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profile) to compare its predictive capability against the high-
fidelity numerical simulation. The validation profile is sig-
nificantly different from the one used for training. The pre-
dictive performance of the current reduced-order model is 
further compared with the results obtained from a reduced-
order model that uses polynomial fitting. We demonstrate 
that the current model provides a superior performance for 
the validation profile, i.e., it results in a better prediction.

Keywords Fluid-structure interaction · Vortex-induced 
vibration · Reduced-order modeling · Hammerstein-Wiener 
model · Neural network

List of symbols
A, B  Linear model’s state space matrices
akj   Predicted modal coefficient of the jth mode at 

time tk
C̃  Map between the time evolution of dominant 

force frequency and Ṽ , C̃ ∈ R1×2l

c  Structure damping coefficient (kg/s)
d(t)  Structural displacement at time t (m)
ḋ(t)  Structural velocity at time t (m/s)
d̈(t)  Structural acceleration at time t (m/s2)
d̃  Time history of the structural displacement (m)
d̃k  Measured structural displacement at time tk (m)
F̃  Time history of the vertical force (N)
Fk  Modeled force at time tk (N)
F̃k  Measured force at time tk (N)
FMK

  Modeled force amplitude at time tk (N)
F̃u  Upper envelope of F̃ (N)
fM  Function that relates FMK

 with uk and tk
fwaj

  HW model’s input non-linear block for jth 
modal coefficient

fwF  HW model’s input non-linear block for force 
amplitude

Abstract Fluid–structure interaction (FSI) phenomena are 
of interest in several engineering fields. It is highly desir-
able to develop computationally efficient models to predict 
the dynamics of FSI. The complexity of modeling lies in 
the highly non-linear response of both the fluid and struc-
ture. The current study proposes an overall model containing 
two blocks corresponding to a force model and a structural 
model. The force model consists of two submodels: one for 
the amplitude and one for the frequency, where the latter is 
composed of an input/output linear model and a non-linear 
corrector. The amplitude submodel and the non-linear cor-
rector term in the frequency submodel are modeled using an 
Hammerstein–Wiener modeling technique in which the non-
linear input and output functions are determined by training 
neural networks using a training dataset. The current model 
is tested on a well-known fluid–structure interaction prob-
lem: a suspended rigid cylinder immersed in a flow at a low 
Reynolds number regime that exhibits a non-linear behavior. 
First, a training dataset is generated for a given input pro-
file using a high-fidelity numerical simulation and it is used 
to train the reduced-order model. Subsequently, the trained 
model is given a different input profile (i.e., a validation 
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fyaj  HW model’s output non-linear block for jth 
modal coefficient

fyF  HW model’s output non-linear block for force 
amplitude

f̂rk  Compensated (or corrected) dominant force 
frequency at time tk (Hz)

g
j
fr  Function that relates akj  with uk and time tk
Haj  HW model’s transfer function for jth modal 

coefficient
HF  HW model’s transfer function for force 

amplitude
K  Structure stiffness (N/m)
m  Structure mass (kg)
nIN  Total number of neurons in the HW model’s 

input non-linear block
nINMAX

  Maximum number of neurons possible in the 
HW model’s input non-linear block

nOUT  Total number of neurons in the HW model’s 
output non-linear block

np  Total number of poles in the HW model’s 
transfer function

nPMAX  Maximum number of poles possible in the HW 
model’s transfer function

nz  Total number of zeroes in the HW model’s 
transfer function

NRMSEF  Normalized root mean square error in the mod-
eled force amplitude

NRMSEj  Normalized root mean square error in the mod-
eled jth modal coefficient

oj  jth zero of the HW model’s transfer function
P  Number of POD modes used in reconstruction
pj  jth pole of the HW model’s transfer function
t  Time (s)
ũ  Time history of the input velocity (m/s)
uk  Input value at time tk (m/s)
ũk  Measured input velocity at time tk (m/s)
Ṽ  Time history of the two-dimensional velocity 

vector field (m/s)
ṽk  Measured velocity vector field at time tk (m/s)
wFMk

  Output of the HW model’s input non-linear 
block for force amplitude

wk
aj

  Output of the HW model’s input non-linear 
block for jth modal coefficient

xk  State vector of the linear model at time tk
yk
aj
  Output of the HW model’s transfer function for 

jth modal coefficient
yFMk

  Output of the HW model’s transfer function for 
force amplitude

zk  State vector of the structural model
Φ  Map between the time evolution of the state 

vector xk and Ṽ, Φ ∈ R2l×r

ψ j  jth mode shape (POD)

1 Introduction

When an object is immersed in a moving fluid, a set of 
mutual interactions takes place in that the flow exerts a set 
of distributed forces on the object, while the object influ-
ences the surrounding flow because of its motion. These 
mutual interactions are referred to as fluid–structure inter-
actions (FSI).

FSI phenomenon is present in a very broad range of 
engineering fields and manifests into a challenging fac-
tor due to its highly non-linear behavior. For example, in 
civil engineering it is important to consider wind-induced 
loading on tall buildings and bridges. An interesting recent 
study [1] casts a new light on one of the most infamous 
accidents involving FSI: the Tacoma Narrows Bridge.

