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At low Earth orbits, differentials in the drag forces between spacecraft can be used for controlling their relative

motion in the orbital plane.Currentmethods for determining thedrag forcemay result in errors due to inaccuracies in

the densitymodels and drag coefficients. In this work, amethodology for relativemaneuvering of spacecraft based on

differential drag, accounting for uncertainties in the drag model, is proposed. A dynamical model composed of the

mean semimajor axis and the argument of latitude is used for describing long-range maneuvers. For this model, a

linear quadratic regulator is implemented, accounting for the uncertainties in the drag force. The actuation is the

pitch angle of the satellites, considering saturation. The control scheme guarantees asymptotic stability of the system

up to a certain magnitude of the state vector, which is determined by the uncertainties. Numerical simulations show

that themethod exhibits consistent robustness to accomplish themaneuvers, even in the presence of realisticmodeling

of density fields, drag coefficients, the corotation of the atmosphere, and zonal harmonics up to J8.

Nomenclature

Ai = cross-sectional area of the surface i of the spacecraft,m2

aD = drag force per unit mass, km∕s2
�a = mean semimajor axis, km
CB = spacecraft’s ballistic coefficient, m2∕kg
CDi

= drag coefficient of the surface i of the spacecraft
�i = mean inclination, rad
m = spacecraft’s mass, kg
P = positive-definite matrix, solution of the algebraic Riccati

equation
r = spacecraft’s inertial position, km
Si = surface of the face i of the spacecraft, m2

v = spacecraft’s inertial velocity, km∕s
vatm = Earth atmosphere’s inertial velocity, km∕s
vrel = velocity vector of the spacecraft relative to the

atmosphere, km∕s
β = attitude angle, deg
η = uncertainties (modeling errors) in the input, 1∕km
�θ = argument of latitude, rad
μ = Earth’s gravitational parameter, km3∕s2
ν = control input to the system, 1∕km
ρ = Earth’s atmospheric density, kg∕m3

I. Introduction

I N LOWEarth orbits (LEOs), the drag force constitutes one of the
main perturbations affecting satellite dynamics. The specific force

(force per unit mass) aD generated by the drag force is usually
modeled as ([1] p. 549)

aD � −ρvrelkvrelkCB (1)

where vrel denotes the velocity vector of the satellite relative to the
atmosphere, ρ represents the atmospheric density, and CB is the
ballistic coefficient. The ballistic coefficient is defined as

CB ≜
1

2m

XN
i

CDi
Ai (2)

where Ai stands for the cross-sectional area of the ith surface
impinged by the particles, CDi

is the corresponding drag coefficient,

andm denotes the mass of the spacecraft. Equation (1) shows that aD

always acts in the direction opposed to the vector vrel, which rep-
resents the inertial velocity of the satellite relative to the atmosphere.

Since the atmosphere inertial velocity is usually a small component
compared to the inertial velocity of a LEO satellite, it is frequently
neglected for theoretical developments, leading to use of the inertial
velocity of the satellite v instead of vrel in Eq. (1). Under this

assumption, drag forces cannot have components perpendicular to
the instantaneous plane of motion. This is a significant limitation for
the use of drag to maneuver. Yet, within the plane of motion, certain

relative maneuvers can be achieved by use of drag only, reducing the
propellant needs in certain missions [2,3].
The main effect of the drag force is reducing the semimajor

axis and eccentricity of the orbit. If the variables of Eq. (1) are
judiciously exploited, relative accelerations between two or more

satellites can be generated, such that they are steered toward
relative states desirable for specific multiple-satellite applications.
This idea is usually termed differential-drag (DD) maneuvering.
In recent years, the use of DD for satellite relative maneuvers has

been actively investigated due to its potential for reducing the
propellant needs in formation flying and cluster flight missions.
Yet, one should keep in mind that DD maneuvers might increase the

orbital decay of the satellites if the implemented controllers require
high values of aD. Other factors limiting the use of differential drag
are the vanishing effects of the drag force at altitudes above 600 km
and the time required to conduct a maneuver, which could be weeks

or months.
Leonard et al. [4,5] derived a control scheme that used drag plates

acting at either maximum or minimum drag. To that end, the in-plane
dynamics was modeled with the Clohessy–Wiltshire equations [6],
and the density was assumed constant. Carter and Humi [7] derived

