
1st IAA Conference on Space Situational Awareness (ICSSA)

Orlando, FL, USA

IAA-ICSSA-17-01-02
A HYBRID ADAPTIVE CONTROL ALGORITHM FOR SPACECRAFT GUIDANCE 

TRACKING USING AERODYNAMIC DRAG

Sanny R. Omar(1), Riccardo Bevilacqua(2)

(1)University of Florida, ADAMUS Laboratory, Gainesville, Florida 32611, USA
502-216-2168, sanny.omar@ufl.edu

(2)University of Florida, ADAMUS Laboratory, Gainesville, Florida 32611, USA,
bevilr@ufl.edu

Keywords: Spacecraft, Drag, Guidance, Tracking, Re-Entry Point Targeting

As large numbers of increasingly smaller spacecraft continue to be launched, means 
of efficient and reliable orbital maneuvering and orbit disposal have become increas-
ingly necessary. For spacecraft that do not contain thrusters, aerodynamic drag modu-
lation using a retractable drag device or attitude changes presents itself as an efficient 
way to perform orbital maneuvers and control the re-entry location.

This paper introduces an aerodynamically based re-entry guidance generation al-
gorithm for low Earth orbit spacecraft that exhibits significant a ccuracy, robustness, 
and efficiency. The paper also presents a  novel guidance tracking algorithm whereby 
the drag device of a spacecraft is deployed or retracted relative to a nominal deploy-
ment profile (given in the guidance) based on the difference between the actual and 
desired state of the spacecraft. A full state feedback linear-quadratic-regulator control 
scheme is utilized with the Schweighart Sedgwick equations of relative motion to drive 
the relative position and velocity between the spacecraft and the guidance trajectory 
to zero. A problem-specific Extended Kalman Filter implementation is also introduced 
to remove noise from the GPS-derived relative motion estimate.

One thousand Monte Carlo simulations of the guidance generation algorithm with 
randomized initial conditions and desired re-entry locations are conducted, resulting 
in an average guidance error of 24.3 km and a maximum error below 750 km. The 
tracking of these aerodynamic decay guidances with the aforementioned algorithms is 
also simulated with drag force uncertainties up to a factor of two and navigation errors 
(noise and bias) comparable to that expected from a CubeSat GPS unit. Despite 
these simulated errors and uncertainties, this approach provides guidance tracking 
down to a re-entry altitude of 90 km with a final p osition e rror u nder 1 0 k m f or all 
cases. The algorithms detailed in this paper provide a way for any spacecraft capable 
of modulating its drag area to autonomously perform orbital maneuvers and execute a 
precise re-entry.
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Nomenclature

a = Semi-major axis (km)
Cb = Ballistic coefficient

(
m2

kg

)
e = Eccentricity
ECI = Earth centered inertial
EKF = Extended Kalman Filter
i = Inclination (radians)
J2 = Constant that describes Earth’s oblateness
K = LQR Gain
LEO = Low Earth Orbit
LQR = Linear quadratic regulator
Q = LQR weighting matrix for state error
R = LQR weighting matrix for actuator effort
Re = Radius of Earth
r = Spacecraft position vector (km)
T = Period of orbit or sinusoidal noise term (s)
t = Time (s)
u = Argument of latitude (radians)
v = Spacecraft velocity vector (km)
θ = True anomaly (radians)
µ = Earth’s gravitational parameter

(
km3/s2

)
Ω = Right ascension of ascending node (radians)
ω = Argument of periapsis (radians)
ωa = Average orbital angular velocity (radians/s)
ωe = Earth rotation rate (radians/s)

1. Introduction

Spacecraft orbit and re-entry control is traditionally conducted using powerful chem-
ical engines capable of producing a nearly instantaneous change in velocity [1]. The
advent of small spacecraft such as CubeSats [2] with minimal or no propulsion sys-
tems has fueled the development of creative orbit control methods including the use
of aerodynamic drag. The concept of orbit control using aerodynamic drag has been
considered for decades [3] and a number of researchers including the authors of this
paper have worked on this problem [4, 5, 6, 7, 8, 9, 10]. Recently, Planet Labs was
able to control a constellation of over 100 CubeSats using aerodynamic drag [11].
However, many of these aerodynamic orbit control algorithms are designed for bang-
bang control (min or max drag only), only work with small initial spacecraft separations,
do not employ feedback control to correct for uncertainties, or result in long maneu-
ver completion times. Given the increasing number of spacecraft in LEO, there is a
concern about orbital debris mitigation, especially since most small satellites cannot
perform propulsive de-orbit burns. Several teams have developed drag devices that
increase the cross-sectional area of a satellite to expedite de-orbit [12, 13, 14], but
these devices do not control the re-entry location of the host satellite.

Satellites containing components such as tungsten or titanium that may survive
re-entry and pose a hazard to ground assets [1] need a way to control their de-orbit
location in order to obtain a launch [15, 16]. If a satellite cannot contain a propulsion
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system due to volume, mass, or power constraints, modulation of the aerodynamic
drag experienced by the satellite can be utilized to control the de-orbit location. This
drag modulation could be achieved using a retractable drag device [17] or by changes
in the spacecraft’s cross-sectional area. Prior works by Virgili [18] and Dutta [19] dis-
cuss algorithms for aerodynamically-based re-entry control, but these algorithms have
some limitations (further elaborated on in Ref [20]). Virgili’s algorithm provides only an
initial guess of a satellite ballistic coefficient profile that must be followed to de-orbit
in the desired location. This initial guess must be used in a numerical optimizer that
is computationally intensive and has no convergence guarantees. Dutta proposes di-
rectly using NASA’s Program to Optimize Simulated Trajectories (POST2) numerical
optimizer to calculate the desired ballistic coefficient profile. These algorithms are not
suitable to run onboard a spacecraft due to the lack of convergence guarantees and
Virgili and Dutta have not fully investigated the ability of a spacecraft with a retractable
drag device to track the generated guidances in a realistic environment with model
uncertainty and sensor noise.