When the FSI is not endangering the structural integ-
rity of objects, it can still represent a serious problem. For 
example, in case of tall buildings, the interactions between 
the wind and building can generate significant displace-
ment and acceleration that are experienced by the higher 
floor occupants [2, 3]. This can compromise the comfort 
level of the residents, making the higher floors unservice-
able. Several studies have been carried out on the comfort 
level in tall buildings, and the works of Tamura et al. [4], 
Bashor et al. [5], and Kareem [6] are some examples. The 
non-serviceability of higher floors can have significant 
financial consequences, as demonstrated in the paramet-
ric study by Tse et al. [7]. For this reason, several studies 
have been conducted to improve the aerodynamic perfor-
mance of tall buildings (i.e., by reducing the across-wind 
and along-wind acceleration). Some examples are the 
work of Kwok et al. [8], which analyzed the effect of edge 
configuration, and the extensive work of Kareem et al. 
[2], which investigated the effects of several passive and 
few active techniques. A recent work proposes the use of 
active flow control to improve the aerodynamic perfor-
mance of tall buildings, see Menicovich et al. [9]. In this 
study, it is shown how the use of fluid-based aerodynamic 
modifications (FAMs) can significantly improve the aero-
dynamic performance, ultimately impacting the building 
costs.

In mechanical and aerospace engineering, FSI phenom-
ena play an important role too. For example, FSI results in 
unsteady aerodynamic loading and blade vibrations, and 
dynamic stall under certain wind conditions. Furthermore, 
the effect of FSI on offshore wind turbines is also of inter-
est (see [10]). Dynamic stall is an issue that affects heli-
copter blades too. A modeling work was conducted by Ham 
et al. [11, 12] and their findings were confirmed by stud-
ies conducted by McCroskey et al. [13] on a rotor model. 
These examples show that it is of significant importance to 
construct models and control strategies for FSI phenomena.
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The first step is the construction of an efficient model 
that could be used in real-time applications, i.e., to predict 
the system dynamics given a certain set of input conditions. 
Specifically for FSI phenomena, such an efficient model 
must be capable of capturing the non-linear relationship 
between the incoming flow and the structural response.

A thorough review of existing modeling techniques for 
FSI problems has been done by Dowell and Hall [14]. As 
stated in this study, the range of models used for treating 
FSI varies significantly both in complexity and applica-
bility. A possibility is to use the full-potential theory [15]. 
A common step to make the full-potential theory more 
treatable is by assuming the flow to be inviscid and irro-
tational [16]. By doing so, the flow equation can be solved 
using a non-linear wave equation for the velocity potential. 
This method presents significant complexity and requires 
numerical methods to solve the non-linear wave equation 
[16]. A further simplification assumes small body motions 
and a thin body profile. This approach has been extensively 
used to determine low-fidelity models that are commonly 
used in aeroelasticity for the so-called “flutter analysis” or 
“gust response analysis” [11, 12]. A step of increased com-
plexity is taken in the time-linearized model (TLM), which 
assumes the flow solution to be non-uniform and dependent 
on the position [14]. TLMs are often solved using numeri-
cal methods; an example is the computation of a separated 
flow on a cascade of airfoils done by Florea et al. [17].

Using numerical methods, it is possible to employ much 
more complex non-linear dynamic models, including the 
full-potential theory without some of the simplifications 
discussed above. With numerical methods, it is indeed pos-
sible to study not only irrotational flow but also inviscid 
rotational flows and even viscous flows [14]. An example 
is the work of Tijdeman and Seebass [18], where tran-
sonic flow past an oscillating airfoil is analyzed, and fur-
ther developments regarding the computation of unsteady 
transonic flow are described by Seebass et al. [19]. Further 
work regarding transonic flow has also been done by Nixon 
[20].

Recent work of Benaroya and Gabbai [21] introduced an 
interesting model for vortex-induced fluid–structure inter-
actions which consists of a reduced-order model (ROM) 
composed of two coupled oscillators, one modeling the 
effects of the flow and the other modeling the structure. As 
it will become clear in the next section, the model formu-
lated in this work borrows this idea.

ROM techniques represent an interesting and viable 
option to study FSI, as noted by Dowell and Hall [14]. 
Typically these techniques represent information regard-
ing the flow in a finite set of modes, each one evolving 
with time. The superposition of these modes generates the 
observed global behavior. In the past, a number of ROM 
techniques have been devised, mainly to analyze the 

flow by decomposing the flow field in a set of modes that 
evolve in time. Studying these modes separately is easier, 
when compared to the whole flow field, and it is possible 
to get a more thorough understanding of the underlying 
phenomena.

The most commonly employed ROM technique consists 
of Karhunen–Loeve decomposition [22, 23] and is also 
known as proper orthogonal decomposition (POD) [24]. 
With this technique, the flow field information in a given 
time-span can be decomposed into a set of time-invariant 
modes. Each mode will then have an associated modal 
coefficient that is time dependent. By superimposing the 
modes, it is possible to reconstruct the flow field, i.e., at 
any given point in time and space. Moreover, it is possible 
to select only a subset of the total number of modes and 
determine an approximation of the flow field (e.g., using 
amount of energy captured as a criterion for modal selec-
tion or truncation). This feature is particularly interesting 
in modeling, because it helps to reduce the complexity or 
dimension of the system.

The POD technique has been widely used for studying 
FSI problems, mainly from a flow point of view, e.g., see 
[25, 26–28]. These studies include variations of the POD 
including, for example, double POD and filtered POD.

An alternative ROM technique is represented by the 
dynamic mode decomposition (DMD), e.g., see [29]. With 
this technique, every time-invariant mode is character-
ized by a specific frequency at which it pulsates in time. 
Moreover, every mode also accounts for temporal growth 
or decay. Chen et al. [30] have further devised an optimized 
method for DMD in computing an arbitrary number of 
modes from a specific dataset.

A common characteristic of all the above-mentioned 
ROM-related works is that they heavily concentrate on 
the flow analysis, not focusing on the structural aspects 
of the FSI problem. In contrast, work by Siegel et al. [31] 
used POD for both the structural and fluid dynamics from 
a closed-loop control point of view. In their work, a cyl-
inder’s 2D motion is prescribed by a controller that elab-
orates an actuation strategy based on the signal it gathers 
from sensors that detect the downstream flow conditions. 
However, the structure is used as an actuator to affect the 
flow rather than an element affected by the dynamics of the 
fluid.