linearized equations of relative motion that included effects caused
by drag, assuming a drag forcemodel proportional to the square of the
velocity. Kumar and Ng [3] extended thework by Leonard et al. [4,5]
to consider other acting perturbations, erroneous measurements, and

intersatellite distances slightly larger than those considered by
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Leonard et al. but still in the order of magnitude of a few tens of
kilometers.
Bevilacqua and Romano [8] and Bevilacqua et al. [9] used the

linear formulation obtained by Schweighart and Sedwick [10] to
derive a DD-based control algorithm for steering the in-plane relative
coordinates to zero. They assumed a constant density and actuation
provided by drag plates with two possible configurations: parallel or
perpendicular to the velocity vector, thus providing minimum or
maximum drag force, respectively. Based on the Schweighart–
Sedwick equations [10] and the same aforementioned drag-plates
actuation, Pérez and Bevilacqua [11] removed the assumption on
constant atmospheric density and proposed an adaptive Lyapunov-
based controller to perform rendezvous between two spacecraft.
Moreover, an analytical expression for a critical value of the relative
acceleration due to drag was proposed. The relative acceleration due
to drag must be above this value to ensure convergence of the
maneuver. Ben-Yaacov and Gurfil used DD to perform relative
maneuvers for cluster-keeping purposes [12] and developed a
controller based on the nonlinear dynamics of the relative orbital
elements (ROEs) [13]. The linearized equations of motion of the
ROEs accounting for secular J2 effects and DD were derived by
Schaub in [14]. Harris and Açkmeşe [15] applied optimal control for
DD-based maneuvers. Dell’Elce and Kerschen [16] used pseudo-
spectral methods and model predictive control for planning and
effectuating rendezvous maneuvers. The control input was a torque
exerted onto a reaction wheel that modified the attitude of the
satellite, thereby modifying the acceleration due to drag exerted onto
the satellites. Moreover, Dell’Elce et al. [17,18] proposed a robust
optimal control approach for DD-based rendezvous maneuvers.
So far, the research in this area has been mainly oriented to close-

proximity maneuvers, whereas the potential of differential-drag-
based maneuvers can go beyond close-proximity operations. Indeed,
the ORBCOMMconstellation [19] uses differential drag, in an open-
loop manner, to control the relative phase angles of the satellites.
Moreover, Finley et al. [2] proposed to use DD to separate in phase a
number of satellites that were initially in close proximity. One could
also envision applications that require us to guide satellites, which are
initially separated by large distances (order of magnitude of
∼1000 km) in the same orbital plane, along trajectories that drive
them into close-proximity configurations. For this purpose, DD can
be also used, enabling reductions in the propellant requirements.
One of the main difficulties of designing differential-drag

maneuvers is the inherent uncertainties existing in some of the
quantities in Eq. (1). The models of the Earth’s atmospheric density
field, as well as the drag coefficient values associated to various
satellite geometries, can be inaccurate [20], leading to uncertainties in
the effects of differential-drag-based maneuvers. Hence, when
designing differential-drag-based maneuvers, these uncertainties
should be accounted for.
One of the goals of this work is to design differential-drag co-

operative maneuvers by explicitly considering uncertainties in the
drag models, which at the best knowledge of the authors has not
received much attention. These maneuvers are aimed at steering the
satellites from given initial conditions to close-proximity configura-
tions oriented to a rendezvous. Inspired by the flourishing CubeSat
format, this work assumes that the satellite geometries are rectangular
parallelepipeds that can change their pitch angles in a continuous
manner, hence varying the cross-sectional area and the resulting
differential-drag accelerations.
The proposed approach aims at dealing with the uncertainties in

the atmospheric density models and in the ballistic coefficients. To
derive the control laws of the maneuvers, the problem is formulated
using a linearized relative motion representation, based on orbital
elements. The linearization is based on the main assumption that the
difference inmean semimajor axes between the two satellites is small
compared to themean semimajor axes values. Unlike other linearized
formulations [6,10], this model allows large distances between the
satellites, as long as both mean semimajor axes are kept close one to
each other. In this manner, one can consider initially large phase-
separations between the satellites and drive them into close-
proximity configurations. In this context, a linear quadratic regulator

