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Abstract: This paper proposes a solution to the problem of re-phasing circular or
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cal guidance solutions based on input-shaping and analytical control techniques for
differential drag based on Lyapunov theory. The combined guidance and control ap-
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1 Introduction

Small spacecraft flying in close proximity for scientific, commercial, and defense applica-
tions, are increasingly appealing to space services providers and researchers (see [1–4]).
In fact, for certain applications they are preferable to larger single spacecraft, due to their
lower cost, and the inherent redundancy, in general, of a multiple-spacecraft system [5].
However, spacecraft solutions, such as those based on the CubeSat format, present a
new set of design challenges, mainly related to the vehicles’ limited size and power. The
ability to incorporate thrusters and carry on-board propellant is extremely limited on
nano-spacecraft weighting a few kilograms [6]. A valid alternative for planar maneuvering
of spacecraft relative motion at low Earth orbits (LEO) is represented by atmospheric
differential drag, where the differential accelerations necessary to control the satellites are
generated by varying the relative cross-wind surface area. C.L. Leonard [7] introduced

∗ Corresponding author: mailto:bevilr@ufl.edu

c© 2014 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua335

mailto: bevilr@ufl.edu
http://e-ndst.kiev.ua


336 R. BEVILACQUA AND D. PEREZ

this method for generating the control forces that are required by rendezvous maneu-
vers at LEO (<600 km). The differential drag-based methodology allows for virtually
propellant-free control of spacecraft relative motion on the orbital plane, since maneuver-
able dedicated drag surfaces can be powered by solar energy. The differential drag-based
methodology was used for the ORBCOMM constellation’s formation keeping [8], and
it will be potentially used by the JC2Sat-FF project developed by the Canadian and
Japanese Space Agencies [9, 10]. It must be noted that differential drag forces only lie
in the along-track direction, limiting controllability to the orbital plane. In addition,
differential drag forces are usually represented as an on-off control profile [7]. The differ-
ential drag concept holds the potential for replacing, or partially substituting, on-board
thrusters and propellant tanks with clear benefits, especially for long-term, repeated rel-
ative maneuvering on the orbital plane. It should be noted that using the differential
drag concept results in additional decay on the orbits of the spacecraft whenever their
cross-wind surface area is increased.

In order to contribute to the field of spacecraft relative motion control and mission
implementation, this paper creates a framework combining analytical guidance solutions
for short distance re-phasing, based on along track, on-off control (presented in [11]) with
an adaptive Lyapunov control method (presented in [12,13]). The guidance solutions are
based on a technique known as input-shaping, to be described below. Considering that
the trajectories can be planned immediately, with no need for numerical iterations, the
analytical nature of the solutions supports satellites with limited computing capabilities
(e.g.: nano-satellites). The open loop guidance solutions obtained via input-shaping are
tracked using a Lyapunov-based control strategy, also analytical and computationally
inexpensive, previously developed specifically for differential drag maneuvering [12, 13].

Short distance re-phasing involves baselines up to several kilometers. This is in con-
trast to cases where the spacecraft may be even on the opposite side of the orbit with
respect to the desired final location. The re-phasing maneuvers herein are performed
with respect to a (real or virtual) circular reference orbit, with a semi-major axis equal
to that of the reference orbit, and in the same orbital plane. In particular, a satellite
starting from a circular orbit or a slightly eccentric one, can be re-phased to a new polar
angle (if starting from a circular course) or re-phased to have a closed relative motion
with respect to a desired point on the reference circular path. In general, the re-phasing
solutions proposed in this paper apply to maneuvers going from an equilibrium configu-
ration to a new equilibrium configuration, where equilibrium means a non-drifting state
with respect to the final desired target location.

The analytical design of guidance for short distance re-phasing can be valuable not
only for a spacecraft’s relocation on its orbit but also for spacecraft proximity oper-
ations, where the target point can be actually occupied by another space vehicle. In
fact, spacecraft rendezvous is an increasingly important topic given the potential for
its application, for example, in on-orbit maintenance and servicing missions, spacecraft
monitoring, etc. Additional applications of proximity flight and docking are seen in de-
orbiting space debris, another pressing problem for future space exploitation: spacecraft
capable of changing their cross-wind surface area may be envisioned docking to inactive
resident space objects (RSO), and controlling their decay.