The guidance generation algorithm introduced in this paper is based on the au-
thors’ previous work [21, 20] but offers substantial novelties and improvements. The
shortcomings of the previous algorithm and the new improvements are discussed in
Sections 2 and 3. This work also introduces a high performance LQR [22, 23] based
guidance tracking algorithm (Section 4) that enables a spacecraft capable of active
drag modulation to follow the guidance despite sensor noise and drag force uncer-
tainties. While many feedback control algorithms in prior literature were designed
for bang-bang control (drag device fully deployed or fully retracted), the presented
tracking algorithm allows intermediate deployment levels, resulting in significant power
savings. These bang-bang approaches could not be generalized for continuous con-
trol so a fundamentally different control architecture was required for this algorithm.
The tracking algorithm utilizes the in-plane relative position and velocity (four states)
through the Schweighart Sedgwick relative motion dynamics [24], resulting in improved
performance over prior algorithms which only account for two states (generally mean
anomaly and semi major axis) and do not consider J2 perturbations in the dynam-
ics. A means of analytically calculating the Q and R matrices for the LQR controller
based on the desired system performance (a topic often neglected) is also presented.
Section 5 presents a unique version of an EKF [25] to filter GPS measurement noise.
Instead of filtering on the inertial satellite position and velocity, the EKF filters directly
on the position and velocity relative to the guidance. This allows the error covariance
to become smaller in the radial direction, leading to more accurate state estimates.
This formulation also helps to smooth out noise-like errors that result from the guid-
ance being an imperfect representation of reality. By keeping guidance tracking in
mind when designing the EKF, a more accurate state estimate and superior controller
performance can be obtained than if the noise filter and the controller were developed
in a completely decoupled manner. Finally, Section 6 discusses the results of simu-
lations to validate various aspects of the tracking controller performance including the
cases of actuator saturation, sensor noise, bias errors, model uncertainties, and actu-
ation delays. A Monte Carlo campaign consisting of 1,000 guidance generation and
guidance tracking algorithms is also conducted with randomized initial conditions and
realistic models of sensor noise and drag estimation errors. The results of these sim-
ulations are shown in Section 6.4 and provide a complete validation of the guidance,
navigation, and control algorithms needed for spacecraft de-orbit point targeting using
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aerodynamic drag. Such a comprehensive development and detailed validation of all
GNC algorithms relevant to this problem is not available in prior literature.

2. Previous Guidance Generation Algorithm

2.1. Previous Algorithm Overview
The algorithm discussed in this paper is based on the guidance generation proce-

dure discussed in the authors’ prior work [21, 20] but offers significant improvements.
The algorithm in Ref. [20] calculates an initial ballistic coefficient (Cb1), second ballistic
coefficient (Cb2), and time value tswap. The spacecraft maintains Cb1 until time tswap, Cb2

until a specified orbit semi major axis aterm is reached, and a predefined ballistic coef-
ficient Cbterm until the de-orbit altitude. If the proper control parameters (Cb1, Cb2, and
tswap) are chosen, the spacecraft will arrive at the desired latitude and longitude at the
de-orbit altitude. Note that in Ref. [20] and [21] and in this paper, Cb is defined as

Cb =
CdA
2m

(1)

where Cd is the drag coefficient, A is a reference area (often the cross-wind surface
area), and m is the mass of the spacecraft. In Ref. [21], an analytical solution is
developed where, if given a numerically propagated spacecraft trajectory with some
Cb profile, the de-orbit location of a spacecraft with the same initial conditions but a
different Cb profile can be calculated. This solution is based on the relation [21] that
the time and true anomaly required for a spacecraft to decay from an initial to final
semi major axis due to aerodynamic drag increase linearly with decreasing ballistic
coefficient. Assuming a satellite with ballistic coefficient Cb1 takes time t1 to achieve
some change in semi major axis ∆a and undergoes true anomaly change ∆θ1 during
this drop, the time and true anomaly change a satellite with the same initial conditions
and some different Cb2 will undergo to achieve the same ∆a is given by

∆t2 =
Cb1∆t1

Cb2
(2)

∆θ2 =
Cb1∆θ1

Cb2
(3)

Since the average rate of change of right ascension (Ω̇avg) is independent of Cb, the
change in Ω experienced during the orbital decay can be calculated by

∆Ω = Ω̇avg∆t (4)

As shown in Fig. 1, if the trajectory of a satellite with some initial set of control pa-
rameters has been numerically propagated, the de-orbit location of a new trajectory
corresponding to the same initial conditions but a different set of control parameters
can be analytically estimated by dividing the trajectories into regions of semi major
axes where the Cb is not changing in either trajectory. In the last region (below the
terminal point) both trajectories have the same Cb so they can be assumed to experi-
ence the same change in orbital elements between the terminal point and the de-orbit
point. For the three phases before the terminal point, Eqs. (2-4) can be utilized to
calculate the changes in time and orbital elements experienced in each phase of the
new trajectory. All changes in time and orbital elements can be added to calculate the
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Figure 1: Dividing Orbits into Phases for Analytical De-Orbit Point Calculation

final time and orbital elements, and hence the latitude and longitude, at the de-orbit
point.

The argument of latitude (u) required to de-orbit at the desired latitude is calculated
by recognizing that the z-component of the ECI position vector is equal to the last
row of the perifocal to the ECI frame direction cosine matrix given by eq. 4.49 in [26]
multiplied by the perifocal position vector.

r sin(lat) = r
[
sin(ω) sin(i) cos(ω) sin(i) cos(i)

] cos(θ)
sin(θ)

0

 (5)

Recognizing the trigonometric identity

sin(u) = sin(ω + θ) = (sin(ω) cos(θ) + cos(ω) sin(θ)) (6)

Eq. 5 can be simplified to

u = sin−1
(
sin(lat)
sin(i)

)
(7)

Because the sin−1 function only returns values between −π/2 and π/2, the other u
values that yields proper latitude targeting can be calculated by

u2 = π − u1 (8)

For each calculated u, the increase in true anomaly (∆θd) required for latitude targeting
can be calculated based on the initial ui as

∆θd = mod (ud − ui, 2π) (9)
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Figure 2: Prior Targeting Algorithm Schematic [20]

Using this mapping from the control parameters to the de-orbit point, the change in
tswap necessary for a desired ∆θd is calculated by [20]

∆tswap =
∆θdCb2

ωa2 (Cb2 −Cb1)
(10)

where ωa2 is the average angular velocity during phase 2 of the orbit shown in Figure 1.
The algorithm in Ref. [20] proceeds using a numerical optimization approach as shown
in Fig. 2. The analytical solution is used to calculate the control parameters needed
for targeting by decoupling the targeting of latitude and longitude. First, the value of
tswap that yields perfect latitude targeting but the lowest correctable longitude error is
calculated using Eq. 10. The variations in the control parameters needed to correct
that longitude error to the extent possible without upsetting the latitude targeting are
then calculated using Eqs. (11-13) derived in Ref [20] with ∆θt as required for latitude
targeting and ∆tt as required to correct for the remaining longitude error.

2.2. Limitations of Prior Algorithm
While the prior guidance generation algorithm is extremely effective in many sce-

narios, there are some limitations. For one, there must be some difference between
Cb1 and Cb2 for changes in tswap to induce any change in orbital behavior. In the be-
ginning of the simulation, Cb1 and Cb2 are set as far apart as possible to maximize the
effectiveness of changes in tswap, but over the course of several targeting iterations, it is
possible to have Cb1 and Cb2 very close together. This may make it impossible to per-
form latitude targeting through a variation of only tswap, resulting in the algorithm failing
to converge. This issue also hinders the ability to periodically regenerate the guidance
(desirable if atmospheric forecasts change or the drag coefficient model is updated). If
the spacecraft is following an initial guidance and is beyond the swap point (tswap), the
remainder of the guidance until the terminal point can be characterized by Cb1 = Cb2

and an arbitrary tswap. These control parameters cannot be used as an initial guess
in a new guidance generation process because latitude targeting using tswap will not
be possible. Guidance re-generation must begin from scratch with Cb1 and Cb2 as far
apart as possible which increases computation time and provides no guarantee that
the newly generated guidance will have the same accuracy as the original guidance
since the initial conditions are very different.

