satellite 𝑥-axis with the Earth’s magnetic 

field. At the point in the orbit when the magnetic 

field (and hence the satellite 𝑥-axis) is most-zenith 

pointing (as determined in advance through orbit 

propagation), the two DMD booms along the 𝑥-axis 

will be fully deployed and the two booms along the 

𝑦-axis will be partially deployed. This creates a min-

imum moment of inertia about the 𝑥-axis which grav-

ity gradient torques will naturally align with the zen-

ith vector. Aerodynamic torques will simultaneously 

align the DMD z-axis (Figure 1) with the velocity 

vector, resulting in passive three-axis attitude stabili-

zation. All booms can be simultaneously deployed or 

retracted to facilitate orbital maneuvering while 

maintaining this attitude stability. Continuing to run 

the BDot de-tumble controller after boom deploy-

ment reduces attitude oscillations and aids in the sta-

bility. 

 

 Simulation Results 

 

5.1. Time Domain Simulations 

Figure 7 displays the alignment with respect to 

the velocity and nadir vectors of a 2U, DMD-

equipped CubeSat initially deployed from the Inter-

national Space Station (circular orbit with inclination 

of 52 degrees and semi-major axis of 6778 km). The 

simulation epoch occurred on June 5, 2014 at 1200 

UTC. In the first 10,000 seconds of the simulation, 

only the BDot controller is run (retracted booms) 

with a BDot gain of -5 to de-tumble the satellite. Be-

tween t=10,000 and t=20,000 seconds, all booms are 

deployed to 1 m and a fixed magnetic moment of 

.015 A*m2
 along the satellite body frame 𝑥-axis is 

superimposed on the BDot magnetic moment vector.  

The +𝑦 and −𝑦 booms are then deployed to 1.85 

m, and the +𝑥 and −𝑥 booms are deployed to 3.7 m 

at the point in the next orbit when the magnetic field 

is most zenith pointing (t=20,656 s). After this, the 

fixed magnetic moment is removed, and only the 

BDot controller continues running to damp attitude 

oscillations. Note that the attitude oscillations are 

never completely removed, due to the movement of 

the zenith and velocity vectors in inertial space over 

the course of each orbit. The satellite eventually sta-

bilizes with the 𝑧-axis aligned with the velocity vec-

tor and the 𝑥-axis aligned with a steady state pointing 

error of less than five degrees. Figure 8 shows the 

error angle between the actual and desired orienta-

tion, as well as the spacecraft angular velocity, over 

time.  

Table 2 lists the maximum magnitudes of the 

gravity gradient, aerodynamic, and magnetic torques 

over the course of the simulation. While these torques 

vary throughout the simulation based on the 

satellite’s attitude and position, they are on the order 

of micro-Newton-meters and achieve their stabilizing 

effects over a time period of hours. Also note that 

unlike reaction wheels which produce torques several 

orders of magnitude greater than the environmental 

torques, the magnetorquers produce torques of a 

 

Figure 7. Misalignment between spacecraft x/z axes and zenith/velocity 

vectors. 
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similar magnitude to the environmental torques and 

work in tandem with them to produce a stabilizing 

effect. Because these torques are so small, a satellite 

using the DMD for stability must be carefully 

designed so that disturbance torques caused 

bymagnetic hysteresis, solar pressure, or solar panel 

electrical currents do not overwhelm the stabilizing 

torques. The low magnitudes of the torques acting on 

the DMD reduce the chance of the DMD booms 

buckling or oscillating due to dynamic loadings. 

 

Table 2. Maximum Torque Magnitudes for 400 km ISS Orbit 

 
Gravity 
Gradient 

Aerodynamic Magnetic 

Maximum 

Torque 

(𝜇𝑁 ∗⁡𝑚) 
1.06 2.62 1.88 

      

Figure 9 shows the satellite’s attitude alignment 

error over time in a 600 km circular orbit with a 52-

degree inclination for epochs of June 5, 2014 

(maximum solar activity) and June 5, 2009 

(minimum solar activity). Table 3 shows the 

maximum gravity gradient, aerodynamic, and 

magnetic torque magnitudes during these 

simulations. Though the density is lower during the 

periods of low solar activity and the attitude stability 

is thus poorer, Figure 9 highlights the ability of the 

DMD to maintain attitude stability within about 20 

degrees even in a minimum density condition at a 

600 km altitude. Recall that the desired orientation 

has the spacecraft z-axis aligned with the velocity 

vector and x-axis aligned with the zenith vector. The 

higher the atmospheric density (caused by lower 

altitudes or greater solar activity), the greater the 

attitude stability of the DMD-equipped spacecraft. 

Gravity gradient and magnetic torques are not 

significantly affected by the orbital altitude or 

simulation epoch. 