Work by Gallardo et al. [32] demonstrated that it is pos-
sible to create a hybrid reduced-order model for FSI that 
incorporates the structural response. The model developed 
in their work captured the structural response of a rigid 
cylinder suspended in a flow at a low Reynolds number 
regime. This was done for a given input profile that was 
used in training the model and performance of the trained 
model was not tested on a different input profile (e.g., a 
validation profile). The model was made of two blocks, 
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one modeling the force exerted by the fluid on the struc-
ture and the other modeling the structural response. The 
force model was further divided into two submodels, one 
focusing on the force amplitude and the other on the force 
frequency. The submodel for frequency consisted of an 
input/output linear model and a non-linear corrector term. 
The structure of the frequency model is similar to the one 
developed by Ge and Wen [33] for the study of airflow in 
a contraction section. The non-linear corrector term com-
pensates for the possibly non-linear behavior due to the 
surrounding flow (which is based on the flow field). It 
was based on POD modes to approximate the difference 
between the original data and output/response of the lin-
ear input/output model. Gallardo et al. [32] used a polyno-
mial fitting within the non-linear corrector term to model 
the non-linear dynamics. However, the use of polynomial 
fitting limits the predictive performance of the hybrid 
ROM for different input profiles, which is a significant 
drawback.

To overcome this, the current study introduces a mod-
eling technique that relies on a similar hybrid model 
structure explored by Gallardo et al. [32] but employs 
Hammerstein–Wiener (HW) architecture for model param-
eters. Specifically, for modeling the two significantly 
non-linear model components: force amplitude and the 
modal coefficients of the non-linear corrector term used 
in the frequency model. The HW model is composed of 
three blocks: a non-linear input block, an intermediate 
linear block and a non-linear output block [34]. Note that 
the HW architecture allows in distinguishing between 
the linear and non-linear blocks. This makes it modu-
lar and a suitable tool to analyze the relative influence 
of each non-linear block with respect to the linear block. 
For the non-linear blocks, we employ neural networks. 
This architecture is particularly suited for fluid–structure 
interaction applications because it has been developed to 
model highly non-linear phenomena. Some examples are 
the work of Zhu [34], Bai [35] and Bloemen et al. [36]. 
A thorough review of HW models using neural network-
based non-linear blocks is described by Janczak [37].

The current model is tested on the same case study that 
was investigated by Gallardo et al. [32], i.e., a suspended 
rigid cylinder immersed in a flow at a low Reynolds num-
ber regime that exhibits non-linear behavior. High-fidelity 
numerical simulation is used to generate a training dataset 
that is representative of the problem at hand. The dataset is 
used to train different elements of the reduced-order model. 
Further, to evaluate the predictive performance of the cur-
rent model, a validation profile is used that is significantly 
different from the one used for training. The predictive per-
formance of the current model is compared with the high-
fidelity numerical simulation and reduced-order model that 
uses polynomial fitting [32].

This paper is organized as follows. Section 2 discusses 
the overall structure of the model. Section 3 describes 
the training of the HW model for the force amplitude 
and modal coefficients of the non-linear corrector term 
used in the frequency submodel. Section 4 introduces 
the validation profile and compares the predictive perfor-
mance of the current model using the HW architecture 
with the high-fidelity numerical simulation and reduced-
order model using polynomial fitting. Section 5 draws the 
conclusions.

2  Hybrid reduced‑order model

2.1  Overall model structure

Following the work of Gallardo et al. [32], the overall model 
is split into two blocks, one modeling the force exerted by 
the surrounding fluid on the structure (i.e., force model), and 
the other modeling the response of the structure to the fluid 
force (i.e., structural dynamics model). The force model is 
split into two submodels, one modeling the dominant fre-
quency at which the force is exerted (i.e., frequency model) 
and the other modeling the force amplitude (i.e., ampli-
tude model). The frequency submodel consists of a linear, 
time-invariant (LTI) model and a non-linear corrector term. 
Figure 1 represents the overall structure of the model.

The model has to be trained using a profile that is most 
representative of the typical inflow condition of the FSI 
phenomenon of interest. For this reason, the following 
dataset has to be populated:

•	 Temporal evolution of the input flow velocity 
ũ = [ũ1 ũ2 · · · ũk · · · ũN ]

•	 Temporal evolution of the structural displacement 
d̃ = [d̃1 d̃2 · · · d̃k · · · d̃N ]

•	 Temporal evolution of the velocity vector field 
Ṽ = [ṽ1 ṽ2 · · · ṽk · · · ṽN ]

•	 Temporal evolution of the vertical force 
F̃ = [F̃1 F̃2 · · · F̃k · · · F̃N ]

 where N represents the total number of samples that have 
been collected. This dataset can be collected either from 
experimental measurement or high-fidelity numerical sim-
ulation. In the current study, the training dataset has been 
produced through high-fidelity numerical simulation.

2.2  Force model

Gallardo et al. [32] presented the following formulation for 
the force model:

(2.1)xk+1 = Axk + Buk .
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The overall force signal at a certain time tk (i.e., Fk) 
depends on the modeled amplitude FMK

 and on the mod-
eled frequency f̂rk. In Gallardo et al. [32], the force ampli-
tude was modeled by fitting a polynomial, i.e., fM(uk , tk) 
was a polynomial fit that related the value of the input uk 
and time tk to the value of the force amplitude FMK

.
The frequency was modeled through the use of a 

hybrid model that would propagate the system states 
xk using an LTI model and a non-linear corrector 
term (

P
∑

j=1

ψ ja
k
j ) to account for the non-linearities. The 

non-linear corrector term was determined through proper 
orthogonal decomposition (POD) of the difference 
between the projected states of the LTI system and the 
original flow field data. In Gallardo et al. [32], the modal 

(2.2)akj = g
j
fr(uk , tk).

