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This work introduces a real time suboptimal control algorithm for six-degree-of-freedom
spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE)
approach and real-time linearization of the equations of motion. The control strategy is
sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at
each sample time. The cost function of the proposed controller has been compared with
the one obtained via a general purpose optimal control software, showing, on average, an
increase in control effort of approximately 15%, compensated by real-time implement-
ability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-
degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation,
and control algorithms for nano-satellites in a one-g laboratory environment. The tests
show the real-time feasibility of the proposed approach.
& 2016 The Authors. Published by Elsevier Ltd. on behalf of IAA. This is an open access
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1. Introduction

As spacecraft technology has evolved, robust and effi-
cient automated control has become an essential mission
capability. Over the last fifty years, in fact, worldwide
aerospace research environments have addressed their
work to the optimization of guidance, navigation and
control performances, also paying attention to the pro-
pellant consumption and time-to-launch costs.

It is clear, then, how high efficiency controls, ensuring
both position accuracy and propellant optimization, have
become a critical issue in the control systems scope and
specifically in the aerospace sector.

The spacecraft six degrees of freedom optimal control
problem has been widely analyzed in the literature, lately
focusing on spacecraft relative motion, usually requiring
numerical methods [1]. Spacecraft formation and the opti-
mization of relative maneuvers are becoming increasingly
important topics of investigation. This is due to the benefits
s is an open access article under the CC BY license
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Nomenclature

0m�n zero matrix with dimensions m, n
A state matrix (Jacobian)
Arot state matrix rotational contribute
Atransl state matrix translational contribute
B input matrix (Jacobian)
Btransl input matrix translational contribute
Brot input matrix rotational contribute
C output matrix
D feedforward matrix
d thrusters moment arm with respect to the

center of rotation of the AS [d¼0.32 m]
EDCMB direction cosine matrix from the body (B) to

the inertial reference frame (E) [23]
F propellant cost (–)
F generalized force vector (F;M)
Ft nominal thrust (Ft¼0.3 N)
Fthrust force generated by the onboard thrusters (N)
F LQR optimal generalized force, output of the LQR

Simulink block
G universal gravitational constant (m3 kg�1 s�2)
H thruster distribution matrix or

mapping matrix
Hf force term of the thruster distribution matrix

H
Hm torque term of the thruster distribution matrix

H (m)
Im�n identity matrix with dimensions m, n
J inertia matrix (kg m2)
J global maneuver cost (–)
K Kalman gain
Kpos, Krot additional dimensionless gains characterizing

the adaptive tuning, applied to the state
weighting matrix position and angular
terms only

M angular momentum vector (N m)
M� Earth mass (kg)
μ� Earth gravitational parameter μ¼ GM�

(m3 s�2)

m spacecraft simulator mass (kg)

n¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ� =R3

0

q
generic orbital rate (rad/s)

ω angular velocity vector (rad/s)
ωx;ωy;ωz angular velocity vector components (rad/s)
P solution of the Riccati differential equation
P position cost (–)
p thrusters inclination with respect to the ima-

ginary square circumscribed to the attitude
stage basis (p¼ cos ð451Þ ¼ sin ð451Þ)

Q state weighting matrix (mixed dimensions to
generate dimensionless cost)

Q transl state weighting matrix translational
contribute

Q rot state weighting matrix rotational contribute
R input weighting matrix (mixed dimensions to

generate dimensionless cost)
R0 generic orbit radius (m)
ωkin _θ kinematics matrix relating the time derivative

of the Euler angles with the angular velocity
[23]

ρ additional gain influencing the input weight-
ing matrix (–)

θ Euler angles vector (rad)
θx;θy;θz Euler angles (rad)
U� generic LQR optimal solution
Ucont normalized continuous thrust vector (N)
Ucost net propellant expenditure (–)
u10 normalized binary thrust vector (–)
ua dimensionless parameter with magnitude

correspondent to the nominal thrust
vx; vy; vz linear velocity vector components (m/s)
X generalized state vector (x; _x;θ;ω)
Xdes desired generalized state
Xerr actual error vector
x position vector (m)
_x linear velocity vector (m/s)
x; y; z position vector components (m)
Y output vector
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in cost, responsiveness, and flexibility of a multi-spacecraft
system versus the classical monolithic satellite.

Particularly new is the use of continuous on–off engines,
appearing on small spacecraft. This control constraint adds
new complexity to finding the optimal solution. In fact, most
of the literature on spacecraft optimal control assumes that
the thrust can be finely modulated, partially to mitigate the
aforementioned problem. Unfortunately, this is not the case
with real engines, which are usually limited to some sus-
tained value for thrust. As a partial response to this problem,
a new methodology has been presented in [2] with the aim
to control spacecraft rendezvous maneuvers assuming multi-
level continuous thrusters and impulsive thrusters on the
same vehicle. Furthermore, very recently, the interests of the
Department of Defense have been focusing on time/pro-
pellant optimal rendezvous and capture maneuvers of a non-
cooperative target satellite [3–5]. This research has been
pushing the envelope with regards to fast computation of
practical optimal/sub-optimal trajectories.

The recent numerical approaches to the optimal control
problem could be in short classified in two main categories:

1. the indirect methods which employ the calculus of
variations to obtain the first-order optimality conditions
[6], where the resulting boundary-value problem is
sometimes impossible or time-consuming to solve;

2. direct methods which approximate the trajectory via
parameterization, and transform the cost functional into
a cost function [7–9].

These second methods appear to be a viable tool for
real-time spacecraft optimal control. However, the major
issues with direct methods relate to the difficulties of
defining parameters to represent feasible trajectories. The
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chosen parameterization may lead, for example, to unsa-
tisfactory final conditions, or, it may satisfy the final con-
ditions but violate some of the constraints on the controls.
Adding penalties to the cost function may help, but it
provides no guarantee of improvement as in [5,9]. Also,
the trajectory computation must be as fast as possible,
since it is iterated by an outer optimizer looping on the
parameters. The rendezvous problem to a tumbling object
analyzed in [5] is a very good example, where a direct
method may not converge to feasible solutions or may
converge in an unacceptable amount of CPU time for on
board implementation.

Addressing the linear quadratic control problem, LQR-
based algorithms were widely used to control space sys-
tems, specifically satellites and spacecraft assemblies. Yang
proved the effectiveness of a quaternion-based LQR
method for the design of nonlinear spacecraft control
systems in [10], demonstrating how the designed con-
troller globally stabilized the nonlinear spacecraft system,
whereas it locally optimized the spacecraft performance.