Input-shaping is a convolution technique based on the knowledge of a system’s nat-
ural frequencies of oscillation. Given a feed-forward control signal, which is designed to
perform a desired maneuver but not to take into account potential excitation of undesired
oscillations, input-shaping consists of the convolution of the signal itself and a specified
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train of impulses so that the system’s resulting behavior presents minimal residual vibra-
tions at the end of the maneuver. The impulses and their locations in time are computed
based on the frequencies that need to be suppressed, i.e., the modes one wants to limit in
amplitude. The majority of input-shaping applications fall under the category of flexible
structures control, such as space manipulators control, as seen in References [14–21].
It is important to emphasize that input-shaping is not intended to reduce the energy
of a system, i.e., existing oscillations cannot be damped. However, maneuvers from an
equilibrium condition to a new equilibrium are possible. In addition, appropriate modi-
fications of the input-shaping parameters can inject energy into the system, and lead it
to a new equilibrium configuration, with desired higher oscillations, as shown in [11]. In
addition, to differential drag maneuvering, input-shaping can be applied to on-off thrust
profiles, maintaining the nature of the control signal.

The main contribution of this paper consists in demonstrating the feasibility of differ-
ential drag for rephasing maneuvers, combining an analytical guidance technique (devel-
oped in [11]) and a control method (developed in [12, 13]), and simulating their use in a
realistic spacecraft relative maneuvering scenario. Thus, illustrating how such analytical
approaches could be orchestrated and used in real time, during a real space flight.

2 Spacecraft Relative Motion Dynamics and Input-Shaping Analytical
Guidance

2.1 Spacecraft relative motion dynamics

Spacecraft relative motion dynamics is used to model how a spacecraft moves with respect
to the final desired point, regardless of the presence of a reference spacecraft at the re-
phasing desired location. Thus, the re-phasing target point can be represented by the
origin of a Local Vertical Local Horizontal (LVLH) reference frame. In such a frame, x
points from Earth to the reference spacecraft (virtual or real), y points along the track
(direction of motion), and z completes the right-handed frame (see Figure 1). For this
paper, the origin of the LVLH frame moves on a circular orbit, with a semi-major axis
equal to that of the active spacecraft’s orbit.

The out-of-plane z and in-plane xy motions are usually assumed to be decoupled.
In this paper it is assumed that the spacecraft’s and its target’s re-phasing location lie
in the same orbital plane, and the out-of-plane motion will be neglected. Furthermore,
it is assumed that the commands to the drag surfaces are on-off, i.e., instantaneously
changing from open to close and vice versa (see [12, 13, 22–25]).

The atmospheric differential drag control concept is based on the assumption that
two spacecraft can change their respective cross-wind surface area, generating differential
values of drag acceleration along track y, as depicted in Figure 1. In this example, one
spacecraft increases its drag by opening a surface, thus lowering its orbit and increasing
its speed with respect to the other spacecraft. The main limitations of this propellant-
less control are that only planar motion can be addressed x and y, and that the orbits
decay faster whenever the surfaces are opened.

In the equations presented in this paper, bolded symbols represent vectors, while
underlining refers to matrices.

The in-plane, linearized equations of spacecraft relative motion, or HCW equations,
described in References [26, 27], with along-track control only, are given by (1). The
assumptions to derive these equations are: two-body force, circular reference orbit, and
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Figure 1: Conceptual sketch explaining differential drag control. Spacecraft 2 increases its
drag, thus lowering its orbit and increasing its speed, to catch up with spacecraft 1 in terms of
orbital polar angle.
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where T is the circular orbital period. When drag is used as the control variable, the
expression for uy depends on the atmospheric density, the spacecraft cross-wind surface
area, its drag coefficient, mass, and the velocity of the spacecraft relative to the medium.
This velocity can be assumed to be equal to the orbital velocity, since the relative velocity
between the spacecraft and the origin of the LVLH frame is negligible and the medium
can be assumed to rotate with the Earth. As an approximation, the differential is only
driven by changes in cross-wind surface area (see [22, 23]).

2.2 Input-shaped control

Input-shaping is based on the concept of providing and then removing energy to/from an
oscillatory system. A train of specific impulses, based on the system’s natural frequency
and damping ratio, are used in convolution with an original control signal, shaping it to
achieve the desired final state with minimal residual vibration, as seen in [21].

The train of impulses used herein is defined as a function of the variables yfd (along-
track desired final location) and ∆t (duration of coasting phases) in (2). The final
analytical solution, that takes into account the HCW dynamics and drives the state to
the desired final value yfd is obtained by solving for ∆t and an adjusted value of yfd.
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The control signal to be shaped is chosen as a bang-bang profile of amplitude ū, and a
three-impulse shaper as described in (2) (originally presented in [11])

uy = A1ft1 +A2ft2 +A3ft3 , A1 =
1

4
, A2 =

1

2
, A3 =

1

4
,

ft1 =







ū sign (yfd − y (t0)) , if t ≤ t∗/2,
−ū sign (yfd − y (t0)) , if t∗/2 < t ≤ t∗,

0, if t > t∗,
ft2 = ft1 (t−∆t) , ft3 = ft1 (t− 2∆t) ,

t∗ =
√

2 |yfd − y (t0)|/ū .