(2.3)f̂rk = C̃



Φ xk +

P
�

j=1

ψ ja
k
j



.

(2.4)FMK
= fM(uk , tk).

(2.5)Fk = FMK
sin(2π f̂rk tk).

coefficients ak were modeled by fitting a set of polyno-
mial functions gjfr(uk , tk) that would relate the input uk 
and time tk to the value of the modal coefficients ak.

The use of polynomial fitting limits the predictive capa-
bility of the overall model, especially when the input is 
sufficiently different from that used in training the model. 
For this reason, the current work employs HW architecture 
with non-linear functions based on a neural network struc-
ture with three layers (i.e., input, hidden, and output lay-
ers) to model the force amplitude and modal coefficients. 
The structure of the HW model is described in the next two 
sections.

2.2.1  Force amplitude

For generating model for the force amplitude, it is first 
necessary to determine the upper envelope of the original 
force signal F̃u. Using this and the temporal evolution of 
the input ũ, it is possible to train a HW model capable of 
predicting the force amplitude signal FMK

 given an input uk . 
The HW model is composed of three blocks: a non-linear 
input block, an intermediate linear block and a non-linear 
output block [34]. This structure is shown in Fig. 2.

The mathematical formulation of the HW model for the 
force amplitude is given as follows:

Fig. 1  General structure of the 
model
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The input to the overall HW model is uk and the out-
put is FMK

. Two non-linear functions constitute the 
non-linear input ( fw(uk)) and output 

(

fy

(

yFMk

))

 blocks, 
which, respectively, map uk to the input of the linear 
block wFMk

 and the output of the linear block yFMk
 to FMK

. 
In general, the non-linear functions in the input and out-
put blocks can assume different forms [37]; however, in 
this study, an artificial neural network (ANN) has been 
used. The ANN activation functions are represented by 
sigmoid functions. Each ANN is composed of three lay-
ers (including one hidden layer), and the number of neu-
rons in each layer of the ANN is a key parameter to be 
established during training of the HW model. Iterative 
Levenberg-Marquardt algorithm (see Janczak [37]) was 
used to determine the biases and weights applied to each 
neuron.

The linear block is represented by a transfer function 
HF(z) with a number of poles np and zeroes nz. The optimal 
number of poles and zeroes is determined through a proce-
dure discussed later in Sect. 3.

(2.6)

wFMk
= fwF

(uk),

yFMk
= HF(z) · wFMk

=

(

1+ o1z
−1 + o2z

−2 + · · · + onZz
−nZ

1+ p1z−1 + p2z−2 + · · · + pnPz
−nP

)

F

wFMk
,

FMK
= fyF

(

yFMk

)

.

2.2.2  Modal coefficients of the non‑linear corrector

Similar to the force amplitude model, the current study 
uses HW model architecture to model the evolution of the 
modal coefficients (i.e., to relate the input uk to each of the 
modal coefficient akj  for any given time point). Each modal 
coefficient is modeled by an HW model, i.e., HW model 
is different for each modal coefficient in that the number 
of neurons in the hidden layers of the non-linear input and 
output ANNs is different and similarly the number of poles 
and zeroes in the transfer function is different for each HW 
model. Figure 3 shows the structure of the HW model for 
the jth modal coefficient akj  (related to the mode shape ψ j).

The mathematical formulation of the HW model for a 
modal coefficient akj  is given as follows:

The input to the HW model is uk and the output is akj  . 
Two non-linear functions constitute the non-linear input 
( fwaj

(uk)) and output ( fyaj

(

ykaj

)

) blocks, which, respec-
tively, map uk to the input of the linear block wk

aj
 and the 

output of the linear block yk
aj
 to akj . Similar to the force 

(2.7)

wk
aj
= fwaj

(uk),

yk
aj
= Haj (z) · w

k
aj

=

(

1+ o1z
−1 + o2z

−2 + · · · + onZ z
−nZ

1+ p1z−1 + p2z−2 + · · · + pnPz
−nP

)

aj

wk
aj
,

akj = fyaj

(

ykaj

)

.

Fig. 2  Schematic representa-
tion of the components of the 
Hammerstein–Wiener model for 
the force amplitude

Fig. 3  Schematic representa-
tion of the components of the 
Hammerstein–Wiener model for 
a modal coefficient
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amplitude model, the non-linear functions are based on 
ANNs. As before, the linear block is constituted by a trans-
fer function Haj (z) with np number of poles and nz number 
of zeroes.

2.2.3  Summary of force model

The overall model structure of the force model is repre-
sented in Fig. 4 and its mathematical formulation is sum-
marized in Eq. 2.8.

(2.8)

xk+1 = Axk + Buk ,































wk
aj
= fwaj

(uk),

yk
aj
= Haj (z) · w

k
aj
=

�

1+ o1z
−1 + o2z

−2 + · · · + onZ z
−nZ

1+ p1z−1 + p2z−2 + · · · + pnP z
−nP

�

aj

wk
aj
,

akj = fyaj

�

ykaj

�

,

f̂rk = C̃



Φ xk +

P
�

j=1

ψ ja
k
j



,



























wFMk
= fwF

(uk),

yFMk
= HF (z) · wFMk

=

�

1+ o1z
−1 + o2z

−2 + · · · + onZ z
−nZ

1+ p1z−1 + p2z−2 + · · · + pnP z
−nP

�

F

wFMk
,

FMK
= fyF

�

yFMk

�

,

Fk = FMK
sin(2π f̂rk tk).