(LQR) is proposed. Moreover, an analysis of the convergence of the
system driven by the proposed LQR controller in the presence of
bounded uncertainties is presented. This leads to determine gains
ensuring that the system still converges, under these uncertainties, up
to a certain norm of the state vector. Since the cross-sectional area of
the satellites is limited, an assessment of the system under saturation
is provided, showing that convergence is still achieved.
The approach presented is tested using maneuver simulations that

include: space- and time-varying density using NRLMSISE-00,
including the influence of the solar and geomagnetic activity; the
effects of the rotation of atmosphere on the drag force; a realistic
model for the drag coefficient that takes into account the composition
of the surfaces, their orientation, and the thermal difference between
the surfaces and the atmosphere; and a gravitational geopotential due
to zonal harmonics up to J8. The effects of these factors on the
resulting maneuvers are studied by running different scenarios with
different combinations of these factors.
The advancements on the state of the art in thiswork are as follows:
1) The first advancement is the development of an LQR approach

for DD-based maneuvering that guarantees convergence up to a
bound around the desired final state under uncertainties in the density
and the drag coefficient.
2) For the developed dynamical model, the control law is

augmented with a saturation function, still providing convergence.
3)Validationof theLQRapproachusingnumerical simulations for a

long-range rephasing maneuver, including realistic density, variable
drag coefficient, corotating atmosphere, and zonal harmonics up to J8.
The remainder of the paper is organized as follows: Sec. II

introduces the geometrical setup assumed to tackle the problem;
Sec. III addresses the problem with a formulation based on orbital
elements, deriving an LQR controller; and Sec. IV shows numerical
simulations supporting the theoretical statements. Finally, conclud-
ing remarks are provided in Sec. V.

II. Description of the Problem

Let two satellites, the chaser and the target, be in coplanar circular
orbits. The main goal of this work is to derive DD-based closed-loop
controllers that steer the satellites to an encounter. These maneuvers
will be performed by varying the drag force generated on either
satellite, with no thrust usage.
Motivated by the rapid increase in the number of missions

composed of CubeSats, this work assumes that the satellite
geometries are rectangular parallelepipeds, such as the one illustrated
in the three-dimensional (3-D) view of Fig. 1. In this paper, these
bodies are endowed with one rotational degree of freedom, with the
axis of rotation always perpendicular to the planewhich is depicted as
a dashed-dot line in the 3-D view of Fig. 1. The input considered for
the control laws is the attitude of the satellite parameterized by the
angle β, according to Fig. 1. To measure β, define a line lying on
the orbital plane, perpendicular to the inertial velocity vector of the
satellite v, such as the dashed line illustrated in the two-dimensional
(2-D) view and orbital view of Fig. 1. β is measured from the
aforementioned line toward the satellite velocity vector. In Fig. 1, S1
and S2 denote the surfaces perpendicular to the plane of motion,
whereas the face S3 remains parallel to the plane of motion. For the
forthcoming analytical developments, the velocity of the atmosphere
is neglected, but it will then be incorporated in numerical simulations
to assess the effects on the developed controller. Hence, the total
product of the drag coefficient by cross-sectional area is given by

X2
i�1

SiCDi
� CD1

S1j cos βj � CD2
S2j sin βj (3)

Changing β modifies the cross-sectional areas, and consequently
the magnitude of the exerted acceleration aD. Due to the periodicity
of the cross-sectional areaswith β, for the purposes of thiswork, β can
be restricted to the range β ∈ �0 deg; 90 deg�, which allows us to
remove the absolute value operator from Eq. (3).
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Because of the general lack of knowledge on the drag coefficient
behaviors, for the purpose of controller development, the drag
coefficient will be assumed to be a constant value and equal for both
satellites, since the geometries are alike. However, since a constant
value might be an erroneous modeling, the effects on the dynamics
due to uncertain variations of the real values with respect to the
assumed constant values will be theoretically assessed. Hence,

assuming CDi
� CD and is constant, Eq. (3) can be reformulated as

X2
i�1

CDi
Si � CDS � CDS0 cos�β − ψ� (4)

where S0 �
�����������������
S21 � S22

p
, and ψ � arctan�S2∕S1�. It can be seen that

X2
i�1

CDi
Si

has amaximumat β � ψ > 0 and aminimum at β � 90 deg. Hence,
for the purposes of this work, the range of β can be restricted even

more: β ∈ �ψ ; 90 deg�.