Beatty, in [11], successfully demonstrated the superiority
of a linear quadratic regulator with respect to a
proportional-derivative (PD) controller. His work consisted
of a comparison of spacecraft attitude control methodolo-
gies that use reaction wheels for torque actuation and star
trackers to infer spacecraft orientation and angular rate.

Another proof of LQR reliability and effectiveness was
given by Walker and Spencer [12]: this work focused on a
system for relative navigation and automated proximity
operations for a microsatellite using continuous thrust
propulsion and low-cost visible and infrared imagers. In this
case the state error was employed, together with the thrust
vector, to define the cost function to be minimized by the
LQR optimal gains; moreover the parametric weighting
matrices defined as functions of the actual distance to the
goal and of the maximum available thrust, while Pulse-
Width-Modulation was used to determine thrust control.

Bevilacqua et al. worked on multiple spacecraft control
by developing an autonomous distributed control algorithm
for close proximity operations of multiple spacecraft sys-
tems, including rendezvous and docking scenarios. In order
to validate the proposed control approach, both theoretical
simulations [13] and experimental tests [14–16] were car-
ried out, choosing the LQR as the system controller.

The LQR control effort served as the attractive force
toward goal positions, while APF repulsive functions pro-
vided collision avoidance for both fixed and moving
obstacles. Previous experiments, by the above authors,
assumed that each spacecraft is equipped with an attitude
control system, thus focusing only on the translational
control. Regarding the control strategy, which represents
the main subject of the present paper, as in [12], the
weighting matrices were defined introducing a parametric
structure depending on the maximum allowable values of
the states and control effort. Simulations proved the LQR/
APF to be both effective and efficient in conducting simul-
taneous spacecraft missions and in disturbance rejection.

The previous results obtained in [13] were then imple-
mented and verified in [14], where both theoretical devel-
opments and experimental validation of the hybrid LQR/
APF were presented. In this case propellant consumption
was sub-optimized in real-time through re-computation of
the LQR at each sample time, while the APF performed
collision avoidance and a high level decisional logic.

There is a gap that has not been addressed directly in
the past literature: real-time techniques for optimal con-
trol of both attitude and position. This is partly due to the
fact that attitude and position are commonly dealt with
independently; satellites primarily control their attitude to
communicate to ground stations, to point to targets, to
collect measurements or absorb energy from the Sun,
whereas translational control is activated infrequently as it
is only required during specific maneuvers such as orbit
insertion and station-keeping. Nevertheless, current
spacecraft rendezvous and docking maneuvers require the
cooperation of multiple spacecraft deliberately designed to
work together; hence both attitude and position need to
be controlled constantly and simultaneously to maintain
the formation and avoid collisions.

The present paper, in keeping with this context, illus-
trates a control algorithm taking into account both position
and attitude, thus allowing a global control of a full six-
degree-of-freedom spacecraft with a unique controller, in
view of an implementation on multiple spacecraft assembly
for the execution of rendezvous and docking maneuvers.

The adoption of a single controller would simplify the
system's architecture, reducing the computational burden,
without sacrificing required performances. Specifically, the
control strategy is based on a LQR, whose gains are re-
computed at each time sample, hence generating a sub-
optimized solution of the six-degree-of-freedom problem.
A comparison with an optimal control problem solver,
based on a Radau pseudospectral Gaussian quadrature
method, constitutes the theoretical validation of the pro-
posed algorithm, evaluating the real optimization level.
Finally, the presented LQR-based control system was also
experimentally verified through a series of tests carried
out on the test bed at the Advanced Autonomous Multiple
Spacecraft (ADAMUS) laboratory [17,18]. This work parti-
cularly showcased the feasibility of a real-time approach.

The main contribution of this research to the state-of-the-
art on spacecraft optimal relative motion control consists in
the application of a SDARE approach to obtain a real-time
control algorithm for six-degree-of-freedom spacecraft.
SDARE approaches have been successfully applied in the past
to several engineering problems [19–22] but, to the authors'
knowledge, the complete spacecraft control problem has not
received the attention it deserves. The paper completely
characterizes the methodology via a comparison of its per-
formances versus those of a general purpose software for
solving nonlinear optimal control problems: GPOPS-II.
GPOPS-II is based on an adaptive Radau pseudospectral
Gaussian quadrature method. Furthermore, this work pre-
sents experimental validation of the proposed optimizer,
through hardware-in-the-loop experimentation on a full six-
degree-of-freedom test bed, showing real-time feasibility.

This paper is organized as follows. Section 2 illustrates
the equations of the six-degree-of-freedom spacecraft
motion, the dynamics linearization and deals with the
control strategy by means of a linear quadratic regulator.
Section 3 introduces the comparison with the optimal
control software GPOPS-II, paying specific attention to the
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transformation of the results in order to have a meaningful
matching with those from the LQR controller, thus ensur-
ing an effective and truthful comparison. Section 4 illus-
trates the robotic spacecraft simulator employed for the
experimental verification. Section 5 presents the results of
the experimental tests. Section 6 concludes the paper.
2. Theory

The complete dynamics of spacecraft relative motion, as it
will be expanded in (2.1) and (2.2), consists of the Euler
equations and the Clohessy–Wiltshire equations, describing
the spacecraft attitude and translation respectively. When
dealing with the spacecraft simulator, used for the experi-
ments, the same equations have been used, simplifying the
Clohessy–Wiltshire equations to a double integrator, thus
obtaining a direct correspondence between an orbiting
spacecraft's dynamics and the robot dynamics itself. The
resulting dynamics is represented by linear equations for the
translation and nonlinear Euler's equations for the rotation.
In the next subsections we will simplify the dynamics to
represent the spacecraft simulator and we will use the terms
spacecraft (S/C) simulator or robot interchangeably.

Turning to detail, the position and attitude motion is
represented by the following twelve component vector:

� three relative position coordinates: x, y, z;
� the relative three linear velocity components: vx, vy, vz

or equivalently _x, _y, _z;
� a set of three Euler angles: θx, θy, θz;
� three angular velocity components associated with the

rotation rate about the three axes constituting the body
reference frame: ωx, ωy, ωz.