 

Table 3. Maximum Torque Magnitudes for 600 km, 52-degree 

Inclination Circular Orbits 

 
Gravity 

Gradient 
Aerodynamic Magnetic 

Maximum Torque, 

600 km orbit, solar 

max (𝜇𝑁 ∗⁡𝑚) 
1.15 1.10 2.15 

Maximum Torque, 

600 km orbit, solar 

min (𝜇𝑁 ∗⁡𝑚) 
1.15 .269 1.77 

 

5.2. Boom Failure Analysis 

The DMD is relatively robust to the failure of a 

single boom if the failure is detected and mitigated. If 

a boom fails at an intermediate length as determined 

by the rotary encoder contained in each deployer, the 

opposite boom must be retracted or deployed to the 

same length so that the configuration remains 

 

Figure 8. Angle between actual and desired attitude and angular velocity over time in 400 km circular orbit. 
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symmetric. For example, consider a case where the 

boom most closely aligned with the +y axis gets 

stuck at .2 m deployment and cannot extend further. 

In this case, after identifying the failure, the -y boom 

would be retracted to .2 m as well. With the x-booms 

fully deployed and the aforementioned magnetorquer 

control strategy used, the spacecraft would stabilize 

with the z-axis aligned with the velocity vector and x-

axis aligned with the zenith vector. Figure 10 

contains the simulation results for this scenario. 

Although the error angles were higher than in the 

nominal case (Figure 7), the spacecraft remains 

stable, despite the boom failure. If one of the booms 

aligned with the +x or -x axis fails, the satellite can 

only stabilize in a configuration with the axizs ram-

aligned and either the +y or -y axis aligned with the 

zenith vector. 

 

5.3. Frequency and Flexible Modes Analysis 

To ensure that the magnetorquer controller does 

not excite flexible modes in the booms, the natural 

frequency of the booms can first be estimated using 

cantilever beam theory. A Fourier transform on the 

control signal can then be used to verify that the 

frequency content of the controller during the time 

when the booms are deployed is significantly lower 

than the natural frequency of the booms. 

Consider the boom natural frequencies to be 

approximated by that of a semi-circular cantilever 

beam made of austenitic 316 stainless steel that is .04 

m along the arc, 3.7 m long, .0762 mm thick, and 

weighing 90 grams. The natural frequency (rad/s) of 

 
 

Figure 9. Attitude alignment error over time for 600 km, 52-degree inclined orbits with different epochs. 

 

Figure 10. Attitude stabilization when +y boom stuck at .2m deployment 
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a cantilevered beam under a uniform load per unit 

length 𝑤 in a gravity field with accel- eration 𝑔 is 

given per Roark et al. (2002, Table 16.1) by: 

 

 𝜔𝑛 = 𝐾𝑛√
𝐸𝐼𝑎𝑔

𝑤𝑙4
, (22) 

 

where 𝐾𝑛 is a constant dependent on the vibrational 

mode of interest, 𝐸 is the modulus of elasticity, 𝐼𝑎 is 

the area moment of inertia about the desired bending 

axis, and 𝑙 is the length of the beam. Since 𝑤 is 

weight per unit length, 

 

 𝑤 =
𝑚𝑏𝑔

𝑙
, (23) 

 

where 𝑚𝑏 is the mass of the boom. Substituting Eq. 

(23) for 𝑤 into Eq. (22), and the value of 𝐾𝑛 = 3.52 

which is valid for the first, lowest frequency mode 

(per Roark et al., 2002, Table 16.1), we get: 

  

 𝜔𝑛 = 3.52√
𝐸𝐼𝑎

𝑚𝑏𝑙
3 (24) 

 

for the natural frequency of a cantilever beam of 

mass 𝑚𝑏 and length 𝑙. The area moment of inertia of 

a filled semi-circle with radius 𝑟 about a line passing 

through the centroid and parallel to the semi-circle 

base is:  

 

 𝐼𝑠𝑒𝑚𝑖 = (
𝜋

8
−

8

9𝜋
) 𝑟4. (25) 

 

If each DMD boom cross-section is approximated as 

a semi-circular arc of .04 m arc length, the arc radius 

is: 
.04

𝜋
= .01273 m. Since the boom is not a solid 

semi-circle, but is hollow and of small radius, the 

area moment of inertia can be computed as: 

 

 𝐼𝑏𝑜𝑜𝑚 = (
𝜋

8
−

8

9𝜋
) (. 012734 − (. 01273 − 7.62𝐸 −

5)4) = 6.626𝐸 − 11.  (26) 

 

The modulus of elasticity of stainless steel is 193 

GPa. From Eq. (24), we can compute the DMD boom 

natural frequency as: 

 

𝜔𝑛 = 3.52√
193𝐸9(6.626𝐸−11)

.09(3.7)3
= 5.90

rad

s
= .94⁡Hz. (27) 