III. Rephasing Maneuvers Under Uncertainties

This section presents an approach to drive two satellites that are
initially in circular orbits in the same orbital plane but separated in
phase (i.e., with different arguments of latitude) toward a close-
proximity configuration. This configuration is attained by matching
themean semimajor axes �a of the satellites and themean argument of
latitude �θ. Notice that, for initially circular orbits (very low
eccentricities), neither theEarth’s oblateness nor drag effects increase
the mean eccentricities, i.e., the orbits will remain circular [in fact,
drag reduces the eccentricity of orbits ([1] p. 671)]. Hence, matching
�a and �θ brings the two satellites into a close-proximity configuration.

A. Dynamic Model

Let �a, �e, �i, �ω, and �M, respectively, denote themean semimajor axis,
eccentricity, inclination, argument of perigee, and mean anomaly.
Under the influence of drag and the first term of the gravitational
geopotential due to zonal harmonics J2, the time variation of the
mean argument of perigee �ω and the mean anomaly �M are,
respectively, given by [21]

_�ω � 3

4
J2 �n

�
Req

�p

�
2

�5 cos2 �i − 1� (5)

_�M � �n� 3

4
J2 �n

�
Req

�p

�
2 �������������

1 − �e2
p

�3 cos2 �i − 1� (6)

where �p and �n denote the parameter (semilatus rectum) of the orbits

and the mean motion, respectively; and Req represents the mean

equatorial radius of the Earth.
The argument of latitude θ is defined as θ ≜ ω� f, where f

denotes the true anomaly. Assuming circular orbits, the variation of

the mean argument of latitude can be modeled as

_�θ � _�M� _�ω �
�����
μ

�a3

r
� 3

4
J2

�����
μ

�a3

r �
Req

�a

�
�8 cos2 �i − 2� (7)

Tomodel the rate of change of themean semimajor axis, we use the

Gauss variational equations (GVEs) and the premise that “the effects

of the control vector u is assumed to have the same effect on themean

orbit elements as it has on the osculating orbit elements,” as

mentioned by Schaub and Alfriend [22]. In this work, the vector u
will be generated using drag forces. Hence, the effects of the drag on

the mean semimajor axis will be approximated by the effect that the

same drag would generate on the corresponding osculating

semimajor axis. This approximation has been proposed and assessed

in a few papers [21,23,24], showing its validity.
Using the GVEs resolved in tangential and normal axes ([25]

p. 489), the time variation of the semimajor axis a is formulated as

_a � 2a2v

μ
Γt (8)

where v ≜ kvk, and Γt represents the disturbance acceleration

component along the inertial velocity vector. The perturbation due to

J2 has no effect on �a. Neglecting any motion of the atmosphere and

considering Eq. (4), the input Γt due to drag is given by

Γt � −
1

2
ρv2

CD

m
S0 cos�β − ψ� (9)

Since, for circular orbits v � ���������
μ∕a

p
, introducing Eq. (9) into

Eq. (8) and recalling that the rate of change of the mean semimajor

axis due to drag will be approximated by the rate of change that the

drag would induce onto the osculating semimajor axis [22], _�a is

approximated by

_�a � −2
������
μ �a

p
ρ
CDS0
2m

cos�β − ψ� (10)

The quantity CDS0∕�2m� will be denoted by CB0 and will be

considered constant for the development of the control law.However,

Fig. 1 Assumed geometry of the satellite.
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in reality, the real drag coefficient is affected by variations of the
attitude, temperature, and chemical composition of the surface of the
spacecraft and the environment [26–28]. The effects of these
uncertain variations in the performance of the control law will be
addressed in Sec. III.C.
Recall that, under J2 and drag influence, the mean inclination �i

remains constant; thus, it actually represents a parameter. It is
important to mention that the reduced state ��θ; �a�⊤ represents only the
in-plane motion.
The relative orbital elements are defined as

Δ�θ ≜ �θC − �θT (11)

Δ �a ≜ �aC − �aT (12)