Fig. 1 summarizes the conventional reference frames (body
B, Local Vertical/Local Horizontal LVLH, inertial E) commonly
employed to describe the relative motion of a spacecraft with
respect to a generic target and expresses the sets of transla-
tional and rotational coordinates mentioned above.

The most common solution employed to control space-
craft entails a set of body-mounted thrusters providing
unidirectional forces. This requires thruster mapping stra-
tegies, converting the tri-axial forces and torques, obtained
from the equations of motion, into a series of unidirectional
forces correspondent to each employed thruster.

2.1. Translational dynamics

The translational equations of motion of the spacecraft
simulator have been derived from the more general Clo-
hessy–Wiltshire equations describing the relative motion
of a chase vehicle with respect to a target vehicle lying on
a circular orbit of radius R0 and orbital rate n¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ� =R3

0

q
.

Starting from the Newton's second law,

m €R ¼ F ¼mgþFthrust ð1Þ
where m is the mass of the vehicle, that is, in the present
work, the spacecraft simulator, g is the gravitational
acceleration and Fthrust is the control force, [23] illustrates
how to derive the linear equations of relative motion,
obtaining the well known expressions:

€x�2n _y�3n2x¼ Fthrustx

m

€yþ2n _x ¼ Fthrusty

m

€zþn2z¼ F thrustz

m
ð2Þ

The spacecraft simulator is not orbiting, thus implying the
coincidence of the local reference frame with the inertial
one in the laboratory: hence the terms related to the
angular rate n, clearly null, vanish, finally obtaining:

€x ¼ Fthrustx

m
ð3Þ

€y ¼ F thrusty

m
ð4Þ

€z ¼ Fthrustz

m
ð5Þ

In the sequel, the forces will be assumed to be expressed in
the coordinate system fixed to the spacecraft, requiring a
rotation matrix to obtain then in the inertial reference
frame. This choice is convenient to simplify the procedure
of thruster mapping.

2.2. Attitude dynamics

When the reference frame is the laboratory's floor, the
spacecraft simulator attitude dynamics can be modeled
employing the Euler's rotational equation of absolute
motion in vector/dyadic form,

M ¼ J � _ωþω� J �ω ð6Þ
Since the principal axes are also a central triad for the
robot, that is the reference frame is baricentric and the
inertial tensor is diagonal, expanding along the three axial
directions all the products of inertia cancel out and Eq. (6)
becomes

Jx _ωxþðJz� JyÞωzωy ¼Mx

Jy _ωyþðJx� JzÞωxωz ¼My

Jz _ωzþðJy� JxÞωyωx ¼Mz

8>>><
>>>:

ð7Þ

The kinematics equation, using the Euler angles para-
metrization with chosen rotation sequence yxz, is [23]

EωByxz ¼ _θye�2þ _θxe��1 þ _θze���3 ; e���3 ¼ b3 ð8Þ
where eji are the basis vectors of different reference frames
(b body frame) the subscript of which defines the rotation
axis, whereas the superscript refers to the partial config-
uration obtained by each rotation. Expanding along the
three axial components x, y, z, and then introducing the
matrix notation, the previous equation assumes the form

ω¼ ωkin _θ
_θ ð9Þ

with

ωkin _θ ðYxzÞ ¼
cz cx � sz 0
�sz cx � cz 0
0 �sx 1

2
64

3
75 ð10Þ



Fig. 1. Vectorial representation of the chaser position with respect to the
target, including the inertial frame E, the local vertical local horizontal
frame LVLH and the body frame B; attitude representation through the
Euler angles parametrization, according to the sequence yxz (box).
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where ci and si represent the shorten form of cos ðθiÞ and
sin ðθiÞ respectively.

2.3. The linearized dynamics

A linearization process has been applied to the non-
linear rotational dynamics of the robot to obtain the
matrices representing the required inputs of the LQR to
determine the optimal Kalman gain. The following deri-
vations address decoupled translational and rotational
motions, and the LQR solver generates independently the
sub-optimal force and torque 3-component vectors to be
mapped to the body mounted thrusters. Despite the ability
of the LQR solver to generate directly the 12-component
vector of the forces to be generated by the thrusters, thus
addressing the coupled rototranslational dynamics, the
authors chose to work with decoupled dynamics to retain
the ability of a comparison with GPOPS-II. In fact, GPOPS-II
has proven to have several convergence difficulties with
the coupled dynamics, and to be very sensitive to the
desired initial and final conditions. Given the twelve
component state vector X expressed by

X ¼

x
_x
θ
ω

2
6664

3
7775 ð11Þ
where x¼ fx; y; zgT , _x ¼ f _x; _y; _zgT , θ¼ fθx;θy;θzgT and ω¼
fωx;ωy;ωzgT , the decoupled rotational and translational
equation of motion can be summarized with the following
vectorial expression:

€x ¼ F=m

_θ ¼ _θkinωω¼ ωkin�1
_θ ω

_ω ¼ J�1ð�ω� J �ωþMÞ ð12Þ

or equivalently

_X ðtÞ ¼ GðXðtÞÞþBF ðtÞ ð13Þ
where B is a constant matrix. This represents a multi-input
multi-output (MIMO) nonlinear system, a function both of
the 12-dimensional state vector X and the 6-dimensional
input F , including forces F and torques M. The system is
then linearized at the desired state, at every time step.
Proceeding in this way for every time step, the whole
trajectory will finally consist of a sequence of linearized
sections, and will approach the non-linear one as the time
sample tends to zero. In light of these considerations the
linearized equations are expressed as

_X ðtÞ ¼ _X desþAðXdesÞ½XðtÞ�Xdes�þBF ðtÞ ð14Þ
where the subscript des specifies the desired state terms
and the matrix A is the state Jacobian matrix computed at
the linearization point:

A tð Þ ¼ ∂G
∂X

����
XdesðtÞ

ð15Þ

Introducing the actual error vector as

XerrðtÞ ¼ XðtÞ�XdesðtÞ ð16Þ
the complete state space representation of the spacecraft
simulator dynamics is then defined by Eq. (17):

_X errðtÞ ¼ AðXdesÞXerrðtÞþBF ðtÞ ð17Þ
Thus, given the rotation sequence yxz, a symbolic calcu-
lation tool was used to derive the parametric expression of
the matrix A.