The force model is made of two blocks related to force 
amplitude and frequency. The frequency model is a hybrid 
model that uses an LTI model and a non-linear corrector 
term. HW model architecture is used for the force ampli-
tude and modal coefficients in the non-linear corrector 
term. Each HW model consists of three separate blocks 
including a non-linear input block, an intermediate linear 
block and a non-linear output block. The non-linear blocks 
are based on ANNs, while the linear block is a transfer 
function with a defined number of poles and zeroes. The 
force model output is used as the input of the structural 
dynamics model.

2.3  Structural dynamics model

In the current study, the structure is modeled using a mass-
spring-damper system as expressed in Eq. 2.9.

where m, c and K are the mass, the damping coefficient and 
the stiffness of the system, respectively. F(t) is the applied 
force and d(t) is the structural displacement.

The state-space based discrete form of Eq. 2.9 is given 
as follows:

(2.9)md̈(t)+ cḋ(t)+ Kd(t) = F(t)

Fig. 4  Overall structure of the force model
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where zk is the state vector and the two states are the struc-
tural displacement and velocity.

3  Model identification

3.1  HW model training

As mentioned in Sect. 2, an HW model is characterized by 
three blocks (i.e., non-linear input and output blocks and a 
linear intermediate block). These three blocks are charac-
terized by four parameters:

•	 The number of poles of the linear transfer function nP
•	 The number of zeroes of the linear transfer function nP
•	 The number of neurons in the hidden layer of the ANN 

for the input block nIN
•	 The number of neurons in the hidden layer of the ANN 

for the output block nOUT

Before training the HW model, it is necessary to define 
these parameters. Ideally, the HW model should be as accu-
rate as possible while being as efficient as possible. How-
ever, efficiency and accuracy result in a trade-off in that an 
accurate model will use a larger number of neurons, poles 
and zeroes whereas an efficient model would use as few as 
possible.

In this study, a normalized root mean square error 
(NRMSE) fit value [38] is used as a cost function to com-
pare the accuracy of the different models (i.e., of models 
that have different number of neurons, poles and zeroes). 
Equation 3.1 expresses how the NRMSE is determined 
for the HW model for the force amplitude, while Eq. 3.2 
expresses how it is determined for the HW models for the 
modal coefficients.

where FM is the temporal evolution of the modeled ampli-
tude while ¯̃Fu is the average of the upper envelope of the 
original force signal F̃u.

(2.10)

zk+1 =

[

0 1
K
m

c
m

]

zk +

[

0
1
m

]

Fk

dk =

[

1

0

]T

zk

(3.1)NRMSEF
FIT =
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where aj is the temporal evolution of the modeled jth modal 
coefficient while ¯̃aj is the average of the original modal 
coefficient ãj.

The NRMSE is a measure of how precisely a model 
approximates the original data. It can go from −∞ (poor 
fit) to 100 (perfect fit). If the NRMSE is equal to 0, it 
means that the model is equivalent to taking the average of 
the original data. Any value between 0 and 100 indicates 
that the model is better than using the average of the origi-
nal data.

The current study proposes a training method that first 
determines the number of poles and zeroes in the linear 
block, assuming that no non-linear blocks are present. Sub-
sequently, the method determines the number of neurons in 
the hidden layers of the input and output ANN using the 
linear model found in the previous step.

For the characterization of the linear model, a complexity 
limit is established. This is done by defining a maximum num-
ber of poles that the transfer function can have (the maximum 
number of zeroes will be smaller or equal to the maximum 
number of poles). Once the complexity limit is established, 
an algorithm generates a sequence of models with increas-
ing complexity (i.e., with an increasing number of poles and 
zeroes) and determines the NRMSE value for each model.

The generated models that share the same number of 
poles (with different number of zeroes) are grouped in sets. 
For each set, the model with the highest NRMSE is selected, 
i.e., the best model in each set. The best models among all 
sets are compared using their NRMSE values and the linear 
model with a certain NRMSE value is selected.

Figure 5 represents the algorithm that generates the lin-
ear models with increasing complexity, while Fig. 6 repre-
sents the selection procedure described above. 

After this procedure, a linear model with a defined num-
ber of poles and zeroes is selected. The next step towards 
the full characterization of the HW model consists of deter-
mining the number of neurons in the hidden layer of the 
input and output ANNs. To do so, a procedure similar to the 
one adopted for the force amplitude is used. A complexity 
limit for the input non-linear block is established while the 
complexity of the output non-linear block is set to be equal 
or less than that of the input non-linear block. This is done 
by defining the maximum number of neurons that the input 
neural network can have, where the maximum number of 
neurons in the output neural network will be smaller than 
or equal to that in the input block. Once the complexity 
limit is established, an algorithm generates models with 
increasing complexity (i.e., with an increasing number of 
neurons in the input and output neural networks) and deter-
mines for each model its NRMSE value.

Similar to the procedure described for the linear com-
ponent of the HW model, the generated models that share 
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the same number of neurons in the input block are grouped 
into sets. The models in each set share the number of neu-
rons in the input block but have different number of neu-
rons in the output block. As before, for each set the model 
with the highest NRMSE value is selected, i.e., the best 
model in each set. The best models from each set are then 
compared using their NRMSE values and the model with a 
certain NRMSE value is selected.

The steps of the algorithm that generate the models 
with increasing complexity (i.e., the models with increas-
ing number of neurons in the input and output non-linear 
blocks) are similar to that used for the linear model, which 
is depicted in Fig. 5. Similarly, the method that is used to 
extract the best model in each set and to select the final 
model is similar to that depicted in Fig. 6. By following the 
above procedures, the number of poles, zeroes, and neurons 
is selected that lead to a suitable HW model for both the 
force amplitude and modal coefficients in the non-linear 
corrector term of the frequency model.