Another limitation of the prior algorithm is due to the trade-off between controlla-
bility and sensitivity. Because aerodynamic drag force is weak and only acts in the
along-track direction, significant time is required to maneuver the satellite into a de-
sired orbit. Thus, the controllability (set of reachable target locations) is drastically
reduced when limited orbit lifetime is remaining. To ensure that every point with lati-
tude below the orbital inclination is reachable using aerodynamic drag, maneuvering
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must begin on the order of two weeks before the expected end of the satellite’s orbital
life. As maneuvering begins increasingly earlier, however, even small perturbations
become significant because their effects are propagated for several days. In partic-
ular, the analytical solution for the control parameters hinges on the assumption that
a spacecraft with the new control parameters will experience approximately the same
density vs. semi major axis profile as the spacecraft in the initial numerically propa-
gated trajectory. This is a reasonable assumption if the changes in the control param-
eters are small but will never be perfectly true when a high fidelity drag model is used
because different regions of space, even at the same altitude and time, experience dif-
ferent densities and atmospheric winds. With early maneuvering, orbital perturbations
caused by these differences become significant and result in large deviations between
the analytical estimates of de-orbit locations and the more accurate solutions derived
from numerical orbit propagation. This often leads to either a failure of the algorithm
to converge or unacceptably long simulations times. In Ref. [20], guidance generation
simulations using a high fidelity orbit model were set to begin when the spacecraft had
roughly one week of orbit lifetime remaining. This allowed the algorithm to converge
in a reasonable amount of time (around 1 hour). The resulting longitude error of up to
1250 km due to the limited controllability was accepted as reasonable assuming that
the algorithm would likely be utilized to steer the satellite to the South Pacific Ocean
Uninhabited Area (SPOUA) for debris mitigation purposes.

3. Improved Guidance Generation Algorithm

3.1. Algorithm General Form
The new guidance generation algorithm in this paper address all the shortcomings

discussed in Sec. 2.2 using an improved analytical solution and a receding horizon
strategy [27]. As in the prior algorithm, the analytical solution calculates the control
parameters needed for de-orbit point targeting, but both latitude and longitude target-
ing are handled in the same calculation and there are no restrictions on the initial
Cb values. This eliminates the issue of insufficient latitude controllability discussed
previously and allows for a more complete exploration of the available control space,
yielding more accurate solutions. The receding horizon strategy is used in place of the
numerical optimization approach and capitalizes on the benefits of high controllability
at high initial altitudes and the reduced sensitivity to drag force perturbations at low
altitudes. The general form of the receding horizon strategy is as follows. A trajectory
is first propagated with a set of control parameters analytically calculated for proper
targeting. Because of the high sensitivity, it is unlikely that the de-orbit point in the nu-
merically propagated trajectory will correspond to the one predicted by the analytical
solution. A predefined percentage of the beginning of the newly propagated trajectory
(time tg) is saved as the initial part of the guidance. The rest of the trajectory is then
utilized to analytically calculate a new set of control parameters. Another trajectory is
propagated with these parameters and a predefined percentage of that trajectory is
appended to the first part of the guidance. The process continues until a trajectory is
propagated that has less than a specified amount of orbit lifetime remaining or lands
within a specified distance of the target point. That entire trajectory is then appended
to the previously calculated initial components of the guidance. At this point, the guid-
ance generation algorithm is complete and a reference trajectory corresponding to a
desired Cb profile has been created. This algorithm is depicted graphically in Fig. 3.
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Figure 3: Basic Form of the Improved Guidance Generation Algorithm

3.2. Analytical Solution for Control Parameters
As shown in Ref. [21], assuming that tswap occurs at the same semi-major axis in the

new and initial trajectories, the Cb1 and Cb2 values needed to achieve both a desired
total orbit lifetime ∆tt and desired total change in true anomaly ∆θt to the terminal
point (tterm in Figure 1) can be calculated in terms of the initial numerically propagated
trajectory as

Cb2 =
Cb20(∆t20∆θ10 − ∆t10∆θ20)

∆tt∆θ10 − ∆t10∆θt
(11)

Cb1 =
∆θ10Cb10Cb2

∆θtCb2 − ∆θ20Cb20
(12)

tswap must also be updated to enforce the condition that the swap point occurs at the
same semi major axis in both trajectories. This is achieved by setting

tsnew =
tsoldCb10

Cb1
(13)

Note that variables with subscript 0 correspond to the initial numerically propagated
trajectory. If a trajectory is numerically propagated with some initial set of control pa-
rameters, Eqs. (7-8) can be utilized to calculate the argument of latitude (u) required for
the spacecraft to impact the correct latitude. Unless the target latitude is exactly equal
to the orbit’s inclination, there will always be two feasible u values; one correspond-
ing to the ascending portion of the orbit (increasing latitude) and one corresponding
to the descending portion of the orbit (decreasing latitude). If −pi/2 ≤ u < pi/2 then
the spacecraft is ascending along its orbit. For any other value of u, the spacecraft
is descending. Based on whether the user wants the spacecraft to de-orbit on the
ascending or descending part of the orbit, the correct u and corresponding ∆θd can be
chosen. The longitude error that would result if ∆θd were achieved but the orbit lifetime
remained the same can be calculated by determining the orbital elements of the nu-
merically propagated trajectory at the de-orbit point, adding ∆θd to the true anomaly,
and calculating the impact latitude and longitude using the original de-orbit time. For
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a given longitude error between this impact location and the desired impact location
denoted by

λe = λimp − λdes (14)

the increase in orbit lifetime necessary to correct for this longitude error is calculated
by

∆td =
λe

ωe
(15)

where ωe is the rotation rate of Earth. The total time and change in true anomaly to the
terminal point required for latitude and longitude targeting can now be calculated as

∆tt = ∆tt0 + ∆td (16)

∆θt = ∆θt0 + ∆θd (17)

These values of ∆θt and ∆tt can now be substituted into Eqs. 11-13 to calculate the
set of control parameters needed for proper targeting.

Applying the aforementioned method directly causes issues when there is insuffi-
cient ballistic coefficient controllability available to achieve the desired ∆θt and ∆tt. In
such a case, because it is easier to control the along-track position than the cross-track
position with aerodynamic drag, a set of control parameters should be selected that
achieve the desired ∆θt and a ∆tt as close as possible to the desired value. With ∆θt

calculated using Eq. 17, the minimum and maximum achievable ∆tt can be calculated
by first solving Eq. 11 for ∆tt to get

∆tt =
Cb20(∆t20∆θ10 − ∆t10∆θ20) + Cb2∆t10∆θt

Cb2∆θ10
(18)

For a maximum ∆tt, the largest Cb2 and smallest Cb1 that yield the correct ∆θt must
be used. This allows the satellite to spend as much of its orbit as possible at higher
altitudes where the orbital period is longer and hence the time required to achieve a
given ∆θ is also longer. Substituting Cbmax for Cb2 in Eq. 12 gives the Cb1 needed to
achieve the desired ∆θt if Cb2 = Cbmax . If the required Cb1 is greater than Cbmin, then the
combination of Cb1 and Cb2 is valid. If not, Cb2 is too large and the greatest Cb2 that
yields a feasible Cb1 can be calculated solving Eq. 12 for Cb2 and substituting Cbmin for
Cb1 to get

Cb2 =
Cbmin∆θ20Cb20

Cbmin∆θt − ∆θ10Cb10
(19)

The maximum ∆tt can be found by substituting the calculated values of Cb1 and Cb2 into
Eq. 18. Similarly, the minimum ∆tt requires the maximum valid Cb1 and the minimum
valid Cb2 that yield the correct ∆θt so that the satellite can spend the greatest amount
of time at low altitudes where the orbital period is shorter. These Cb values can be
found as explained earlier by substituting Cbmin for Cb2 in Eq. 12 and increasing Cb2 as
necessary to ensure Cbmin < Cb1 < Cbmax .