In particular the state matrix A is composed of a
translational and a rotational term, then gathered gen-
erating the global 12�12 state matrix:

A¼
Atransl 06�6

06�6 Arot

" #
ð18Þ

where

Atransl ¼
03�3 I3�3

03�3 03�3

" #
ð19Þ

Arot ¼
Arot11 Arot12

03�3 Arot22

" #
ð20Þ

The expression of the state matrix rotational term has
been further partitioned due to complexity of its elements,
allowing us, to focus on those terms depending on the yxz
convention, that is on the Euler angles:

Arot11 ¼ Arot1 Arot2 Arot3½ � ð21Þ
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Arot1 ¼

0
sin ðθxÞfωy½2 sin ðθz=2Þ2�1��ωx sin ðθzÞg

sin ðθxÞ2�1
ωy cos ðθzÞþωx sin ðθzÞ

cos ðθxÞ2

2
6666664

3
7777775

ð22Þ

Arot2 ¼
0
0
0

2
64

3
75 ð23Þ

Arot3 ¼

�ωy cos ðθzÞ�ωx sin ðθzÞ
ωx cos ðθzÞ�ωy sin ðθzÞ

cos ðθxÞ
sin ðθxÞ½ωx cos ðθzÞ�ωy sin ðθzÞ�

cos ðθxÞ

2
6666664

3
7777775

ð24Þ

Arot12 ¼

cos ðθzÞ � sin ðθzÞ 0
sin ðθzÞ
cos ðθxÞ

cos ðθzÞ
cos ðθxÞ

0

sin ðθzÞ tan ðθxÞ cos ðθzÞ tan ðθxÞ 1

2
6664

3
7775 ð25Þ

Arot22 ¼

0
ωzðJy� JzÞ

Jx

ωyðJy� JzÞ
Jx

�ωzðJx� JzÞ
Jy

0 �ωxðJx� JzÞ
Jy

ωyðJx� JyÞ
Jz

ωxðJx� JyÞ
Jz

0

2
666666664

3
777777775

ð26Þ

The 12�6 input matrix B (where 12 represents the
number of the states, while 6 represents the number of the
force and torque inputs) remains unvaried, and is given by

B¼
Btransl 06�3

06�3 Brot

" #
ð27Þ
Fig. 2. Axonometric view of the attitude stage (AS) and geometric represent
principal axes, black thin lines refer to the AS with the relative upper/lower arms
imaginary square circumscribed to the AS base.
where

Btransl ¼
03�3

I3�3=m

" #
ð28Þ

Brot ¼

0 0 0
0 0 0
0 0 0
1
Jx

0 0

0
1
Jy

0

0 0
1
Jz

2
6666666666666664

3
7777777777777775

ð29Þ

Moreover, it was assumed that all the states are
observed output. This model provides the inputs of the
LQR that given the problem dimensions (12 states and
6 inputs) provides an optimal Kalman gain as a 6�12
matrix to be multiplied by the 12�1 state error Xerr ,
finally obtaining the optimal solutionF LQR. This represents
the optimal input generalized force, including both forces
and torques, necessary to reach the desired state Xdes,
while minimizing the cost functional. However the
spacecraft simulator is moved by twelve cold gas thrusters,
placed on the upper part of the simulator; hence the
generalized optimal force has been converted into a set of
twelve unidirectional thruster commands by means of a
mapping matrix H, as proposed in [24]. According to Fig. 2,
thrusters are placed on the edge of the four arms sym-
metrically connected to the basis of the attitude stage and
extended upwards and downwards respectively: specifi-
cally eight thrusters are placed with an inclination of 45°
with respect to the sides of the imaginary square (side
2d¼ 0:64 m) circumscribed to the basis, while the
remaining four (thrusters 3, 6, 9, and 12) provide pure
vertical motion when the basis is placed horizontally.
ation of the thrusters configuration: dotted lines represent the inertial
, thick arrows illustrate the thrust direction, light thin lines symbolize the
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The thrust distribution matrix is then given by

H ¼
EDCMBðXdesÞHf

Hm

" #
ð30Þ

where Hf and Hm represent the force and torque terms
respectively.

Hf ¼
p �p 0 p p 0 �p �p 0 �p p 0
0 0 1 0 0 �1 0 0 �1 0 0 1
p p 0 p �p 0 �p p 0 �p �p 0

2
64

3
75

ð31Þ

Hm ¼
�p �p 1 p �p 0 �p p 0 p p �1
�p p 0 p �p 0 p �p 0 �p p 0
p �p 0 �p �p 1 p p �1 �p p 0

2
64

3
75d

ð32Þ
with p¼ cos ð451Þ ¼ sin ð451Þ and d¼ 0:32 m. The twelve
resulting normalized continuous inputs, Ucont , have been
then computed according to the following expression:

Ucont ¼ pinv Hð ÞF LQR

ua
ð33Þ

pinvðÞ is the pseudoinverse operator, whereas ua is a
dimensionless parameter whose magnitude corresponds to
the nominal thrust force Ft ¼ 0:3 N, introduced to normal-
ize the values. After the pseuoinverse is computed a pulse-
width-modulation strategy is used to finally derive a set of
twelve dimensionless binary inputs, u10, to be sent to the
onboard on/off thrusters. It is worth underlining that the
pseudoinverse solution is applied to a constant matrix,
posing no computational or solution existence issues.

2.4. Linear quadratic control

The control strategy is sub-optimized since the LQR
problem is solved at each time step, using dynamically
sized weighting matrices Q and R, adapting gains with
respect to the actual position reached by the robot. Thus
the negative effects deriving from the linearization will be
minimized since the whole trajectory will consist of a
sequence of linearized sections and will approach the non-
linear one as the sample time tends to zero.

The definition of the control law requires the introduction
of a state feedback gain whose design is a trade-off between
the transient response and the control effort. The optimal
control approach [25] to this design trade-off is to define and
minimize a performance index; furthermore, since generally
the robot has to reach non-zero target position and attitude,
a non-zero set point optimal control [26] has been con-
sidered, shifting the actual state X by the desired quantity
Xdes, obtaining the error, defined in Eq. (34):

XerrðtÞ ¼ XðtÞ�XdesðtÞ ð34Þ
Consequently, the shifted optimal regulation problem
becomes

LQRð Þ
Minimize J ¼ 1

2
R1
t0

XT
errðtÞQXerrðtÞþUT ðtÞRUðtÞ

h i
dt

Subject to _X errðtÞ ¼ AXerrðtÞþBUðtÞ
YðtÞ ¼ XerrðtÞ

8>>><
>>>:

ð35Þ
with A and B from Eqs. (18) and (27) respectively, and where
the state weighting matrix Q is assumed symmetric and
positive semi-definite and the input weighting matrix R
symmetric and positive definite.