In Eqs. (11) and (12), as well as for the remainder of the paper, the
subindices �·�C or �·�T refer to the parameter or variable �·� associated
to the chaser or target, respectively. The lack of a subindex in certain
expressions indicates that the expression is valid for either spacecraft
indistinctly.
Generally speaking, in multiple-satellite missions that involve

coordinated relative motion, the mean semimajor axes should be
close on to each other, i.e., j �aC − �aT j∕ �aT ≪ 1; otherwise, there
would be high natural drift rates that could rapidly dismantle any
desired configuration.
Consider avirtual satellite 0 in a circular orbitwith the constantmean

semimajor axis �a0 (i.e., unaffected by drag). Assume �a0 is sufficiently
close to �aC and �aT , and the inclination �i0 � �iC � �iT � �i. Considering
Eq. (7), the difference in the rate of change of the arguments of latitude
between the satellites C and 0 can be linearized as

_�θC − _�θ0 ≃
∂_�θ
∂ �a

����
�a� �a0

� �aC − �a0� (13)

The difference in the rate of change of the arguments of latitude
between the satellites T and 0 can be obtained in a similar manner.
Finally,

Δ_�θ � _�θC − _�θ0 − �_�θT − _�θ0� � −P0Δ �a (14)

where

P0 ≜
���
μ

p �
3

2

1

�a5∕20

� 21

8

J2R
2
eq�8 cos2 �i − 2�

�a9∕20

�
(15)

Equation (14) represents the evolution of the relativemeanargument
of latitude as a function of themean relative semimajor axis. Due to the
linearizations, this equation remains valid as long as the mean
semimajor axes of the chaser and target remain sufficiently close to �a0.
As previously stated, because of the coordinatedmotion, �aC and �aT are
expected to remain relatively close one to each other; otherwise, there
would be a high drift hindering any possible coordinated maneuver.
Moreover, during themaneuvers, the variations of themean semimajor
axes due to drag are expected to be sufficiently small, holding the
linearizations valid, i.e.,

j �a�t� − �a0j
�a0

≪ 1

These assumptions will be validated during the extensive numerical
simulations presented in Sec. IV.
To obtain Δ _�a, considering Eq. (10) and taking the zeroth-order

Taylor expansion about �a � �a0 yields

Δ _�a � −2
��������
μ �a0

p
�ρCuC − ρTuT� (16)

where

uC ≜ CB0 cos�βC − ψ� uT ≜ CB0 cos�βT − ψ� (17)

Definingw ≜ �Δ�θ;Δ �a�⊤, the obtained linear system can bewritten

as follows:

_w �
�
0 −P0

0 0

�
w�

�
0

b

�
�−ρCuC � ρTuT� (18)

where b ≜ 2
��������
μ �a0

p
. The dynamical system [Eq. (18)] may be

considered linear time invariant (LTI). The input of this system is

given by the term−ρCuC � ρTuT . Notice that the uncertainties in the
densities ρC and ρT , as well as in the drag coefficient CD, constitute

uncertainties in the input.

B. Controller Derivation

Assuming no constraints on the input, an infinite-horizon LQR

approach will be initially implemented. Since the range of ν ≜
−ρCuC � ρTuT is limited, a saturation function will be proposed in

the sequel, and it will be shown that convergence is still achieved.

Recall that, in an infinite-horizon LQR, ifw denotes the state vector,

the input is given by ([29] chap. 3.3)

νLQR � −R−1B⊤Pw (19)

where P is the matrix that solves the algebraic Riccati equation

formulated as

A⊤P� PA − PBR−1B⊤P�Q � O (20)

For the problem in question, the matrices are given by

A �
�
0 −P0

0 0

�
B �

�
0

b

�
R > 0

Q is a positive-definite matrix defined as

Q ≜
�
q1 0

0 q2

�

i.e., q1 > 0 and q2 > 0, P is a positive-definite matrix defined as

P ≜
�
Π1 Π2

Π2 Π3

�
; O ≜

�
0 0

0 0

�

For the discussed problem, P is sought such that the matrix

A� ≜ A − BR−1B⊤P (21)

is Hurwitz, i.e., all the eigenvalues of A� must have negative real

part. Hence, the expressions for the entries of the matrix P are

determined as

Π1 �
�����
q1

p �����������������������������������
2P0

���������
q1R

p � q2b
p

P0

���
b

p (22)