If the desired ∆tt is within the feasible range for the given ∆θt, then the control
parameters required for proper targeting can be calculated using Eqs. 12-13. If not,
∆tt should be set to either the minimum or maximum feasible value to minimize the
magnitude of the difference between the desired ∆tt and the best achievable ∆tt.

It is worth noting that any total true anomaly change given by

∆θt = ∆θti + 2nπ (20)
9



where n is an integer and ∆θti is the ∆θt initially calculated for proper latitude targeting
will also provide proper latitude targeting. In each analytical targeting iteration, a range
of ∆θt values to test should be calculated. Based on the value of ∆td, a range of ∆θt

values that give proper latitude targeting can be calculated that will be guaranteed
to contain the ∆θt that minimizes the longitude targeting error. If ∆td is positive, orbit
lifetime must be increased and more orbits are needed, while if it is negative, lifetime
must be decreased and fewer orbits are needed. The lower bound for the increase in
orbit lifetime per orbit (Tl) is given by the orbital period of a satellite with zero altitude
while the upper bound (Tu) applies to a satellite with a equal to the initial semi major
axis of the guidance trajectory (ai).

Tl = 2π

√
R3

e

µ
(21)

Tu = 2π

√
a3

i

µ
(22)

From Eq. 21 and Eq. 22, the range of ∆θt values to test can be calculated as follows
where each ∆θt must satisfy Eq. 20. If ∆td ≤ 0

∆θtε[∆θti + 2π · f loor
(
∆td

Tl
− 1

)
,∆θti + 2π · ceil

(
∆td

Tu
+ 1

)
] (23)

while if ∆td > 0

∆θtε[∆θti + 2π · f loor
(
∆td

Tu
− 1

)
,∆θti + 2π · ceil

(
∆td

Tl
+ 1

)
] (24)

The f loor function rounds its argument down to the nearest integer while the ceil func-
tion rounds its argument up to the nearest integer. The ∆θt limits specified by Eq.
23 and Eq. 24 should always be updated if necessary to ensure that they are within
the absolute ∆θt limits. The greatest orbit lifetime and hence the maximum ∆θt occurs
when Cb1 = Cb2 = Cbmin and is calculated using Eq. 3 as

∆θmax =
Cb10∆θ10 + Cb20∆θ20

Cbmin

(25)

By similar reasoning, the minimum ∆θt occurs when Cb1 = Cb2 = Cbmax and is calculated
by

∆θmin =
Cb10∆θ10 + Cb20∆θ20

Cbmax

(26)

To fully explore the control space, all ∆tt values that are between the minimum and
maximum orbit life and satisfy the equation

∆tt = ∆tti +
2π
ωe

n (27)

should be tested with each ∆θt value in the range given by Eq. 23 and Eq. 24. Note
that the maximum and minimum orbit life can be calculated by substituting ∆t10 for ∆θ10

and ∆t20 for ∆θ20 in Eqs. 25 and 26.
For each tested combination of ∆tt and ∆θt, the time controllability (tc) should be

recorded. tc characterizes the available orbit lifetime control margin and is defined as
follows where ∆ttmin and ∆ttmax are the minimum and maximum achievable orbit lifetimes
for the desired ∆θt, and ∆ttdes is the desired ∆tt:
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• If ∆ttdes cannot be achieved for the desired ∆θt

tc = −min
(∣∣∣∆ttmin − ∆ttdes

∣∣∣ , ∣∣∣∆ttmax − ∆ttdes

∣∣∣) (28)

• If ∆ttdes can be achieved for desired ∆θt

tc = min
(∣∣∣∆ttmin − ∆ttdes

∣∣∣ , ∣∣∣∆ttmax − ∆ttdes

∣∣∣) (29)

As mentioned previously, a limitation of this analytical theory is that it requires the
swap point to occur at the same semi major axis in the new and initial numerically prop-
agated trajectories. To circumvent this limitation, analytical control parameter solutions
for initial tswap values between the minimum and maximum feasible tswap in increments
of ti seconds can be tested. The minimum tswap is 0 and the maximum tswap occurs if
Cb1 is maintained all the way to the terminal point and is given by

tsmax = t10 +
Cb20∆t20

Cb10
(30)

The ∆t1, ∆t2, ∆θ1, and ∆θ2 values corresponding to a trajectory with this new tswap can
be analytically calculated as described previously by dividing this new trajectory and
the initial numerically propagated trajectory into three phases before the terminal point
as shown in Fig. 1 and calculating the time and change in true anomaly in each phase
using Eq. 2 and Eq. 3. These newly calculated ∆t and ∆θ values can be used directly
in the aforementioned analytical control solution. The testing of the full range of tswap

values implicitly allows the swap point to occur at all semi-major axes below the initial
semi-major axis, facilitating a full exploration of the control space. Among all tested
scenarios, the combination of parameters that yields the largest tc should be chosen
and the Cb1, Cb2, and tswap corresponding to these parameters should be returned.

3.3. Back-Stepping Method
With the receding horizon strategy, a percentage of the beginning of the trajec-

tory propagated with the analytically calculated set of control parameters is retained
and used for the guidance. This makes up the first tg seconds of the guidance. The
remainder of the trajectory is utilized to analytically calculate a new set of control pa-
rameters which are then propagated to create the next portion of the guidance. If tc is
a small positive number when using the full numerically propagated trajectory, using
this smaller portion of the trajectory may results in insufficient controllability remaining
to target the desired de-orbit point using aerodynamic drag (negative tc). In such a
case, tg may have been too large. In this implementation, such cases were handled by
reducing tg by a factor of two and continuing to do this until there was sufficient con-
trollability in the remainder of the numerical trajectory or a maximum number of such
”back-steps” was reached. The maximum number of back-steps and the reduction in
tg per back-step are up to the user based on the required guidance accuracy and avail-
able computational power. In this work, tg is initially set to 10% of the remaining orbit
life, each back-step reduces tg by a factor of two, and a maximum of two back-steps
are allowed.
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3.4. Latitude Targeting for Error Reduction and Terminal Orbit Characterization
In the analytical solution, it is assumed that the new trajectory to be analyzed ex-

periences the same changes in orbital elements as the initial trajectory after the ter-
minal point since both trajectories maintain the same Cb after this point. However, the
oblateness of Earth, the rotating atmosphere, and the temporal and spatial variations
in density (even at the same altitude) can render this assumption invalid and result in
divergences between analytical and numerical solutions. To remedy this, after each
numerically propagated trajectory, the spacecraft’s Cb just a few hours before the ter-
minal point (time tmod) is modified to ensure proper latitude targeting. This ensures that
the spacecraft is flying through the correct region of the atmosphere at the end of its life
and provides a more accurate characterization of the terminal behavior of the satellite
that can be utilized in future analytical solutions. If the modified Cb is within the range
of feasible spacecraft Cb values and the resulting total guidance error is less than some
predefined threshold, the guidance generation algorithm is considered complete and
this final modification of Cb and the change in the final trajectory that results from it is
included in the guidance.