3.2  Training dataset

As stated in Sect. 2, the model has to be trained using a 
dataset that is most representative of the input flow 

condition that is encountered in the FSI problem of interest. 
In the current study, the same FSI problem setup of Gal-
lardo et al. [32] is selected.

The setup consists of a two-dimensional rigid cylinder 
suspended in a flow at a low Reynolds number regime that 
exhibits a non-linear behavior (i.e., between Re = 90 and 
125). The cylinder is allowed to oscillate only along the 
direction orthogonal to the flow. The cylinder motion is 
governed by its mass m = 9.5328e−4 kg, damping coeffi-
cient c = 1.04e−4 kg/s and stiffness K = 1.8528 N/m. The 
cylinder diameter D is equal to 1.6e−3 m. Figure 7 repre-
sents the problem setup.

The input profile (i.e., the inflow velocity profile) con-
sists of incremental velocity steps. Figure 8 represents the 
high-fidelity numerical simulation results in terms of fluid 
force and structural displacement for the given input pro-
file. The dotted vertical line represents the temporal loca-
tion when the lock-in phenomenon is triggered, causing an 
exponential growth in the structural displacement.

3.3  Model training and identification

The dataset developed with the high-fidelity numerical 
simulation, as described in Sect. 3.2, is used to identify the 
model.

3.3.1  Training: force amplitude

The upper envelope of the original force signal F̃u, together 
with the temporal evolution of the input ũ, was used to 
train the linear block of the HW model for the force ampli-
tude. This was done following the procedure described in 
Sect. 3.1. The maximum complexity was established to be 
30 poles (and consequently 30 zeroes). Figure 9 represents 
the NRMSE value of the best model in each set, where each 
set is associated with a different number of poles.

Figure 9 shows that models with more than five poles 
lead to marginal or no improvement in the NRMSE value. 
For this reason, linear intermediate block with five poles is 
selected. The best model in the set with five poles was the 
one with three zeroes, as shown in Fig. 10.

Using the same input signal of the training dataset, the 
characterized linear model has been used to determine the 
force amplitude signal. Figure 11 shows the modeled force 
amplitude versus the original data.

Figure 11 shows that the linear intermediate block is 
able to successfully capture the overall behavior but fails 
in effectively capturing the transients. Therefore, non-linear 
blocks were identified next to fully characterize the HW 
model for the force amplitude.

The maximum complexity for the non-linear blocks 
was established to be of 50 neurons (both in the input and 

Fig. 5  Representation of the algorithm used to generate linear mod-
els with increasing complexity
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output blocks). The algorithm described in Sect. 3.1 was 
used to produce 50 different sets of models, where mod-
els in a given set have the same number of neurons in the 
input block but with different number of neurons in the out-
put block. Figure 12 shows the NRMSE value of the best 
model in each set.

Figure 12 shows that using five neurons in the hidden 
layer of the input ANN is sufficient for this particular FSI 
problem. The NRMSE values of the models in this set are 
shown in Fig. 13. All models result in similar NRMSE 

Fig. 6  Method to select the linear block of an HW model

Fig. 7  Schematic of the FSI problem setup
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value; however, the one with two neurons in the output 
block is better than others.

Considering the linear intermediate and non-linear input 
and output blocks identified above, the final HW model of 
the force amplitude is as follows: five neurons in the hid-
den layer of the ANN associated with the input non-linear 
block, followed by a transfer function (linear intermedi-
ate block) with five poles and three zeroes, and an output 
non-linear block with two neurons in its hidden layer. This 
model was tested on the training input profile ũ and Fig. 14 
shows the modeled force amplitude versus the original sig-
nal. Figure 14 shows that the HW model is more effective 
than the model with only the linear block (latter was shown 
in Fig. 11). This is also evident in Figs. 10 and 13, which 
show an increment of about 40 % in the NRMSE value 

between the model with only the linear block and the final 
HW model with both linear and non-linear blocks.

3.3.2  Training: modal coefficients in the non‑linear 
corrector term

The current study utilizes nine modes (and related modal 
coefficients) to model the non-linear component of the fre-
quency model. This is done because the nine modes allow 
to capture more than 98 % of the energy associated with 
the frequency model. This section discusses the training 
process only for the first modal coefficient (with the high-
est energy content), in which the number of poles, zeroes 
and neurons is determined. For all the modal coefficients, 
results are summarized in Table 1.

Fig. 8  Training dataset. Top 
structural displacement. Mid‑
dle force signal. Bottom input 
velocity. The vertical line across 
all graphs represents the tempo-
ral location where the lock-in 
phenomenon is triggered (at 
Re = 100)

Fig. 9  NRMSE value of the best model in each set for the linear intermediate block in the force amplitude model
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The procedure followed to train the HW model for 
modal coefficients is similar to that used for the HW model 
for the force amplitude, as described in Sect. 3.1. As a first 
step, the linear block was characterized, where linear mod-
els with increasing complexity were generated and sepa-
rated in different sets. Each set consisted of models with 

the same number of poles (but different number of zeroes). 
The best model in each set (i.e., the model with the highest 
NRMSE value) was selected to represent the set. Figure 15 
compares the best model from each set.

Figure 15 shows that models with more than two poles 
bring only a marginal improvement in the NRMSE value. 
In the set of models with two poles, the one with two zeroes 
was found to be the best, as shown in Fig. 16.

Using the same input signal of the training dataset, the 
characterized linear model has been used to determine the 
first modal coefficient. Figure 17 shows the modeled modal 
coefficient versus the original data.