(2)

In particular, the quantities Ai in (2) represent the three impulses, convoluted with
an original signal. They are given in Reference [19] as 1/(1 + K)2, 2K/(1 + K)2, and
K2/(1 +K)2, respectively, with K = exp(−ζ/pi/(1− ζ2)1/2). ζ indicates the damping
ratio of the given dynamic system. The assumed model presents ζ = 0, leading to the
Ai values in Equation (2).

Control profiles as the one represented in (2) can be tracked using Pulse Width
Modulation (PWM) by on-off, single magnitude engines or differential drag devices.
Continuously changing profiles are harder to reproduce with PWM. A more effective
option is given in previous work using Lyapunov theory to control a nonlinear system
with on-off actuation only (see [12, 13]), as will be shown in the remainder of the paper.

As outlined in [11], the control profile of Equation (2) can be applied on the HCW
relative motion equations, obtaining several analytical solutions for rephasing from point
to a different point, point to equilibrium relative motion and equilibrium relative motion
to another equilibrium relative motion.

2.3 Analytical solution for leader-follower re-phasing

Re-phasing, in the linear approximation of the LVLH frame means maneuvering the
spacecraft from an initial stationary y location, to a final, also stationary new y. For
the remainder of the paper such configurations will be called leader-follower, and so the
related re-phasing maneuvers will be named.

In [11], the control signal shown in (2) was applied to the dynamics of Equation (1),

starting from an equilibrium leader-follower initial condition (x(t0) =
[

0 y0 0 0
]T

),
and considering a variable ∆t. This resulted in an analytical expression for the final
state, which is not included in this paper for brevity, but can be found in [11]. The
resulting trajectory will have the center located at the desired along-track location yfd,
if a new desired virtual location yfd (given in (3)) is selected and combined with the
expressions for the center of the ellipse representing the final relative orbit (ȳ and x̄ in
(3))

yfd
′ = (2/3 ) yfd + (1/3 ) y0,

x̄ = 4xf + 2ẏf/ω = 0, ȳ = yf − 2ẋf/ω = −0.5y0 + 1.5yfd.
(3)

Using the expression for the final state, Equation (3), and the relative eccentricity
(erel, which represents the physical dimension of the obtained closed orbit), the direct
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dependency of erel from ∆t was obtained:
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For a detailed derivation of this expression refer to [11].
If classical input-shaping is applied, with ∆t = 0.5T = π/ω (Equation (2)),

the resulting relative eccentricity is zero, and the final state is obtained as x(tf ) =
[0 yfd 0 0]T , that is, the initial leader-follower condition (both spacecraft on the
same orbit) is reproduced at the end of the maneuver, and the desired along-track baseline
is achieved.

Equation (4) also enables the design of different types of re-phasing by adjusting
the value of ∆t to obtain a final closed relative orbit around the along-track point yfd,
with desired relative eccentricity. These types of maneuvers may be envisioned for close
approach to a target and fly-around for monitoring purposes. In doing this, an oscillation
at the end of the maneuver is added, in a quantifiable and desired fashion.

It must be noted that (4) shows 2ω as the highest frequency. The Nyquist-Shannon
sampling theorem (see [28]) can be used to determine how many points are needed to
approximate the function in (4). By computing (4) at ∆t points spaced by a 1/(4ω) time
distance, that is, theoretically 8π points total (i.e. at least 26) an entire orbital period is
approximated. A desired erel value can be then interpolated using these points (e.g. using
splines), posing minimal computational burden. The equilibrium-to-equilibrium erel case
presented later in the paper shows an example of how to set up such approximation and
interpolation.

2.4 Analytical solution for equilibrium-to-equilibrium closed relative orbit
re-phasing

Any maneuver re-phasing an eccentric periodic relative orbit of the active spacecraft
with respect to a center point along-track (in the linear LVLH environment) will be
called equilibrium-to-equilibrium. Re-phasing in this case implies shifting the center of
this equilibrium relative motion, justifying the choice of the equilibrium-to-equilibrium
nomenclature.