If precise control over orbit lifetime is not required, once the ∆θd required to achieve
proper latitude targeting has been calculated, the change in Cb needed to achieve this
can be calculated based on the initial ∆θi that occurs between tmod and the terminal
point. The ratio of the initial to the required ∆θ during this period is given by

rθ =
∆θi

∆θi + ∆θd
(31)

To achieve the desired ∆θd, all Cb values after tmod must be multiplied by rθ and tswap

must be adjusted using Eq. 13 to ensure that the Cb swap point (if applicable) occurs
at the same semi major axis as in the initial trajectory. In this case, it is permissible if
some of the resulting Cb values exceed the feasible range because the goal is to better
characterize the behavior of the satellite after the terminal point, not before. Note that
the satellite always maintains the same Cbterm after the terminal point.

In the final receding horizon guidance generation step, making a few final attempts
to correct only the latitude error through variations in Cb reduces the overall guidance
error in a number of cases. In such a scenario, it is desirable to maintain Cb values
within the acceptable range while attempting to achieve a desired ∆θd. To do this, rθ
can be calculated as before using Eq. 31 and multiplied by all Cb values after tmod to get
the new desired Cb values. No matter what, the trajectory after tmod will have at most
one swap in Cb and can be decomposed into the familiar Cb10, Cb20, ∆θ10, ∆θ20, ∆t10, ∆t20

after multiplication by rθ. Note that if only one Cb is maintained between tmod and tterm,
then ∆t10 = ∆θ10 = 0 and Cb10 = Cb20. If Cb10 > Cbmax , Cb1 can be reduced to Cbmax and the
resulting change in orbit lifetime can be calculated by Eq. 3 assuming the swap point
occurs at the same semi major axis. Cb2 can then be modified according to Eq. 3 to
ensure that the desired ∆θd is maintained. tswap can then also be modified according
to Eq. 13 to ensure that the swap point occurs at the same semi major axis. If both
Cb1 and Cb2 exceed Cbmax , then both Cb values should be reduced to Cbmax to achieve
as close to the desired ∆θd as possible. If Cb20 > Cbmax , then Cb2 must be reduced to
Cbmax and Cb1 increased to ensure that the desired ∆θd is achieved. A similar procedure
applies if either Cb value is below Cbmin.
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4. Guidance Tracking Algorithm

Due to uncertainties in the drag force acting on the spacecraft, feedback control
techniques must be utilized to vary the commanded spacecraft Cb based on the differ-
ence between the actual and desired position and velocity.

4.1. Schweighart Sedwick Relative Motion Dynamics for Feedback Control
The Schweighart Sedwick (SS) equations of relative motion [24] can be utilized

to specify the evolution of the position and velocity of the spacecraft relative to the
guidance at any given time when the separation between the spacecraft and the guid-
ance is small compared to the radius of Earth. The relative position and velocity are
specified in the non-inertial Local-Vertical-Local-Horizontal (LVLH) frame centered on
a fictitious satellite that is following the guidance trajectory with the x-axis pointing
along the zenith vector (up), the z-axis aligned with the angular momentum vector,
and the y-axis completing the right-handed coordinate system [26] as shown in Fig. 4.
Note that the LVLH frame can be specified entirely based on the guidance position and
velocity (rg and vg) at the relevant point in time. The basis vectors of the LVLH frame
expressed in ECI frame are

E î =
Erg

rg
(32)

Ek̂ =
Erg ×

Evg∣∣∣Erg ×
Evg

∣∣∣ (33)

E ĵ = Ek̂ × E î (34)

The direction cosine matrix that transforms vectors from the Earth Centered Inertial
(ECI) frame to the LVLH frame can be written in terms of the LVLH basis vectors
expressed in the ECI frame as

RE2L =


E îT

E ĵT

Ek̂T

 (35)

The position and velocity of the spacecraft relative to the guidance as seen by an
observer in the LVLH frame are given by [26]

δr = rsc − rg (36)

δv = vsc − vg −

(
rg × vg

r2
g

)
× δr (37)

Note that the subscript ”sc” denotes the spacecraft while ”g” denotes the guidance. If
the vectors used to calculate Eqs. 36-37 are expressed in the ECI frame, the relative
position and velocity will also be expressed in the ECI frame and can be converted to
the LVLH frame through a pre-multiplication by RE2L.

If it is assumed that J2 and two-body gravity are the only perturbations, δr << Re,
and rg · vg ≈ 0 at all points, the equations of relative motion can be linearized in a form
known as the Schweighart Sedwick equations. Differential drag can be incorporated
into the SS dynamics as a control input that induces a relative acceleration. The
SS approach can be utilized to incorporate additional perturbations into the linearized
dynamics, but such a level of accuracy is unnecessary for this application. Considering
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Figure 4: Local Vertical Local Horizontal (LVLH) Frame [26]

only the in-plane relative position and velocity (δx, δy, δẋ, δẏ) because aerodynamic drag
cannot be used for out-of-plane control and considering a relative δÿ due to a difference
in the Cb between the spacecraft and the guidance, the SS linearization can be written
as [24] 

δẋ
δẏ
δẍ
δÿ

 =


0 0 1 0
0 0 0 1
b 0 0 d
0 0 −d 0



δx
δy
δẋ
δẏ

 +


0
0
0
−ρvg

2

 ∆Cb (38)

where
∆Cb =

(
Cbsc −Cbg

)
(39)

n =

√
µ

a3 , c =

√
1 +

3J2Re
2

8a2 [1 + 3 cos(2i)], d = 2nc, b =
(
5c2 − 2

)
n2 (40)

4.2. LQR Control for Guidance Tracking
With the dynamics of the relative motion between the spacecraft and the guidance

given by Eq. 38 in the classic state-space form

ẋ = Ax + Bu (41)
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it is possible to use a LQR [23] control approach to drive the relative position and
velocity to zero. An LQR controller derives the gain K to yield the feedback control law

u = −Kx (42)

that drives the state to zero and minimizes the cost functional

J =

∫ ∞

0

(
xT Qx + uT Ru

)
dt (43)

where Q and R are square weighting matrices of appropriate dimension. Because the
state is four-dimensional and the control is one-dimensional, Q and R will be 4 by 4
and 1 by 1 matrices respectively and K will be a 1 by 4 matrix with the control given by

∆Cb = −
[
K1 K2 K3 K4

] 
δx
δy
δẋ
δẏ

 (44)

The LQR gain is optimal in the sense that no linear feedback control law can be de-
rived that yields a lower value of J as t → ∞. However, the practical performance of
the controller is heavily dependent on Q and R which weight the relative importance
of driving the state to zero as fast as possible and executing minimal control effort. In
many cases, Q and R are selected through trial and error, but for this problem there
is a rigorous way to define these matrices. Because along-track error is far greater
than radial error in general, radial error is considered only in terms of its contribution

to along-track error. For this reason, setting Q =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 yields superior guidance

tracking performance for a given value of R than any other value of Q with a compara-
ble matrix 2-norm (as defined in [28]). This value of Q implies that the controller should
only be concerned with errors in the along-track (δy) direction. However, if there is any
radial (δx) error or relative velocity (δẋ, δẏ) error, that will automatically result in a δy
error over time. Thus the controller drives to zero errors in δx, δẋ, and δẏ in its attempt
to drive δy to zero, but permits radial and velocity errors to increase temporarily if doing
so is necessary to drive δy to zero as quickly and efficiently as possible.