Π2 � −
���������
q1R

p
b

(23)

Π3 �
����
R

p �����������������������������������
2P0

���������
q1R

p � q2b
p

b3∕2
(24)

and the gain K is
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K � R−1B⊤P �
2
4− �����

q1
R

r �������������������������������
2
P0

b

�����
q1
R

r
� q2

b

s 3
5 (25)

With K already computed, then the desired input to the system is

νdes � −K�Δ�θ;Δ �a�⊤ (26)

Now, assuming that

�−ρC � ρTζ�CB0 ≤ νdes ≤ �−ρCζ � ρT�CB0 (27)

where ζ ≜ cos�π∕2 − ψ�, one should find βC and βT (the pitch angles
of the chaser and target, respectively), such that

−ρCuC � ρTuT � νdes (28)

If the constraints [Eq. (27)] are not satisfied, there are no βC ∈ R
and βT ∈ R that satisfy Eq. (28). This case will be addressed in the

sequel.

C. Effects of the Uncertainties in the Implementation

To find βC and βT that solve Eq. (28), a model for the atmospheric

density must be selected, from which the densities for the chaser and

target are, respectively, assumed to be ρ�C and ρ�T . Similarly, one

should also consider a nominal value for the drag coefficient C�
D,

which leads to a nominal value C�
B0 � S0C

�
D∕�2m�, yielding

assumed u�C � C�
B0 cos�βC − ψ� and u�T � C�

B0 cos�βT − ψ�.
Hence, if

�−ρ�C � ρ�Tζ�C�
B0 ≤ νdes ≤ �−ρ�Cζ � ρ�T�C�

B0 (29)

βC and βT are actually found from the equation

�−ρ�Cu�C � ρ�Tu
�
T� � νdes (30)

However, considering that the models are uncertain, the real

densities affecting the spacecraft are given by ρC � ρ�C � δρC and

ρT � ρ�T � δρT , where δρC and δρT denote the differences between

the real and assumed density for the chaser and target, respectively.

Correspondingly, the real values of uC and uT are given by uC �
u�C � δuC and uT � u�T � δuT . Hence, the true input of the system is

given by

νtrue � −�ρ�C � δρC��u�C � δuC� � �ρ�T � δρT��u�T � δuT�
� νdes � η (31)

where

η≜−ρ�CδuC�ρ�TδuT −δρCu
�
C�δρTu

�
T−δρCδuC�δρTδuT (32)

For the forthcoming analysis, the respective quantities are

considered normalized by the corresponding units; i.e., distances by

1 km, angles by 1 rad, mass by 1 kg, and time by 1 s. To assess the

effects on the maneuvers caused by the errors in the density models

and drag coefficient, consider the positive-definite function

V � w⊤Pw. ConsideringEq. (18), its time derivative is then given by

_V � 2w⊤P�Aw� B�−�ρ�C � δρC��u�C � δuC�
� �ρ�T � δρT��u�T � δuT��� (33)

Introducing Eqs. (26), (30), and (32) yields

_V � 2w⊤P�Aw� B�νdes � η��
� 2w⊤P��A − BK�w� Bη�
� w⊤�P�A − BK� � �A − BK�⊤P�w� 2w⊤PBη

� −w⊤�Q� PBR−1B⊤P�w� 2w⊤PBη (34)

which can be upper bounded by

_V ≤ ϒ�kwk� ≜ −kwk2λmin � 2kwkkPBk�η (35)

where �η ≥ jηj, and λmin > 0 denotes the smallest eigenvalue of the

symmetricmatrixΞ ≜ Q� PBR−1B⊤P. Based onEq. (32), an upper
bound for jηj can be formulated as

jηj ≤ �η ≜ 2�ρ�MMδuM � u�MδρM � δρMδuM� (36)

where the superscriptM indicates that themaximum possible value is

taken for the corresponding parameter. Generally speaking, �η could
be computed based on the maximum expected errors for a given

model of density and a given model of the ballistic coefficient. This

will be discussed further in the sequel with specific models.
Considering the errors in the atmospheric density models and in

the ballistic coefficients, _V will be always bounded from the

aforementioned byϒ�kwk�, which is a parabola in kwk. Its roots are
located at kwk � 0 and

kwk � 2
kPBk
λmin

�η > 0

Hence, as long as

kwk � 2
kPBk
λmin

�η

_V will be negative, as required for convergence ([30] chap. 4).