Similar to what was observed for the force amplitude 
model, the linear block-based model is able to successfully 
capture the overall behavior but fails in effectively captur-
ing the transients. Moreover, it also fails in capturing the 
oscillations in the initial phase (between t = 0 and 40 s).

The next step involved the characterization of the 
input and output non-linear blocks. Using the algorithms 
described in Sect. 3.1, models with increasing number of 
neurons in the hidden layers of the ANN of the input and 
output blocks were generated. A maximum complexity was 
established to be 50 neurons (both in the ANN of the input 
and output non-linear blocks). The models that shared the 
same number of neurons in the ANN of the input non-linear 
block were grouped in the same set. Figure 18 shows the 
best model (i.e., the model with the highest NRMSE value) 
in each set. This figure shows that 14 neurons in the input 
non-linear block are sufficient. The NRMSE values of the 
models in the set with 14 neurons are presented in Fig. 19.

Figure 19 shows that, in the set with 14 neurons, the out-
put block with 12 neurons results in the highest NRMSE 
value while several others are close.

Considering the linear intermediate and non-linear input 
and output blocks above, the final HW model of the first 

Fig. 10  NRMSE value of the 
models in the set with five poles 
for the linear intermediate block 
in the force amplitude model

Fig. 11  Original and modeled evolution of the force amplitude using 
only the linear intermediate block with 5 poles and 3 zeroes

Fig. 12  NRMSE value of the best HW model in each set for the non-
linear input and output blocks in the force amplitude model
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modal coefficient is as follows: fourteen neurons in the 
input non-linear block, followed by a transfer function (lin-
ear intermediate block) with two poles and two zeroes, and 
an output non-linear block with twelve neurons. This model 
was tested on the training input profile ũ and Fig. 20 shows 
the modeled modal coefficient versus the original signal.

Figure 20 shows that the identified HW model for the 
first modal coefficient follows closely the original data. 
Although it fails to capture the oscillations that are present 
in the initial phase of the original signal (between t = 0 and 
40 s), it is able to effectively capture the transient behav-
ior at other locations. Its better performance as compared 
to the model with only the linear block is quantified by its 
better NRSME value shown in Figs. 19 and 16 with val-
ues about 91 and 79 %, respectively. HW models for other 
modal coefficients were identified in the same way as the 
first modal coefficient. The identified model for each modal 
coefficient is summarized in Table 1.

3.4  Comparison of original and modeled force 
and displacement

The same input profile ũ that was used for the training is 
used as the input to the overall model identified above. This 
was done to compare the modeled force and displacement 
with the original data. Figure 21 compares the force signal.

Fig. 13  NRMSE value of the 
models in the input block set 
with five neurons for the non-
linear input and output blocks in 
the force amplitude model

Fig. 14  Original and modeled evolution of the force amplitude with 
the identified HW model

Table 1  Structure of the 
HW model for all nine modal 
coefficients

Modal coefficient Input non-linear block Intermediate transfer function Output non-linear block

Number of neurons Number of poles Number of zeroes Number of neurons

1st 14 2 2 12

2nd 2 2 1 2

3rd 8 4 2 2

4th 13 9 5 13

5th 6 3 1 1

6th 8 12 4 8

7th 4 10 8 1

8th 11 4 2 1

9th 10 3 3 4
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Figure 21 shows that the modeled force closely follows 
the original force signal from the high-fidelity numerical 
simulation although it fails in identifying the beating pro-
file in the initial phase between t = 0 and 40 s. A probable 
cause is that the non-linear corrector term in the frequency 
model failed in capturing the oscillations in the first modal 
coefficient (see Fig. 20). The modeled force was given as 
the input to the structural model and the resulting displace-
ment is shown in Fig. 22.

As in the case of the force signal, Fig. 22 shows that in the 
initial phase between t = 0 and 40 s the identified model fails 
in capturing the beating profile in the displacement while 
after t = 40 s the modeled signal closely follows the original 
data from the high-fidelity numerical simulation.

4  Model validation

4.1  Validation profile

The performance of the model was evaluated through 
the use of a validation profile which presented a different 

temporal evolution of the input velocity from that used in 
training. The validation profile consists of a shifted profile 
as compared to the one used in training, where the input 
starts from Re = 90 but grows in steps that are 50 % bigger 
than the ones used in the training profile. Figure 23 shows 
the validation profile compared with the training profile in 
a time window up to t = 58.2 s (the training profile had 
a longer duration). Note that the step changes in input 

Fig. 15  NRMSE value of the best model in each set for the linear 
intermediate block of the first modal coefficient

Fig. 16  NRMSE value of the 
models in the set with two poles 
for the linear intermediate block 
of the first modal coefficient

Fig. 17  Original and modeled evolution of the first modal coefficient 
using only the linear intermediate block with 2 poles and 2 zeroes

Fig. 18  NRMSE value of the best HW model in each set for the non-
linear input and output blocks of the first modal coefficient
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velocity are at the same temporal locations (of t = 6 and 
36 s) between the training and validation profiles.

The validation profile still presents lock-in phenom-
enon conditions around t = 6.5 s, where the input veloc-
ity reaches a value of 0.06275 m/s (corresponding to a Re 
of 100). This input value triggered the lock-in phenomenon 
during training. This will be further evident in the next 
section.

4.2  Validation dataset

The validation profile shown in Fig. 23 was used as 
the input to the high-fidelity numerical simulation. 

Subsequently, the numerical simulation produced a dataset 
(validation dataset) comprising the temporal evolution of 
the force signal and structural displacement. This dataset is 
presented in Fig. 24.