With Q fixed, R must be set based on the desired magnitude of the spacecraft
response to deviations from the guidance. This can be done by first defining ∆rsat as
the desired δy at which the commanded change in ballistic coefficient will be equal to
Cbmax − Cbmin. That is, the controller will be guaranteed to saturate at δy = ∆rsat. The
LQR gain K can first be computed using an arbitrary initial R (R = 10, 000 used in
this work) and then recomputed after updating R based on the initially obtained K to
enforce controller saturation at δy = ∆rsat. The equation to update R is

Rnew = R0

 Cbmax −Cbmin

K0
[
0 ∆rsat 0 0

]T


2

(45)

Note that there is no benefit to changing the magnitude of Q as all performance varia-
tions that could result from a change in the magnitude of Q can be achieved through a
manipulation of R for this problem.
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Finally, the A and B matrices in the SS dynamics will change as the spacecraft
decays to a lower orbit and experiences a different ambient density and semi major
axis. To account for this, K can be recomputed using the LQR strategy with new A and
B matrices whenever the current atmospheric density (ρnew) differs from the density
used to compute the previous gain (ρold) by a factor of p or more where

p =
ρnew

ρold
(46)

In the current work, p = 1.2 is used. Plots of the performance of this controller in
specific scenarios are included in Section 6.

4.3. Controller Saturation
Controller saturation occurs when the commanded control is beyond what the ac-

tuator is physically capable of providing [29]. While some systems become unstable
when in a saturated state, the guidance tracking algorithm remains stable and returns
the spacecraft to the guidance under saturation conditions. If the desired Cb is below
Cbmin, the desired Cb is simply set to Cbmin. Similarly, if the desired Cb is greater than
Cbmax , then Cb is set to Cbmax . The simulations conducted to verify the performance of
the controller under saturation are discussed in Section 6.3.2.

4.4. Actuator Deadband and Performance Limitations
To prevent the feedback law given in Eq. 44 from changing the spacecraft Cb for

any infinitesimal change in the state vector, an actuator deadband is utilized. With the
deadband approach, the ballistic coefficient of the spacecraft is not modulated until the
difference between the current and desired ballistic coefficient is greater than a certain
percentage (5% in this work) of the current ballistic coefficient.

The finite times required to achieve desired Cb changes (through attitude variations
or drag device actuation) are also considered in this work. The assumption that four
minutes would be required to go from Cbmin to Cbmax is made since this is an upper
bound for the deployment times of current retractable drag devices [17, 30]. In all
tested cases, the controller was robust to non-instantaneous actuation and remained
functional with the Cb deadband as evidenced by the simulation results in Section 6.

5. Extended Kalman Filter for Relative Orbit Determination and Noise Filtering

Spacecraft utilizing the guidance tracking algorithm would likely receive ECI posi-
tion and velocity measurements from a GPS unit which can be converted to relative
position and velocity using the procedure in Section 4.1. The piNAV-L1 [31] is a pop-
ular GPS unit for small satellites and the manufacturer-specified position and velocity
errors are approximately Gaussian with a standard deviation of 5 m and 5 cm/s re-
spectively with bias errors that can be up to 5 m in position and 5 cm/s in velocity. The
piNAV-L1 has a measurement frequency of 1 Hz. Other GPS units such as the NovAtel
OEM615 have similar performance. While this level of error would likely be insignifi-
cant for maneuvers performed with large chemical engines, drag-based orbit control
algorithms are much more sensitive. The low magnitude of aerodynamic drag force in
space means that any orbit changes take a long time to achieve and any errors take a
long time to correct. This means that the controller must react vigorously to any track-
ing error in order to prevent excessive drift, making the controller much more sensitive
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to noise (a fact ignored by much existing literature on aerodynamic orbit control). When
tracking simulations were run with unfiltered noisy simulated GPS measurements, the
Cb commands became erratic with the actuator running over 70% of the time, as op-
posed to around 1-3% of the time during the noise free case. Fortunately, the structure
of the relative position and velocity needed for the guidance tracking algorithm lends
itself to the implementation of an EKF [25] that provides a more accurate estimate of
the spacecraft state relative to the guidance than a direct filtering of the ECI position
and velocity.

A Kalman filter has two stages, a predict stage and an update stage. In the predict
stage, an a-priori estimate of the state and estimation error covariance matrix is first
made based on the state and covariance estimate at the previous time point and knowl-
edge of the system dynamics. A crucial part of the predict phase is the state transition
matrix Φ which gives the new state when pre-multiplied by the previous state. Since
the linearized dynamics are already known, the matrix exponential of the A matrix from
Eq. 38 can be utilized to calculate Φ as

Φ = eA∆t (47)

where ∆t is the time since the last state estimate. In a linear Kalman filter (popular
if computing power is limited), the state estimate x−i can be calculated by multiplying
the previous state estimate by Φ. With the EKF, x−i can be calculated more accurately
(though at a higher computational cost) by converting the previous state estimate x+

i−1
to ECI position and velocity, numerically propagating the orbit for time ∆t, and convert-
ing the final result back to relative position and velocity based on the guidance state
at that time. Let this conversion and propagation process be denoted by the function
f
(
ti−1, ti, x+

i−1

)
which will be utilized in the predict stage of the EKF. The new covariance

matrix estimate P−i can be calculated by a similarity transform using Φ. The state and
covariance estimates for the predict stage are thus

x−i = f
(
ti−1, ti, x+

i−1
)

P−i = ΦiP+
i−1Φi + Q

(48)

where Q is the process noise covariance matrix.
The update stage of the EKF involves updating the a-priori state and covariance

estimates based on some measurement zi. The update stage is described in Ref. [25]
as follows

Ki = PiGT
(
GP−i GT + W

)−1

x+
i = x−i + Ki

(
zi −Gx−i

)
P+

i = (I − KiG)PiΛ

(49)

Where W is the measurement noise covariance matrix, Λ is a term greater than 1
(Λ = 1.02 used in this work) utilized to ensure that P does not become too small (filter
smugness [32]), and G specifies the linear mapping between the measurement and
the state as

z = Gx (50)

Note that in this scenario z is the raw GPS measurement converted to in-plane relative
position and velocity and so G is a 4x4 identity matrix.
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6. Algorithm Simulations

One thousand Monte Carlo simulations of the guidance generation algorithm were
conducted to verify the ability to calculate an achievable drag profile and correspond-
ing trajectory that if followed, will allow the spacecraft to de-orbit in a desired location.
In all cases, guidance generation was set to stop if at any point a trajectory was gen-
erated with a guidance error of less than 25 km. For each of the resulting guidances,
a guidance tracking simulation was conducted with realistic models of GPS sensor
noise and density uncertainty to validate the ability to follow a guidance in a realistic
environment. Simulations of specific cases were also conducted to assess particular
aspects of the algorithms’ performance.