In this case, the LQR generates the optimal solution
U�ðtÞ (all the following functions are listed as functions of
time, as they depend on Xdes which depends on time)

U�ðtÞ ¼ �KðtÞXerrðtÞ ¼ �R�1ðtÞBTPðtÞXerrðtÞ ð36Þ

where KðtÞ is often referred to as Kalman gain and PðtÞ is
the solution of the Riccati differential equation,

PðtÞAðtÞþAðtÞTPðtÞ�PðtÞBR�1ðtÞBTPðtÞþQ ðtÞ ¼ _PðtÞ ¼ 0

ð37Þ

obtaining the following linear state feedback control:

_X errðtÞ ¼ ðAðtÞ�BKðtÞÞXerrðtÞ

UðtÞ ¼ �KðtÞXerrðtÞ ð38Þ

The presented control strategy has been simulated
employing a Simulink integrated MATLAB function, which is
based on the original code employed in the ‘lqr’ MATLAB
command [27]. It requires the following input matrices: A
(dynamic matrix), B (control matrix), C (state-output map-
ping matrix), D (control-output mapping matrix or feedfor-
ward matrix), and Q and R weighting matrices. Lastly, it
provides the optimal gain matrix K , the solution of the Ric-
cati equation S and the closed-loop eigenvalues of the matrix
ðA�BKÞ, allowing us to verify whether or not the system has
been stabilized, obtaining negative real part eigenvalues. The
presented function executes the routine, in both linux and
win32/64 environment where the correspondent C code is
generated for compilation under RTAI linux.

Concerning the weighting matrices, the tuning techni-
que is based on the use of constant elements qi and ri for
both the matrices Q and R, as part of a trial and error
iterative process where each weight and the factor ρ are
gradually adjusted with the aim of obtaining the desired
performances, that is the reaching of the target position.

Moreover, two additional gains Kpos and Krot are intro-
duced in the Q , and the weighting factor ρ becomes
variable throughout the simulations as well as the
experimental test, depending on these two new gains, thus
increasing the control sensitivity to the system evolution.

The deriving matrices have the following structure:

R¼ ρ

rFx 0 0
0 rFy 0 03�3

0 0 rFz
rMx 0 0

03�3 0 rMy 0
0 0 rMz

2
6666666664

3
7777777775

ð39Þ

Q ¼
Q transl 06�6

06�6 Q rot

" #
ð40Þ

where
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Q transl ¼

Kposqx 0 0
0 Kposqy 0 03�3

0 0 Kposqz
qvx 0 0

03�3 0 qvy 0
0 0 qvz

2
6666666664

3
7777777775

ð41Þ

Q rot ¼

Krotqθx 0 0
0 Krotqθy 0 03�3

0 0 Krotqθx
qωx 0 0

03�3 0 qωy 0
0 0 qωz

2
6666666664

3
7777777775

ð42Þ

Specifically, two controls, over the spacecraft position and
attitude respectively, allow these new gains to switch
between two calibrated values, on the basis of the actual
position and attitude:

� once the i-th component of the position or attitude gets
into an expressly chosen band, the boundaries of which
have been defined as percentages of the relative target
component (i.e. 720% of the target position), a counter
variable starts to run;

� when the counter reaches a predefined value the rela-
tive K gain (Ktransl or Krot) switches to a second value
appropriately calibrated for the steady state phase
(robot near the target position);

� these new K gains are applied to the position and atti-
tude terms of the Q (Eqs. (42) and (43)), thus forcing a
change of the weights as the state approaches the target;

� when both the position and the attitude gains Kpos and
Krot have changed, the factor ρ is also allowed to change,
hence switching to a new value which is more suitable
for the steady state phase.
3. Comparison with GPOPS-II

A validation of the proposed sub-optimal controller,
implemented in Matlab and Simulink, is carried out by
comparing it with an optimizer to highlight how well the
proposed controller approximates the best solution. At the
time of writing, several open-source, freeware and com-
mercial optimal control and nonlinear programming inter-
faces are available. However, results accuracy, advance-
ments in mesh refinement and generality of problem for-
mulation represent some of the reasons behind the choice
of GPOPS-II as the basis for comparison with the Simulink
model. GPOPS-II available at [28] has been developed at the
University of Florida in cooperation with the U.S. Office of
Naval Research (ONR) and the U.S. Defense Advanced
Research Projects Agency (DARPA). Turning to detail, it
employs an adaptive Radau pseudospectral Gaussian
quadrature method and a sparse finite-differencing is used
to estimate all first and second derivatives required by the
nonlinear programming (NLP) solver. Moreover, it has been
designed to work with the NLP solvers Sparse Nonlinear
OPTimizer (SNOPT) and Interior Point OPTimizer (IPOPT)
and to be extremely flexible, allowing a user to formulate a
wide variety of applications including engineering, eco-
nomics, and medicine.

The optimal control problem is then stated as a NLP
problem (refer to Eqs. (12) and (44), whose differential
algebraic equations are collocated using nodes obtained
from a Gaussian quadrature, whereas the state and the
control are parameterized using Legendre polynomials and
their linear combinations. As stated in [29], the combination
of Legendre polynomials with Gaussian quadrature ensures
exponential convergence for smooth solution problems.
More specifically, in order to find the optimal solution, that
is a combination of state and input vector solutions mini-
mizing the objective function in the Bolza form [25], the
general purpose optimal control software GPOPS-II uses a
set of Legendre Gauss Radau (LGR) collocation points: this
set is defined on the domain ½�1;1�, but contains only one
of the endpoints. According to [29,30], the whole iterative
procedure, employed by GPOPS-II to determine the optimal
solution, could be efficaciously divided into five steps
representing partial results of the whole method:

1. identification of the first-order optimality conditions of
the continuous Bolza problem, on the basis of the
Pontryagin Minimum Principle [25];

2. Radau pseudospectral discretization of the continuous-
time first-order optimality conditions of the continuous
Bolza problem;

3. Radau pseudospectral discretization of the continuous
time optimal control problem, resulting in a discrete NLP;

4. statement of the Karush–Kuhn–Tucker (KKT) conditions
related to the NLP;

5. costate estimation obtained from the results of steps
3 and 4.