The control signal (2) was applied to on the dynamics of system (1), starting from
an equilibrium closed relative orbit x(t0) = [x0 y0 ẋ0 −2ωx0]

T [26], and considering
a variable ∆t, thus yielding an expression for the final state (see [11] for details). The
center of the ellipse representing the final relative orbit, computed as in (3), is obtained
as:

x̄ = 0, ȳ = yfd −
2

ω
ẋ0. (5)

Equation (5) shows that re-phasing to a final equilibrium relative orbit, with center
at a desired location, is possible. In fact, starting from t0, and waiting for any instant
when ẋ = 0 (there are two positions along the closed relative orbit that correspond to
this condition), the input-shaped control signal can be applied then. The wait time is
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given by:

twait =
1
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Reference [11] shows how following the same reasoning for the re-phasing from a
leader-follower configuration, the direct dependency of erel from can be obtained as:
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+ū s
(

2

3
α2 + ω∆t

)

− ū s
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− ū s
(

1

3
α2

)

1

2
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− 2ū c
(

1

3
α2

)

+ ū c
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The Nyquist-Shannon sampling theorem [28] must be invoked again, to find the num-
ber of points to approximate the function in (7), and then interpolation to compute the
correct ∆t for a desired ∆erel.

3 The Lyapunov-Based Nonlinear Controller for Differential Drag

The problem of designing a real-time controller using differential drag consists of finding
an analytical expression to command the opening or closing of the drag surfaces (see
Figure 1) that will force the spacecraft to follow the desired guidance. In particular,
the following assumptions are commonly made when using atmospheric differential drag
control:

1. The control is only along the y direction, as described earlier.
2. The opening/closing of the drag surfaces is instantaneous, i.e., their actuation time

is negligible with respect to the duration of the maneuver, resulting in an on-off sequence
for commands for opening or closing the drag surfaces.

3. Atmospheric density is known with poor accuracy ( 30%, as suggested by previous
work [22]).

The poor knowledge of atmospheric density requires the design of a command logic,
capable of dealing with an unknown and continuously variable control magnitude. The
authors previously devised such a command strategy, using an adaptive Lyapunov ap-
proach. The fine details of the methodology are presented in [12,13], while only the most
important results are presented here, along with a discussion on the expected behavior
of the atmospheric density.

The controller is based on the idea of being conservative and maintaining a sufficient
margin of control authority on the system. In particular, at the initial time of the
maneuver the atmospheric density is underestimated (30% less than what is provided
by atmospheric models, see [29]), underestimating the available differential drag. At
the same time, the initial adjustable parameters for the controller are chosen such that
the initial underestimated differential drag is above a critical, or minimum, value that
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guarantees Lyapunov stability. From that instant on, the controllers parameters are
adapted to maintain a low critical value (shown in (11)). This critical value is the
minimum amount of differential drag acceleration that will ensure Lyapunov stability
for the controller. This conservative procedure relies on the assumption that in average
the atmospheric density will only increase throughout the maneuver, since the orbits
of the spacecraft are decaying. The critical differential drag value is maintained low,
or possibly reduced throughout the maneuver, by adapting the controller. With this
methodology, a positive control margin is maintained between real differential drag and
minimum differential drag for Lyapunov stability.

The controller is devised as follows. A quadratic Lyapunov function of the tracking
error between the spacecraft state and the desired state (e.g., the input-shaping-designed
guidance) is defined as:

VL = eTPe, e = xn − x, P > 0, (8)

where P is a symmetric positive definite matrix, e is the tracking error vector, xn and
x are the actual spacecraft relative state vector and a reference desired state vector (the
guidance obtained controlling system (1) with the input (2), solved with the solutions in
(3) or (5) and (6), depending on the type of maneuver), respectively. The drag surfaces
activation strategy is obtained by differentiating (8) with respect to time, and imposing
a negative sign in this time derivative, leading to an expression for the signal, indicating
the open/closed condition for the drag surfaces (1 = open; 0 = closed; -1 = other S/C
opens). See References [12, 13] for details to obtain the formula

û = −sign(eTPB). (9)

The same steps leading to Equation (9) (see References [12, 13]) define the matrix P
as the solution of the Lyapunov equation

AT
dP+PAd = −Q, (10)

where Q is a symmetric positive definite matrix and Ad is a Hurwitz matrix. These two
matrices are user defined, and represent the controllers adjustable parameters, affecting
the Lyapunov function and thus the systems behavior.