6.1. Environmental Force and Uncertainty Modeling
A high fidelity orbit propagator was created in MATLAB including gravitational per-

turbations modeled by geopotential coefficients through degree and order 4 using the
procedure from Montenbruck’s book [33] and the EGM2008 gravity model [34]. Atmo-
spheric density was given by the NRLMSISE-00 model [35] with historic F10.7 and Ap
indices [36]. In each simulation, the ballistic coefficient (defined in Eq. 1) used at any
point in time was required to lie in a specified Cb range. Solar radiation pressure, solar
gravity, and lunar gravity were found to be insignificant in low Earth orbits and were
neglected.

By far the greatest source of uncertainty is in the aerodynamic drag force due to the
difficulties in modeling the density and drag coefficient. For the purposes of guidance
generation, NRLMSISE-00 density was used directly. To characterize the effects of
drag estimation errors when trying to track the guidance, the nominal drag force was
multiplied by an error coefficient when simulating the guidance tracking algorithm. This
error coefficient was the combination of a bias term and three sinusoidal terms and was
calculated by

kerr = k0 +

3∑
i=1

ki sin(
2π
Ti

t − φi) (51)

The T values were set to T1 = 26 days, T2 = 1 day, T3 = 5400s based on observed
density variations on real satellite missions [37, 38, 39]. These corresponded to the
synodic period (sun rotation), Earth day, and approximate orbital period. φ values were
randomly selected from a uniform distribution between 0 and 2π. k0 values were ran-
domly selected from a uniform distribution between .77 and 1.3 and the other k values
were set to k1 = .25, k2 = .1, k3 = .1 based on historically observed drag estimation
errors [39]. All guidance tracking algorithms were run assuming that the maximum
Cb achievable by the spacecraft was a factor of two greater than the maximum allow-
able guidance Cb and the the minimum achievable Cb was a factor of two less than
the smallest allowable guidance Cb. This ensured that there would always be a suffi-
cient Cb margin to correct for the simulated drag uncertainty errors, and any tracking
errors would be a result of suboptimal controller performance rather than a complete
saturation of the actuator.

6.2. Sensor Noise Model
Because drag is weaker and takes far longer to achieve a desired orbit change than

conventional space propulsion systems, the control system must respond vigorously to
any small difference between the current and desired spacecraft state. Unfortunately,
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Figure 5: piNAV-L1 Simulated Position Errors for ISS Orbit [31]

this makes the controller much more sensitive to navigation noise than a propulsive
orbit control algorithm would be, making it crucial to verify that the controller is still
functional in a noisy environment. The noise model used in this work is based on
the error in position and velocity measurements applicable to the piNAV-L1 CubeSat
GPS unit [31]. The manufacturer claims that the piNAV’s position and velocity errors
have a standard deviation of not more than 5 m and 5 cm/s respectively with simulated
position estimation errors shown in Figure 5 [31]. As Figure 5 shows, the errors are not
always zero mean. To simulate this, Gaussian noise terms with the specified standard
deviations were added to the true ECI position and velocity along with sinusoidally
varying position and velocity bias errors given by

∆rbias =

 .001
−.005
.002

 sin
(

2πt
5400

)
m,∆vbias =

 .00005
.00005
.000025

 sin
(

2πt
5400

)
m/s (52)

6.3. Case-Specific Simulation Results
Simulations were conducted with different effects included to assess the perfor-

mance of the guidance generation, guidance tracking, and state estimation algorithms
under a variety of different circumstances. The results of these simulations are dis-
cussed below.
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6.3.1. Guidance Generation and Noise-Free Tracking with Drag Bias Error
A sample guidance that lasted 11.7 days and resulted in 12.3 km total targeting

error was generated for the following scenario with randomized initial conditions:

• epoch = January 24, 2004, 6:48:29.48 UTC

• initial osculating orbital elements: (a = 6715.97km, e = .000471,Ω = 214.24◦, ω =

.1790◦, θ = 359.77◦, i = 70.67◦)

• Cbmin = .0059m2/kg, Cbmax = .0386m2/kg, Cbterm = .0222m2/kg

• target de-orbit location: -54.54◦ latitude, 160.85◦ longitude at a 70 km geocentric
altitude

• Targeting set to begin at 6500 seconds of longitude controllability as defined Ref.
[21].

The guidance tracking algorithm was run with perfect knowledge of the state, a 5%
actuator dead-band, the assumption that the drag device takes four minutes to fully
deploy, and a constant bias error of .7 (nominal drag force values all multiplied by .7).
Tracking was continued down to a geodetic altitude of 90 km. As shown in Figure 6, the
tracking algorithm was able to maintain the spacecraft on the guidance with an error
of less than 2 km by automatically adjusting the Cb to compensate for the difference
in the drag properties between the guidance and the tracking simulations. The drag
actuator needed to run for only .13% of the orbit lifetime to produce the indicated Cb

fluctuations.

Figure 6: Tracking Position Error and Cb over Time with Drag Bias Error of .7

6.3.2. Tracker Performance under Actuator Saturation
If the along-track separation between the satellite and the guidance is greater than

∆rsat, the controller will saturate, meaning that the commanded Cb will be greater than
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that achievable by the satellite. Fortunately, this controller performs well under satura-
tion and will return the satellite back to the guidance as long as the separation is not
so great that the SS relative motion equations become invalid. Figure 7 illustrates the
ability of the controller to return the satellite to the guidance used in Section 6.3.1 given
an initial true anomaly error of .02 radians (about 132 km) and a density bias of .7 as
before. To further verify the operation of the tracker under saturation, one hundred

Figure 7: Tracking Position Error and Cb over Time with 132 km Initial Error and Actuator
Saturation

tracking simulations were conducted for different guidances with an initial tracking true
anomaly error of .02 radians with ∆rsat = 5km and in all cases, the tracker was able to
return to the guidance.

6.3.3. Tracking Performance with Lower Order Gravitational Models
As described in Section 6.2, the tracking algorithm is very sensitive to noise or

un-modeled perturbations. To illustrate this, the scenario from Section 6.3.1 was re-
run with only the J2 perturbation considered in the tracking simulation. The result
is similar to if the tracking algorithm was used on a real spacecraft with a guidance
created considering only J2 gravitational perturbations. As shown in Figure 8, the
perturbations resulting from the higher order gravity terms resulted in greater control
effort (actuator running 2.8% of the time) in an attempt to track the perceived state
errors. Cases where the guidance was generated using a point-mass gravity model
were un-trackable in a realistic environment. This demonstrates why a high fidelity
orbit propagator is necessary for guidance generation and why guidance generation
algorithms that do not incorporate the full nonlinear dynamics such as the analytical
solution in Ref. [18] will result in guidances that are not easily trackable. Gravitational
perturbations beyond degree and order four were found to be insignificant and not
worth the additional computational cost of including in guidance generation.