A new model of the spacecraft simulator has then been
developed, introducing the same rotational and transla-
tional equation of motion (12), but following, this time,
according to the GPOPS-II logic design [31], a different
problem formulation. Two phases have been considered,
in order to analyze both the transient response and the
steady state one, introducing the appropriate linkage
constraints in the endpoint function to ensure continuity
of the solution and set time and event criteria, defining the
transit from the previous phase to the next one. In this
way, during the mesh iterations, when an optimal solution
is found, the mesh is analyzed in each of these phases,
verifying if the mesh error tolerance is satisfied; if not, the
solver automatically increases the number of collocation
points, updating the mesh refinement and generating a
non uniform adaptive grid designed to reduce the error.

Finally, the following aspects have been considered to
obtain a correct comparison between the approach pro-
posed herein and GPOPS one.

1. The comparison of the LQR method and GPOPS has been
focused on the global cost required by the controller.
Specifically the global dimensionless cost J, that is the
cost or objective functional to be minimized both by the
LQR and the optimal solver, consists of two terms P and
F, each related to the generalized position and velocity



Table 1
Costs comparison.

Test Initial state Final state Simulink GPOPS-II ΔJ% (–)

F (–) P (–) J (–) F (–) P (–) J (–)

1 x, y, z (m) (1,1.4,�1) (�1,1.85,2) 63.3 173.3 236.6 53.3 160.4 213.7 9.7
θx ; θy; θz (deg) (50,0,50) (�30,120,30)

2 x, y, z (m) (1,1.4,0) (2,1.85,1) 15 39.5 54.5 11.1 33.9 45 17.4
θx ; θy; θz (deg) (0,30,�20) (10,120,10)

3 x, y, z (m) (1,1.4,0) (1,1.4,0) 3.9 11.3 15.2 2.8 9 11.8 22.4
θx ; θy; θz (deg) (20,40,10) (0,150,10)

4 x, y, z (m) (1,1.4,0) (1.5,1.9,1) 9.3 18.7 28 5.8 17.4 23.2 17.1
θx ; θy; θz (deg) (20,40,�5) (20,40,�5)

5 x, y, z (m) (2,1.4,0) (0,1.4,1) 30.5 76.8 107.3 22.5 68 90.5 15.7
θx ; θy; θz (deg) (20,160,0) (0,70,30)

6 x, y, z (m) (2,1.4,0) (0,1.4,1) 34.1 88.7 122.8 25.4 77.7 103.1 16.0
θx ; θy; θz (deg) (20,200,0) (0,0,30)

7 x, y, z (m) (2,1.9,1) (1,1.4,1) 9.6 27 36.6 7.7 23.8 31.5 13.9
θx ; θy; θz (deg) (10,300,10) (�20,45,0)

8 x, y, z (m) (�1,1.9,2) (0,1.4,0) 19.2 75.4 94.6 21.4 64.7 86.1 9.0
θx ; θy; θz (deg) (30,60,�20) (0,0,0)
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accuracy, and the control effort respectively. Since the
Simulink model employs a fixed time step of 0.02 s and
a discrete solver, the cost function has been computed
using the following discrete expression, to match the
same type of cost function generated by GPOPS. This
summation approximates the integral cost function.

J ¼
X1
k ¼ 1

PðkÞþFðkÞ� �¼ 1
2

X1
k ¼ 1

XT
errðkÞQXerrðkÞþUT ðkÞRUðkÞ

h i
ð43Þ

In this analysis more importance has been attributed to
the propellant cost, setting the tuning parameters in
order to save as much propellant as possible.

2. Since both the optimal solver GPOPS and the LQR solver
cannot handle binary variables, the propellant term has
been computed using the continuous control vector Ucont;
hence, during these simulations, the block used in the
Simulink model to transform the continuous control into a
binary series of on/off commands has been bypassed.

3. For the sake of simplicity the constant tuning technique
(refer to Section 2.4) has been applied in both models,
using also the same numeric values, thus to observe the
results on equal weighting terms.

One last expedient has been devised to make the
comparison even more truthful: the phase of post-
processing transforms the results obtained with GPOPS,
interpolating data and then extracting values on the basis
of the equally spaced time vector used in Simulink. This
technique allows a point by point comparison, hence a
more detailed analysis of the results and their discrepancy.

The most important data affecting the outcome of this
comparison, hence the Simulink model performances,
were the simulation costs. A set of eight simulations has
then been executed both using the Simulink and the
GPOPS software, generating Table 1, which summarizes
the cost values as well as the initial and desired condition
for each of these eight tests. It is worth reminding that the
translational dynamics is linear, while the rotational is
nonlinear. The initial and final values were randomly
chosen to cover a wide range of maneuvers.
From a statistical analysis it can be inferred that on
average the sub-optimal controller requires 15% additional
cost. However, although the GPOPS controller seems to be
the best alternative, some observations have to be taken
into account before expressing the final evaluation:

� Both Simulink and GPOPS simulations have been run
using a laptop with standard performances, at the time of
writing (Processor Intel Core i3, RAM 2 GB). Given a fixed
time simulated duration of 200 s in either case, the opti-
mal solver definitely incurred longer computation time;
specifically, setting a mesh tolerance between 1e-5 and
1e-3 (suggested values 1e-6, default value 1e-3), each
simulation required on average 600–700 s, three times the
simulated time, while, using Simulink, simulations
required 200–500 s. Even though the LQR appears slightly
faster in simulation, this comparison does not show such a
substantial gap between the two techniques yet. There is,
in fact, an additional fundamental observation that needs
to be made: while GPOPS needs to compute an entire
trajectory before returning a solution, the proposed
approach can solve the LQR problem in real time, i.e., it
decides how to actuate for the immediate next time step.

� The LQR solution constitutes a linear state feedback control,
generating a closed loop system, while the multi-purpose
optimal control software GPOPS-II provides a guidance,
that is the determination of an entire desired trajectory,
which implies incapability to execute in real time. In fact, a
600 s convergence time for a 200 s simulation clearly
shows inability for real-time implementation.

To summarize, the Simulink theoretical controller
represents the best alternative: in particular the feedback
nature and the higher level of flexibility of the controller
allow the use of the sub-optimal solution for real-time
implementation; furthermore the previous cost analysis
ensures that the same sub-optimal controller maintains a
high optimization level, since the costs discrepancy is 15%,
compensated by implementability with a real spacecraft.