The information needed to command the drag surfaces (tracking error and matrix
P and vector B in (9)) would be available in real-time onboard a spacecraft, and the
command is a straightforward instruction that poses no issues in terms of onboard com-
puter implementation. In addition, there is no information about the actual density
value required by the control law. The Lyapunov algebraic developments also lead to
the expression of a critical value (aDcrit) of differential drag that is needed to maintain
stable Lyapunov control (see References [12, 13] for details). This critical value is given
as:

aDcrit =
eTP (Adxn − f(xn) +Bud)

|eTPB| (11)

with f(xn) representing the nonlinear relative motion dynamics. f(xn) can be as accurate
as the number of higher order gravitational terms that can be expressed analytically. ud

is a desired control, i.e. the acceleration profile generated in the guidance. The analytical
expressions for the partial derivatives of the critical value with respect to the adjustable
matrices were developed in [12, 13]. A real-time adaptation of the matrices themselves
(shown in (12)), with the intent to maintain the critical value as low as possible (see
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References [12, 13] for details) was designed based on the partial derivatives. In (12) δA
and δQ are increments in the matrices components, chosen such thatAd remains Hurwitz,
and Q positive definite. The adaptation occurs at discrete time steps, as explained in
the simulations section

∆Aij = κA

[

−sign(
∂aDcrit

∂Aij
)δA

]
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∣ for i, j 6= k, l,
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(12)

Depending on the spacecraft computing capabilities the non-adaptive or the adaptive
controller can be chosen. The adaptive controller requires the additional computation of
the matrix derivative expressions, and the adaptation rule of (12). Once again, all these
expressions are analytical, and can be computed provided knowledge of the spacecraft’s
state vector. Both types of controller perform satisfactorily, as shown in the next section,
with expected increased performance when adapting the parameters Ad and Q.

4 Numerical Simulations

This section starts by presenting the different types of maneuvers achievable with the
analytical guidance, using illustrations obtained from numerical simulations of the linear
dynamics, and concludes by illustrating the closed-loop nonlinear simulations and a dis-
cussion of the results. In particular, the first subsection shows several leader-follower ma-
neuvers obtained by varying ∆t. The second subsection shows the equilibrium-relative-
orbit-to-equilibrium-relative-orbit approach, while changing ∆t to show how the final rel-
ative eccentricity can be varied. The Lyapunov closed-loop control is then used to track
the guidance in a full nonlinear environment available in Systems Tool Kit (STK). The
analytical guidance assumes a maximum control acceleration of approximately 2 ∗ 10−5

m/s2, typical of atmospheric differential drag at the simulations’ given altitude.
It is important to underline that relative navigation is beyond the scope of this paper,

and that robust estimation techniques will be needed to accurately compute the analytical
guidance and use the closed-loop controller. In the following, perfect knowledge of the
relative state between the two spacecraft is assumed, envisioning, for example, a high
precision differential GPS technique running on the two spacecraft (example: [30]).

4.1 Leader-follower re-phasing guidance

The initial conditions in Table 1, in terms of orbital parameters, are used, with the goal
of re-phasing the S/C position to match a desired one. The initial location and desired
final location are in the same orbit, with different polar angles. In particular, backward
and forward re-phasing maneuvers are presented.

With the parameters in Table 1 the correct initial S/C state vectors in the LVLH
frame centered at the desired target locations are x(t0) = 103[−0.0013 −4.2588 0 0]T

for the 27.216 degrees case, and x(t0) = 103[−0.0009 3.5490 0 0]T for the 27.15
degrees case, with units in meters and meters per second. In the linearized environ-
ment, a leader-follower configuration does not present any cross-track displacement nor
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any along-track velocity component. The linear approximation to obtain the analyti-
cal solutions described earlier requires the use of x(t0) = 103[0 −4.2588 0 0]T and

x(t0) = 103[0 3.590 0 0]T , respectively.

Orbital Parameter Desired S/C initial
Semi-major axis a 6, 778.1 km 6, 778.1 km
Eccentricity e 0 0
Inclination i 97.9908 deg 97.9908 deg

Right Ascension of the
Ascending Node (RAAN) Ω

261.621 deg 261.621 deg

Argument of Perigee ωp 30 deg 30 deg

Polar Angle ν
27.15 deg and
27.216 deg

27.18 deg

Table 1: Initial Orbital parameters for S/C and desired location for Leader-Follower case, plus
general data for simulations.

Figure 2 shows the backwards maneuver, that is, re-phasing to a smaller polar an-
gle using the input shaping technique of Equation (2). A value of ∆ = 0.5T is used,
corresponding to a new leader-follower configuration.

Figure 2: Re-phasing to a lower polar angle, with ∆t = 0.5T , obtaining a new leader-follower
configuration (linear dynamics case).