 

Using a Fourier transform, the frequency content of 

the magnetic torque signal during the aforementioned 

DMD maneuver was computed, as shown in Figure 

11. All frequency content of the torque remains well 

below .09 Hz, which is over an order of magnitude 

less than the natural frequency of the booms. During 

initial deployment, when the tumble rate is on the 

order of 5 deg/s, the control torque frequency is the 

highest, but is still only .014 Hz. Additionally, the 

magnitude of the magnetic torque is so tiny that any 

oscillations observed in the boom will be negligibly 

small. Because the booms are thin and highly 

thermally conductive, thermal effects are likewise not 

expected to induce any significant booms oscillations 

or cause instability. For this reason, it is a reasonable 

assumption to treat the spacecraft-DMD assembly as 

a single rigid body for the purpose of stability 

assessments. 

 

5.4. Monte Carlo Simulations 

Monte Carlo simulations were conducted to veri-

fy the ability of the DMD to operate at altitudes at 

and below 600 km in the presence of expected per-

 

Figure 11. Frequency content of magnetic torque signal during DMD 

attitude control. 
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turbations. Unlike conventional spacecraft, where 

aerodynamic and gravity gradient torques are the 

primary disturbances, these torques serve to facilitate 

DMD stability. Solar pressure torque is negligibly 

small in low Earth orbits and magnetic hysteresis 

torque is expected to be minimal due to the non-

ferro- magnetic nature of the DMD booms. The larg-

est disturbance torque will likely come from parasitic 

magnetic moments generated by current flow within 

the solar panels. Simulations assumed a solar-panel-

induced parasitic magnetic moment of .004 A*m2 

continuously acting in the x-direction. Roughly 10% 

of the magnetorquer capability on the simulated 

DMD CubeSat, .004 A*m2 is a reasonable value for 

parasitic magnetic moment on such a satellite. Be-

cause stability is always improved at lower altitudes 

due to the increased aerodynamic forces, all simula-

tion were conducted at an altitude of approximately 

600 km with variations in the inclination, right ascen-

sion, and true anomaly of the orbit. Epoch was also 

randomly varied and the satellite was given a random 

initial attitude and angular velocity. Table 4 shows 

the values range and probability distributions of the 

parameters used in the Monte Carlo simulations. 

Out of 300 Monte Carlo simulation runs, the 

satellite stabilized in the proper orientation in 290 

cases. Out of these 290 cases, all but one had a final 

orbit-averaged attitude error of less than 20 degrees. 

The distribution of these errors is shown in Figure 12 

and average error was 5.9 degrees relative to the 

desired attitude for the cases with the correct gravity-

gradient orientation. In 10 cases, the satellite x-axis 

ended up stabilizing nadir pointing, instead of zenith 

pointing, since a gravity gradient configuration is 

stable in either attitude. If such a case arose in prac- 

tice, operators could retract the booms and re-run the 

attitude stabilization procedure. The probability of 

the satellite stabilizing with the incorrect axis 

pointing zenith after three such re-runs is 1/27,000. 

 

 Conclusions 

 

The drag maneuvering device is a unique actuator 

capable of providing simultaneous orbital 

maneuvering capabilities and semi-passive three-axis 

attitude stabilization. By independently actuating four 

tape-spring booms, the DMD can leverage naturally 

occurring aerodynamic and gravity gradient torques 

for attitude stability. Embedded magnetorquers are 

actuated based on magnetometer measurements to 

damp attitude oscillations and to ensure gravity 

 

Figure 12. Final orbit averaged angular error relative to desired attitude 

in Monte Carlo runs at 600 km altitude. 

   Table 4. Monte Carlo Simulation Parameters 

Parameter Value Range Probability Distribution 

Semi-major axis 6978 Constant 

Inclination [52, 90] deg Uniform 

True anomaly [0, 360] deg Uniform 

Right ascension of ascending node [0, 360] deg Uniform 

Eccentricity 0 Constant 

Quaternion rotation axis (each elem) [0, 1] Uniform 

Quaternion rotation angle [0, 360] Uniform 

Angular velocity (each axis) [-2.9, 2.9] deg/s Uniform 

Epoch [6/5/2003, 6/5/2014] Uniform 
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gradient stabilization in the proper orientation. An 

attitude control methodology for the DMD was 

developed in this paper and numerical attitude and 

orbit simulations verified the attitude stability 

properties of the DMD. For many Low Earth Orbit 

satellite missions, particularly for Earth observation 

and communication, the DMD could entirely replace 

conventional attitude control and propulsion systems. 

For example, the DMD could maintain a camera or 

antenna pointed at the Earth while modulating 

aerodynamic drag to maintain an orbit slot. This 

would greatly reduce mission cost while increasing 

reliability through the use of a simpler system. 
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