6.3.4. Noisy Guidance Tracking without Filter
As shown in Figure 9, if unfiltered GPS position and velocity measurements are

used, the controller will respond erratically in its attempt to track the noise. While the
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Figure 8: Tracking Position Error and Cb over Time with Low Order Gravity Model

tracker was able to keep the satellite on the guidance, the actuator was running almost
constantly (73% of the time) to achieve the ballistic coefficient profile shown in Figure
9.

Figure 9: Tracking Position Error and Cb over Time with Noisy GPS Position and Veloc-
ity Measurements

6.3.5. Noisy Guidance Tracking with Filter
The scenario from Section 6.3.4 was re-run with an EKF as detailed in Section

5. The controller was still able to maintain tracking within 2 km as shown in Figure
10, but the actuator was only running 2.5% of the time. The majority of the actuator
run time was due to tracking the sinusoidally varying bias errors on the GPS position
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Figure 10: Tracking Position Error and Cb over Time with Noisy State Estimates and
EKF

and velocity, because a noise filter cannot remove bias error. The aforementioned
scenario was run with zero mean GPS measurement error with only Gaussian noise,
and the results are plotted in Figure 11. Figure 11 shows that the EKF can very
effectively remove Gaussian noise and simulation results were very similar to those
found in the scenario from Section 6.3.1 with the actuator running 0.68% of the time.
Additionally, by filtering on position and velocity relative to the guidance, more accurate
state estimates are made than by filtering directly on the inertial position and velocity
of the satellite.

Figure 11: Tracking Position Error and Cb over Time with Purely Gaussian Noise and
EKF
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6.3.6. Noisy Guidance Tracking with Complete Drag Error and EKF
Figure 12 shows the position error and desired, actual, and guidance ballistic coef-

ficients over time for the most realistic simulation case including sensor noise and drag
estimation errors with an EKF utilized to filter the noise. Despite the sensor noise and
model uncertainties, the system still maintained tracking within 2 km but more actua-
tor run time (2.66% of total time) was required to correct for the drag force prediction
errors.

Figure 12: Tracking Position Error and Cb over Time with Drag Uncertainties and GPS
Measurement Noise

6.4. Monte Carlo Simulation Results
One thousand simulations of the guidance generation algorithm were conducted

with randomized initial conditions as shown in Table 2. The mean guidance error was
24.3 km with a standard deviation of 49.0 km leading to a 99% confidence interval for
the expected average guidance error of 20.3 km to 28.3 km. All guidance errors were
below 750 km and are shown in Figure 13. After running guidance tracking algorithms
on all generated guidances down to a geodetic altitude of 90 km, all tracking errors
were less than 10 km with an average error of 3.4 km. Tracking algorithms were run
for each guidance with density uncertainties and sensor noise simulated as was done
in Section 6.3.6. After simulating guidance tracking down to a geodetic altitude of 90
km, all tracking errors were less than 10 km with an average error of 3.4 km. Results
of the tracking simulations are shown in Figure 14.
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Table 2: Monte Carlo simulation parameters

Variable Range Distribution
Semi Major Axis [6698, 6718] km Uniform
True Anomaly [0, 360] degrees Uniform
Eccentricity [0, .004] Uniform
Right Ascension [0, 360] degrees Uniform
Argument of the Periapsis [0, 360] degrees Uniform
Inclination [1, 97] degrees Uniform
Impact Latitude [min reachable lat +.1,

max reachable lat -.1]
Uniform

Impact Longitude [-180, 180] degrees Uniform
Cbmax [.033, .067] Uniform
Cbmin [.0053, .027] Uniform
Epoch [11/1/2003, 11/1/2014] Uniform

Figure 13: Guidance Errors from Monte Carlo Simulations
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Figure 14: Maximum Guidance Tracking Errors from Monte Carlo Simulations
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7. Conclusions

This paper presents novel guidance generation, guidance tracking, and state esti-
mation algorithms capable of guiding a spacecraft to a desired re-entry location solely
by modulating the spacecraft’s aerodynamic drag. These algorithms offer significant
improvements over the state of the art and are able to operate effectively despite model
uncertainties, sensor noise, and actuator delays. Monte Carlo campaigns and case-
specific simulations are presented to validate effectiveness and robustness of the pre-
sented algorithms.

The guidance and tracking errors meet NASA’s debris mitigation guidelines [15]
which state that the probability of human casualty from re-entering debris must be
less than 1 in 10,000. Because the desired re-entry location would likely be over
the South Pacific Ocean Uninhabited Area (SPOUA) where there is no inhabited land
for thousands of kilometers, it is extremely unlikely for the targeting error to be so
large that some spacecraft debris re-enters over land and poses a threat to persons or
property. This re-entry point targeting algorithm could be utilized for re-entering higher-
stakes items like rocket upper stages as long as they have a means of modulating
their aerodynamic drag, resulting in significant fuel savings. The guidance tracking
algorithm could also be used for spacecraft rendezvous using aerodynamic drag or
in any orbital maneuvering scenario where a satellite must track a guidance using
aerodynamic drag.

Acknowledgments

The authors wish to thank a.i. solutions for sponsoring this investigation under a
NASA Kennedy Space Center subcontract (project LSP 15-025: A Drag Device for
Controlled De-Orbiting of LEO Spacecraft).

References

[1] R. P. Patera, W. H. Ailor, The realities of reentry disposal, in: Proceedings of the AAS/AIAA Space
Flight Mechanics Meeting, American Astronautical Society/AIAA, Monterey, California, 1998, pp.
9–11.

[2] H. Heidt, J. Puig-Suari, A. Moore, S. Nakasuka, R. Twiggs, CubeSat: A New Generation of Pi-
cosatellite for Education and Industry Low-Cost Space Experimentation, in: Proceedings of the
14th Annual AIAA/USU Conference on Small Satellites, Logan, UT.

[3] C. L. Leonard, W. M. Hollister, E. V. Bergmann, Orbital Formation Keeping with Differential Drag,
Journal of Guidance, Control, and Dynamics 12 (1989) 108–113.

[4] B. S. Kumar, A. Ng, K. Yoshihara, A. D. Ruiter, Differential Drag as a Means of Spacecraft Forma-
tion Control, IEEE Transactions on Aerospace and Electronic Systems 47 (2011) 1125–1135.

[5] L. Mazal, D. Prez, R. Bevilacqua, F. Curti, Spacecraft Rendezvous by Differential Drag Under
Uncertainties, Journal of Guidance, Control, and Dynamics 39 (2016) 1721–1733.
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[7] D. Pérez, R. Bevilacqua, Differential Drag Spacecraft Rendezvous using an Adaptive Lyapunov
Control Strategy, Acta Astronautica 83 (2013) 196–207.
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