In Figure 3 the forward maneuver is shown for three different values of ∆t. For
∆ = 0.5T , an input-shaped control is applied, with no residual oscillation at the target
point (the LVLH origin). The maximum relative eccentricity is obtained for ∆ = 0, while
∆ = 0.25T is an example of intermediate relative eccentricity (see (4)) The simulation
is propagated beyond the end of the control signal, to show the closed relative motion
about the target along-track point.
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Figure 3: Re-phasing to a higher polar angle. 1) ∆t = 0.5T , obtaining a new leader-follower
configuration; 2) ∆t = 0, obtaining the maximum relative eccentricity for the final equilibrium
orbit around the target point; 3) ∆t = 0.25T , obtaining an intermediate value of relative
eccentricity for the final equilibrium relative orbit around the target point (linear dynamics
case).

The initial conditions in Table 2, in terms of orbital parameters, are used with the
goal of re-phasing the S/C, from an equilibrium relative orbit about an initial along-track
point, to a final equilibrium relative orbit about a desired final along-track point. In this
case, a small eccentricity is given to the S/C, to generate an equilibrium initial relative
orbit. The semi-major axes are the same to guarantee boundedness of the relative motion.
Only a forward re-phasing maneuver is presented for this case.

Orbital Parameter Desired S/C initial
Semi-major axis a 6, 778.1 km 6, 778.1 km
Eccentricity e 0 0.0001
Inclination i 97.9908 deg 97.9908 deg

Right Ascension of the
Ascending Node (RAAN) Ω

261.621 deg 261.621 deg

Argument of Perigee ωp 30 deg 30 deg
Polar angle ν 27.216 deg 27.18 deg

Table 2: Initial Orbital parameters for S/C and desired location for Leader-Follower case, plus
general data for simulations.

With the parameters in Table 2 the correct initial S/C state vectors
in the LVLH frame, centered at the desired target locations, are x(t0) =
103[−0.6043 −4.2584 0.0004 0.0014]T , where the units are m and m/sec. In the
linearized environment, an equilibrium configuration requires the modification of this
initial condition to x(t0) = 103[−0.6043 −4.2584 0.0004 −2ωxo]T . From the above
initial modified condition for the linear model, a waiting time (coasting) is used (Equation
(6)), with k = 0, before applying the control signal.

Figure 4 represents equilibrium-relative-orbit-to-equilibrium-relative-orbit maneuvers
with the same target point as center (origin of LVLH), varying the ∆t value. The
simulations are propagated beyond the end of the control signal to show the closed
relative motion about the target along-track point.
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Figure 4: Re-phasing to a higher polar angle for equilibrium-to-equilibrium maneuver. 1) ∆t =
0.5T , obtaining an intermediate relative eccentricity (between initial and maximum achievable)
on final relative orbit; 2) ∆t = 625s, obtaining the minimum relative eccentricity for the final
equilibrium orbit around the target point; 3) ∆t = 4440s, obtaining the maximum relative
eccentricity for the final equilibrium relative orbit around the target point.

The above examples are valid in the simplified linear dynamics case. In order to
implement these solutions on a real spacecraft, a closed-loop controller is needed, to
track the analytical guidance profiles. This controller is used for the simulations in the
following subsection.

4.2 Closed-loop control in the full nonlinear case

In this section, the Lyapunov controller described earlier, both the non-adaptive and
adaptive versions, is used to track the following guidance:

• CASE 1: re-phasing and generation of closed relative orbit at target (Figure 3
with ∆t = 0).

• CASE 2: pure re-phasing (Figure 3 with ∆t = 0.5T ).

• CASE 3: intermediate change of the size of the relative orbit, and re-phasing it
(Figure 4 with ∆t = 0.5T ).

To reduce the frequency of actuation and allow the drag forces enough time to change the
orbits, the controllers are activated every 10 minutes. The same simulations are also run
activating the drag devices every 5 minutes to show improvement in accuracy in guidance
tracking as the control frequency increases. Numerical simulations are run using the High
Precision Orbital Propagator (HPOP) in STK and Matlab. Matlab extracts the relative
state vectors from STK, and generates the command to the drag surfaces, going back to
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STK. An STK scenario with full gravitational field model, variable atmospheric density
(using NRLMSISE-00 available in STK) and solar pressure radiation effects is used.

Two identical maneuvering spacecraft are considered, with one at the origin of LVLH,
masses of 2kg, maximum surface of 0.5m2, and minimum of 10cm2 (representing what
is depicted in Figure 1), and a drag coefficient of 2.2. The initial adaptable matrix Ad

is chosen as A−BK, where A represents the dynamics matrix of the spacecraft relative
motion linear equations, stabilized through a LQR-based K vector, to make Ad Hurwitz.
In the LQR problem K is obtained from Q

LQR
= I4x4, and RLQR = 1.5∗108. The initial

adaptable matrix is chosen to be I4x4 ∗ 10−2. The chosen increments for the adaptable
matrices in Equation (12) are the values δA = 10−6 for Ad and δQ = 10−6 for Q.