Fig. 4. The two stages and themain components of the moving platform [32].
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4. The six-degree-of-freedom spacecraft simulator
testbed

Once the reliability and the effective optimization level of
the Simulink model were proven, a series of experimental
tests were conducted on the ADAMUS test bed [32,33].

This test bed consists of a six-degree-of-freedom
spacecraft simulator based on an air bearing technology
that allows it to move as it would in space, i.e., torque and
force free. The so-called moving platform (MP) is con-
trolled by twelve cold gas thrusters, appropriately placed
on the upper part of the simulator. The MP is powered by
two Lithium-ions batteries which are connected to an on
board power management system. Moreover, a 13�15 ft
(3.96�4.57 m) flat epoxy floor (Fig. 3) is being used as the
main base upon which to move the robot.

The overall system represented in Fig. 4 consists of two
main stages:

� The translational stage (TS) provides near frictionless planar
translational motion by means of three linear air bearings,
to transform operative conditions (1-g) into near-
microgravity ones; the near gravity free vertical translation
is instead obtained introducing a system of near-frictionless
air bearing pulleys and variable-mass counterbalances.

� The attitude stage (AS) represents the real spacecraft
simulator and is connected to the TS through a spherical
segment air bearing; it gives rise to the roll, pitch, yaw
degree-of-freedom and hosts the onboard computer
and position tracking system housing together with
the thrusters supports.

This test bed belongs to the most complex category of
simulators, the category of combination systems, which
integrates the capabilities of translational systems with
those of rotational systems.

The ADAMUS robot, unlike all the other existing six-degree-
of-freedom systems [34–40], ensures more realistic simula-
tions, hence results, thanks to the dynamical reproduction of
motion along the full 6 degrees of freedom and in particular
along the vertical translational degree of freedom. Another
interesting feature of the ADAMUS platform is the flexibility: by
simply substituting the attitude stage, different categories of
Fig. 3. The reference frame in the ADAMUS laboratory [32].
spacecraft could be tested, considerably extending its scope of
applications. Additionally, special attention has been given to
the mass balancing system: a Balancing Platform (BP) allows
the robot to modify, by means of three linear motors, the AS
center of mass position.

4.1. Translational stage

The translational state (TS), built by Guidance
Dynamics Corporation

s

(GDC), is made up of an hor-
izontal basis, connected to the linear air bearings pro-
viding the near-frictionless contact with the epoxy floor,
and of a column with a sleeve for the vertical transla-
tional motion, at the top of which a spherical air bearing
cup and its correspondent spherical segment ball allow
the TS to be connected with the AS. Moreover, the TS
contains two groups of tanks: the first group, placed on
the lower base of the TS, supplies the compressed air to
the air bearings, while the second one, placed on the
intermediate base, feeds the air pulleys for the near
gravity free vertical motion.

4.2. Attitude stage

The attitude stage (AS), designed and built by the
ADAMUS lab, provides 740° about the pitch and roll axes
and 360° of yaw motion. The main body of the attitude
stage consists of a discoid basis of composite material
(fiber glass and high density foam) containing the slots of
the onboard computer, the power management system,
the motor drives and the controller card. Four arms are
symmetrically connected to the basis and extend two
upwards and two downwards respectively. Three thrusters
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per arm are located on their edges, along three mutually
orthogonal directions.

Furthermore, both tanks, providing the compressed air
to the thrusters, and Lithium-ion batteries are connected
to the lower arms for the sake of the AS stability. Lastly,
6 LEDs are distributed over the 4 arms and the AS base;
these LEDs, together with the puck, are essential compo-
nents of the PhaseSpace Impulse System, an optical
motion tracker, designated to the position tracking.
Table 2
First experimental test: simulation data.

x (m)

Initial conditions 0.25
Desired state 1.5

θx (deg)

Initial conditions 11.5
Desired state 10

Table 3
First experimental test: weighting matrices data.

Q 12�12 Kpos

Trans Stead

30�1eyeð12Þ 1 100

R12�12 ρ

Trans

eyeð6Þ 10

Fig. 5. Experimental results. First test: actual posi
5. Real-time experimentation

The guidance, navigation and control algorithms were
created in Simulink, generating an executable file for Real-
Time Application Interface (RTAI) Linux. The Simulink file
used to program the experiments is based on the ideal
Simulink file employed for the comparison with GPOPS,
but has several differences listed in the following.

A set of s-functions was used to interface algorithms
and hardware on the robot, providing a way to store, save
y (m) z (m)

0.95 �4.21
1.1 �2.5
θy (deg) θz (deg)

142.6 �1.4
125 �10

Kang

y Trans Steady

0.1 100

Steady

10

tion (top) and actual Euler angles (bottom).



Fig. 6. Experimental results. First test: vertical motion.

Fig. 7. Experimental results. First test: representation characterized by the data illustrated in Table 2.

Fig. 8. Experimental results. First test: snapshot of experiment of Fig. 5.
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Fig. 9. Experimental results. First test: position (top) and position error (bottom).

Fig. 10. Experimental results. First test: Euler angles (top) and Euler angles error (bottom).
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or modify the desired variables and to send the sub-
optimal control vector to the actuators' drivers.

A linear Kalman filter (LKF) and an extended Kalman
filter (EKF) [41,42] provided a way to estimate the
translational state (position and linear velocities) and the
rotational state (Euler angles and the angular velocities)
respectively, in such a manner that the error is minimized
statistically by means of two-step algorithms (predict/



Fig. 11. Experimental results. First test: linear velocity.

Fig. 12. Experimental results. First test: angular velocity.
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update steps). The laboratory motion tracking system
provides center of mass position and quaternions, whose
processing results in position, attitude, and corresponding
velocities from the filters.
The above differences justify the final comparison between
the cost obtained from the experiments and the cost obtained
running matching simulations via the above described
Simulink file, which better represents the hardware.



Fig. 13. Experimental results. First test: thrusters configuration 1–4.

Fig. 14. Experimental results. First test: thrusters configuration 5–8.
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Lastly, previous model employed to control the ADA-
MUS spacecraft simulator used angles error threshold
between 8 and 5°, while in the present work the
threshold was set to only 2° for the angles and 2 cm for
the positions; these assumptions require higher control
performances, but, at the same time, allow the controller
to increase position accuracy reducing the steady state
oscillations.