Figure 24 shows that the lock-in phenomenon is trig-
gered at about t = 6.5 s, when the input velocity reaches 
a value of 0.06275 m/s corresponding to a Re of 100. The 
exponential growth of the structural displacement contin-
ues until about t = 35.3 s, which corresponds to the next 
change in the input velocity.

The validation dataset constitutes an interesting valida-
tion case because it still presents highly non-linear behav-
ior but with a significantly different temporal evolution. 

Fig. 19  NRMSE value of the models in the input block set with fourteen neurons for the non-linear input and output blocks of the first modal 
coefficient

Fig. 20  Original and modeled 
evolution of the first modal 
coefficient with the identified 
HW model
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Similar to what was observed for the training profile, the 
structural displacement presents a memory that keeps the 
value of the displacement significantly high even when the 
frequency of force signal is not close to the natural fre-
quency of the structure.

4.3  Model performance

The validation profile shown in Fig. 24 was used as the 
input to the trained/identified model. The predicted force 
and displacement are compared with the high-fidelity sim-
ulation data. Here, the predicted force and displacement 
obtained using a polynomial-based model by Gallardo 
et al. [32] are also compared. This comparison is shown in 
Figs. 25 and 27 for the force and structural displacement, 
respectively.

Figure 25 shows that the polynomial-based model pre-
dicts the force magnitude to be consistently higher than the 
high-fidelity simulation data. It also exhibits a large change 
around the lock-in region (i.e., from t = 6.5 s) instead of 
a gradual change as observed in the high-fidelity simula-
tion data, while the HW-based model provides a better pre-
diction. To further analyze the lock-in region, Fig. 26 shows 
the temporal location of the local peaks in the force signal 
between t = 8.5 and t = 9.5 s. The first peak after t = 8.5 s 
is observed at about t = 8.6 s (i.e., Peak Index 1), which 
matches between the two models and with the high-fidel-
ity simulation data. At the second peak (i.e., Peak Index 2), 
a marginal deviation is observed in the polynomial-based 
model while a good agreement is seen between the HW 
model and high-fidelity simulation data. A similar trend 
continues (except at Peak Index of 3) and the deviation in 
the polynomial-based model prediction becomes significant 
by the seventh/last peak (i.e., just before t = 9.5 s). This 
behavior is due to the inaccurate prediction of the force fre-
quency by the polynomial-based model. This further shows 
that the HW-based model provides a significantly better 
prediction for the force.

Figure 27 shows that the displacement predicted by 
the HW-based model is also significantly better than that 
from the polynomial-based model. The HW-based model 

Fig. 21  Original and modeled force signals for the training input 
profile

Fig. 22  Original and modeled displacement signals for the training 
input profile

Fig. 23  Validation and training 
input profiles
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effectively captures the exponential growth, although the 
amplitude is slightly smaller, as compared to the high-fidel-
ity simulation data. The HW model also detects when the 

lock-in phenomenon begins and ends. In contrast, the dis-
placement predicted by the polynomial-based model fails 
in capturing the exponential growth caused by the lock-in 
phenomenon. Given that the force amplitude predicted by 
this model was comparable with the high-fidelity one, as 
shown in Fig. 25, the cause for such a poor prediction of 
displacement prediction is due to an inaccurate prediction 
of the force frequency by the polynomial-based model, 
as shown in Fig. 26. In the prediction by the polynomial-
based model, the exponential growth in displacement starts 
at about t = 30 s and reaches values that are of the same 
order as the high-fidelity simulation data at about t = 55 s.

5  Conclusions

In this study, we tested the predictive capability of a 
fluid–structure interaction model based on a HW archi-
tecture with non-linear blocks modeled employing ANNs 

Fig. 24  Validation dataset. Top 
structural displacement. Mid‑
dle force signal. Bottom input 
velocity

Fig. 25  High-fidelity (original) force signal from validation dataset 
compared with the predicted force signal from models based on HW 
architecture and polynomial fitting

Fig. 26  Temporal location of the local peaks in the high-fidelity 
(original) force signal from validation dataset as compared with the 
predicted location from models based on HW architecture and poly-
nomial fitting in a time window between t = 8.5 and t = 9.5 s

Fig. 27  High-fidelity (original) structural displacement from valida-
tion dataset compared with the predicted displacement from models 
based on HW architecture and polynomial fitting
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with one hidden layer. The overall model contains two 
blocks related to the force signal and structural response. 
The force model consists of two submodels, i.e., one 
for the amplitude and one for the frequency. Frequency 
submodel contains an input/output linear model and a 
non-linear corrector term. With the current model struc-
ture, the HW modeling technique is applied to the force 
amplitude and modal coefficients in the non-linear fre-
quency corrector term. Note that the previous study by 
Gallardo et al. [32] employed polynomial fitting for the 
same components. HW model for any given variable was 
composed of three blocks: non-linear input and output 
blocks and a linear intermediate block. The input and 
output blocks used an ANN while the linear intermedi-
ate block was represented by a transfer function. Struc-
ture of each block used in the HW model was discussed. 
The associated parameters (number of poles, zeroes, and 
neurons in the hidden layer of the ANN) were identified 
using a training profile, and the selection was made using 
the NRMSE fit value.

The current model was tested on the same case study 
that was investigated by Gallardo et al. [32], i.e., a rigid 
cylinder suspended in a flow at a low Reynolds number 
regime. The overall behavior of the predicted force ampli-
tude was similar for both the HW- and polynomial-based 
models (i.e., for the validation input profile). However, 
HW-based model showed significantly better predictions in 
structural displacement. The HW-based model effectively 
captured the exponential growth in displacement, although 
the amplitude was smaller, as compared to the original sig-
nal. The HW-based model also detected when the lock-in 
phenomenon begins and ends.
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