The ultimate goals of these simulations are a critical comparison between the two
controllers and a discussion helping a potential spacecraft developer in choosing what
type of guidance and control should be used on the spacecraft.

4.2.1 CASE 1: re-phasing from leader-follower, and generating a closed rel-
ative motion at the target

Figure 5 shows the results of a nonlinear STK simulation using the Lyapunov controllers
to track a re-phasing guidance with final desired closed motion about the target (origin
of the LVLH frame) (Figure 3). The simulation is stopped when the guidance reaches its
end. The bottom image clearly shows the benefit of using the adaptive controller versus
the non-adaptive. The non-adaptive approach cannot reach the final desired motion,
while the adaptation does reach a final motion very close to the desired one. Likewise,
the adaptation allows for increased accuracy in tracking the guidance, especially in the
last phases of the maneuver, as depicted by the bottom image.

Figure 5: Nonlinear Simulation result (control update every 10 minutes): re-phasing to higher
polar angle from leader-follower initial condition and generation of a closed relative motion
around the target point. Guidance from Figure 3, with ∆t = 0. (TOP) full trajectory; (BOT-
TOM) zoom of last phase.
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Figure 6: Nonlinear Simulation result (control update every 5 minutes): re-phasing to higher
polar angle from leader-follower initial condition and generation of a closed relative motion
around the target point. Guidance from Figure 3, with ∆t = 0. (TOP) full trajectory; (BOT-
TOM) zoom of last phase.

Figure 6 shows the same scenario as Figure 5, with an increased control frequency
(from 10 to 5 minutes). While an improvement in performance and accuracy is observed
for both the adaptive and non-adaptive controllers, the increase in frequency particularly
benefits the non-adaptive solution, but it still does not achieve performance equal to
that of the adaptive case. This additional result further supports the thesis of preferring
adaptation since similar performance can be achieved without the need of increasing
frequency of actuation.

4.2.2 CASE 2: re-phasing from leader-follower to leader-follower

Figure 7 shows the results of a nonlinear STK simulation using the Lyapunov controllers
to track a pure re-phasing guidance with final desired location at the origin of the LVLH
frame (Figure 3). The simulation is stopped when the guidance reaches its end. As
in CASE 1, the bottom image shows that the adaptation allows for better accuracy in
tracking the guidance.

Figure 8 shows the same scenario as Figure 7, with an increased control frequency
(from 10 to 5 minutes). In this case both controllers enhance their performance sig-
nificantly. In particular, the final distance from the desired location reached with the
adaptive controller, makes the differential drag approach a viable candidate for very close
proximity operations. In fact, such distances are in the order of magnitude of the reach
envelope for existing space robotic arms (Canadarm [31]). The maneuver is stopped when
the guidance reaches its end, but additional control could be performed via differential
drag, at a higher frequency of actuation, to move the spacecraft even closer to the target
location, or small thrusters could be used for the very final approach for rendezvous and
grappling.
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Figure 7: Nonlinear Simulation result (control update every 10 minutes): re-phasing to higher
polar angle from leader-follower initial condition to leader-follower final condition. Guidance
from Figure 3, with ∆t = 0.5T . (TOP) full trajectory; (BOTTOM) zoom of last phase.

Figure 8: Nonlinear Simulation result (control update every 5 minutes): re-phasing to higher
polar angle from leader-follower initial condition to leader-follower final condition. Guidance
from Figure 3, with ∆t = 0.5T . (TOP) full trajectory; (BOTTOM) zoom of last phase.

4.2.3 CASE 3: re-phasing from equilibrium-relative-orbit-to-equilibrium-
relative-orbit

Figure 9 shows the results of a nonlinear STK simulation using the Lyapunov controllers
to track a re-phasing guidance starting from an initial closed relative motion with a final
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goal of creating a new closed motion around the origin of the LVLH frame (Figure 4).
The simulation is stopped when the guidance reaches its end. The bottom plot shows
how the adaptation allows for more precise tracking of the guidance towards the end of
the maneuver.

Figure 9: Nonlinear Simulation result (control update every 10 minutes): re-phasing to higher
polar angle from equilibrium relative orbit initial condition and generation of a new closed
relative motion around the target point. Guidance from Figure 4, with ∆t = 0.5T . (TOP) full
trajectory; (BOTTOM) zoom of last phase.

Figure 10 shows the same scenario as Figure 9, with an increased control frequency
(from 10 to 5 minutes). In this case in the bottom image it is clear that both controllers
provide good tracking. A preliminary interpretation of this behavior can be found in
the nature of the maneuver. Since the spacecraft starts with a motion which is already
oscillatory, the control action is only required to shift that motion and then stop the
shift once the new desired location is reached. Roughly speaking, this maneuver is less
challenging from the controllers point of view since the dynamics starts in a favorable
initial condition.