Fig. 15. Experimental results. First test: thrusters configuration 9–12.

Table 4
Second experimental test: simulation data.

x (m) y (m) z (m)

Initial conditions 0.25 1.3 �4.28
Desired state 1.5 1.2 �2.5

θx (deg) θy (deg) θz (deg)

Initial conditions 6.5 31.6 �2.3
Desired state 10 125 �10

Table 5
Second experimental test: weighting matrices data.

Q 12�12 Kpos Kang

Trans Steady Trans Steady

30�1eyeð12Þ 1 100 0.1 100

R12�12 ρ

Trans Steady

eyeð6Þ 10 10
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5.1. Experimental results

Two examples of full six-degree-of-freedom experi-
ments are shown in the present subsection.

Table 2 summarizes the initial and desired conditions
of the first full motion test, Table 3 specifies the weighting
matrices values, while Fig. 5 describes its main results.
Since the vertical motion range is small on this first
test, an additional representation of the vertical degree of
freedom y is provided separately in Fig. 6:

A visualization of the experiment is presented in
Figs. 7 and 8.

Figs. 9–15 describe the complete response, including
the error which correctly reaches the zero value for each



Fig. 16. Experimental results. Second test: position (top) and Euler angles (bottom).

Fig. 17. Experimental result. Second test: vertical motion.
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component of the state vector or remains within the
relative threshold. This set of full motion tests allowed the
authors to study how the real controller could handle the
translational and rotational dynamics deriving differences:
the translational dynamics is much slower than the rota-
tional one, reaching the target position in about eighty
seconds. On the other hand, this behavior influences also
the attitude control: much more thrust is in fact required
to let the robot translate, hence stressing the attitude
control that in this way easily tends to oscillate or possibly
overshoot. Consequently the attitude control comes out to
be the most critical component; nevertheless, thanks to
the last tuning adjustments, overshoot and oscillations
have been greatly contained obtaining satisfactory results.
In this case, in fact, the three controlled angles reach the
desired values in about twenty seconds, exhibiting only
minimal steady state oscillation.

Figs. 11 and 12 illustrate the translational velocity and
angular velocity. Since the desired values of both velocity terms
have been set to zero, the velocity error comes out to be equal
to the actual value except for the effect of the error threshold
and thus have been omitted for the sake of conciseness.

Lastly since the present test requires an increment in the
vertical position of the robot's attitude stage, thrusters 3 and
12, providing positive vertical motion, remain activated for
most of the time window, after a transient phase; these
results represent the proof of a successful thruster mapping
allowing to convert the triaxial forces and torques into a
binary configuration of twelve on/off thrusters.



Fig. 18. Experimental results. Second test: representation characterized by the data illustrated in Table 4.

Fig. 19. Experimental results. Second test: snapshot of experiment of Fig. 16.
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The second example tests the response to a negative
vertical translation, starting from different initial condi-
tions, as shown in Table 4, while Table 5 summarizes the
weighting matrices used values.

Following the same order of the previous test, Figs. 16
and 17 summarize the main results of this second test.

The minimal representation and the comparison with
the real robot motion are described in Figs. 18 and 19.

Figs. 20–26 provide a more detailed illustration of the
complete response, including the actual state components
as well as the error components. Similar conclusions can
be drawn here as those provided in the previous test.

In this second case the vertical thrusters present an oppo-
site configuration with respect to the previous test: the vertical
position, in fact, must decrease, activating, after a transient
phase, thrusters 6 and 9 providing negative vertical motion.

Finally, an additional analysis concerning the pro-
pellant cost has been conducted, with the aim to demon-
strate the discrepancy between the Simulink model and
the experiment: the propellant cost term has been com-
puted as a net propellant expenditure as defined in the
following equation:

Ucost ¼ uT
10u10 ð44Þ

On average the propellant cost gap between the simu-
lated solution and the real one corresponds to 3–5% of the
real cost. However with equal propellant cost the simulated
solution provides a better control, while with equal control
the simulated solution requires less propellant.

The consistency between the simulations and the experi-
mental tests could be further increased by incorporating the
dual effects of the friction, slowing down the translational
motion but at the same time reducing the oscillations, and
improving the mass balancing system in order to ensure
higher stability in the attitude stage.

The coupling between translation and rotation, by
means of the same control inputs, is such that the attitude
control is highly affected by the translational one, the latter



Fig. 20. Experimental results. Second test: position (top) and position error (down).

Fig. 21. Experimental results. Second test: Euler angles (top) and Euler angles error (bottom).
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requiring much greater thrust values, which tend to gen-
erate oscillations or overshoot in the rotational compo-
nents. It should be emphasized, however, that these irre-
gularities never produced instability and that, as a result of
tuning techniques and gain adjustments, these effects have
been strongly reduced obtaining satisfactory results.
6. Conclusion

This work presented a real time, LQR-based sub-optimal
approach for full six-degree-of-freedom spacecraft control.
Previous works proved the effectiveness and reliability of
linear quadratic optimal control, while this research has



Fig. 22. Experimental results. Second test: linear velocity.

Fig. 23. Experimental results. Second test: angular velocity.
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illustrated a way to quantify the trade-off between real-
time feasibility and optimality. This consisted of a direct
comparison with the general purpose optimal control
software GPOPS-II. A deepened cost analysis has shown a
discrepancy of 15%, although the sub-optimal solution is
characterized by easier real-time implementability, reduced
computational burden and hence lower simulation time.
The proposed control approach has been tested on the
ADAMUS test bed with a series of hardware-in-the-loop
experiments that constituted the final validation of the



Fig. 24. Experimental results. Second test: thrusters configuration 1–4.

Fig. 25. Experimental results. Second test: thrusters configuration 5–8.
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present research: these experiments, in fact, have effec-
tively shown the sub-optimal six-degree-of-freedom con-
trol capability.
Both the error and the actual state response have been
analyzed, together with the thrusters profile, for a com-
plete study of the controller performances.



Fig. 26. Experimental results. Second test: thrusters configuration 9–12.
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The results showed that both position and attitude
reach the desired values, although some differences occur:
the Euler angles plots, in fact, lack of the same regularity as
the translational components, presenting occasional
oscillations or slight overshoots. This imbalance directly
derives from the existing differences between the trans-
lational dynamics and the rotational one, the former being
much slower than the latter, and represents the only limit
of the proposed controller, which is the main subject of the
present research.
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