In CASES 1 and 2 the spacecraft starts in a leader-follower state, thus requiring more
effort from the input signal. In CASE 1, the controller is required to move the spacecraft
away from its initial state, thus exciting the oscillations as well. These oscillations are
controlled by choosing the correct ∆t, and there is no need to drive them back to zero.
In CASE 2, instead, the controller moves the spacecraft away from its leader-follower
state, thus exciting oscillations, but it is also required to drive this motion to zero once
the final desired location is approached. Once again, intuitively speaking, this implies
more work for the controller. The above described differences in the maneuvers provide
an interpretation for the fact that the benefits of adaptation are clearer in CASE 1 and
2 than in CASE 3.

Finally, Table 3 compares adaptive and non-adaptive simulations by showing the
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Figure 10: Nonlinear Simulation result (control update every 5 minutes): re-phasing to higher
polar angle from equilibrium relative orbit initial condition and generation of a new closed
relative motion around the target point. Guidance from Figure 4, with ∆t = 0.5T . (TOP) full
trajectory; (BOTTOM) zoom of last phase.

number of switches required (i.e. control effort, since electrical power would be required
to actuate the devices), the average drag and critical drag, and the average control
margin during the maneuvers, where the margin is calculated as the difference between
real differential drag (it would not be known in real flight) and critical value. All the
values in the table support the preference for the adaptation.

4.3 Results discussion

Both the closed-loop controllers require no numerical iterations, making them viable
candidates for onboard implementation. The adaptive controller requires the implemen-
tation of the formulas for the derivatives ( [12]) which is still analytical, but imposes
more instructions on the spacecraft computer. Depending on the available memory, the
designer may decide to only implement the non-adaptive controller. Overall, the adap-
tation provides better accuracy and less control effort (number of state switches for the
drag surfaces), particularly allowing for better tracking of the guidance as the maneuver
approaches the final stages. This is especially true for more demanding maneuvers in
terms of guidance, where the dynamics may not be favorable with respect to the final
desired state. For cases such as equilibrium-relative-orbit to equilibrium-relative-orbit,
the non-adaptive controller may be equivalent to the adaptive in terms of control effort
required, that is number of open/closed cycles.
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10 minutes control
update

5 minutes control
update

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
Maneuver time (hr) 13.15 16.23 17.55 13.23 16.32 17.63

Non
Adaptive

Control
changes

41 68 64 80 133 127

Mean critical
value

(m/s2 ∗ 10−6)
-6.50 -4.30 -3.75 -5.90 -4.51 -3.40

Mean actual
drag

(m/s2 ∗ 10−5)
3.38 3.42 3.39 3.37 3.41 3.34

Mean
margin

(m/s2 ∗ 10−5)
4.03 3.85 3.77 3.96 3.86 3.68

Adaptive

Control
changes

37 58 72 76 112 112

Mean critical
value

(m/s2 ∗ 10−6)
-7.23 -5.38 -3.81 -6.24 -4.87 -4.28

Mean actual
drag

(m/s2 ∗ 10−5)
3.38 3.44 3.39 3.40 3.41 3.33

Mean
margin

(m/s2 ∗ 10−5)
4.10 3.98 3.77 4.03 3.90 3.75

Table 3: Nonlinear simulations results (number of status switches for the drag devices, mean
critical and real values of differential drag, and mean differential drag margin).

5 Conclusions

This paper introduced a novel framework combining previously presented analytical guid-
ance and Lyapunov control solutions for propellant-less, drag-based spacecraft re-phasing
relative maneuvers. The framework studied in this work, provides the groundwork for
realistic finite magnitude and finite duration control, such as the control obtained via
atmospheric differential drag. The analytical solutions can lead a spacecraft from an
initial location along the orbit to a desired final location on the same course, as well as
modify its path so that it will fly in an equilibrium fashion about a desired point ahead or
behind its initial location. The guidance is graphically illustrated and employed within
nonlinear models, where a closed-loop Lyapunov technique is used to track the guidance
trajectory with satisfactory accuracy in the full nonlinear STK environment. The relative
maneuvers are performed assuming differential drag control capability, which does not
use any propellant. Observations derived from the results of the nonlinear simulations
provide useful insights to spacecraft developers, and particularly to the mission designer
who needs to implement the correct control law on the spacecraft onboard computer.
Overall, the achieved results hold a promise for straightforward implementation onboard
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real spacecraft, particularly small spacecraft with limited computing capabilities.
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