Since V is positive definite, due to continuity (and as long as _V < 0),
eventually, kwk becomes

2
kPBk
λmin

�η

and the decreasing rate of V cannot be guaranteed. Hence, there is

interest in reducing the ratio kPBk∕λmin, which is a function ofQ and

R, to reduce the range in which _V < 0 cannot be guaranteed.
The matrix Ξ � Q� PBR−1B⊤P is given by

Ξ �
�
Ξ1 Ξ2

Ξ2 Ξ3

�
(37)

where Ξ1 � 2q1,

Ξ2 � −
�����
q1
b

r �����������������������������������
2P0

���������
q1R

p
� q2b

q
Ξ3 � 2q2� 2P0

���������
q1R

p
b

from which its eigenvalues are computed as

λmax;min �
q2b� P0

���������
q1R

p � q1b	
�����������������������������������������������������������������������������������������������������
q22b

2 � 2q2bP0

���������
q1R

p
− q1q2b

2 � q1RP
2
0 � q21b

2
p

b
(38)
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Hence,

kPBk
λmin

�
�������������������������������������������
~q1� ~q2�2P0∕b

�����
~q1

pq
~q1� ~q2�P0∕b

�����
~q1

p
−

��������������������������������������������������������������������������������������������
� ~q21� ~q22���P0∕b�2 ~q1�2P0∕b

�����
~q1

p
~q2− ~q1 ~q2

q
(39)

where ~q1 ≜ q1∕R and ~q2 ≜ q2∕R. Notice that the right-hand side of
Eq. (39) does not depend on q1, q2, or R explicitly but on ~q1 and ~q2.
Moreover, kPBk∕λmin is a positive function of ~q1 and ~q2, which can
be selected to reduce kPBk∕λmin as much as desired while keeping in
mind that this affects the required control efforts and might generate
saturation in the system. However, the next section shows that, if the
system is saturated, it will eventually reach a nonsaturated
configuration where Eq. (29) is satisfied, and thus convergence up to

kwk � 2
kPBk
λmin

�η > 0

can be achieved.

D. Saturation

According to the proposed controller, the desired input of the
system is given by Eq. (26). On the other hand, the required attitude
angles βC and βT are computed according to Eq. (30). As previously
mentioned, in order to find βC ∈ R and βT ∈ R, inequality (29) must
hold.However, for certainvalues ofΔ�θ andΔ �a, inequality (29)might
be not satisfied, and thus there are no valid βC and βT satisfying
Eqs. (26) and (30). This occurs because the ballistic coefficients of the
satellites are limited, whereas the input of a linear controller of the
form of Eq. (26) can, theoretically, attain any value.
To address this problem, this work proposes to implement a

saturation function. Whenever inequality (29) is not satisfied, the
system implements attitudes βC and βT such that the maximum or
minimum feasible differential-drag acceleration is obtained. It yields

βC � π

2
and βT � ψ ; if −K�Δ�θ;Δ �a�⊤ ≥ CB0�−ρ�Cζ � ρ�T�

(40)

βC � ψ and βT � π

2
; if −K�Δ�θ;Δ �a�⊤ ≤ CB0�−ρ�C � ρ�Tζ�

(41)

C�
B0�−ρ�C cos�βC−ψ��ρ�T cos�βT −ψ���−K�Δ�θ;Δ �a�⊤;otherwise

(42)

The goal of this section is to show that the dynamical system given
by Eqs. (14) and (16) still converges to the origin if it is driven by the
control law stated by Eqs. (40–42). This will be done by depicting the
phase portrait of the system and analyzing the resulting trajectories.
Since the atmospheric density certainly depends on the altitude of

the satellites, it is necessary to assume a density field model that
captures the main density behavior due to changes in the semimajor
axes of the satellites. Analytical expressions of the density as a
function of the altitude show an exponential decay due to hydrostatic
equilibrium. On the other hand, there exist variations of the density
due to effects other than altitude, like solar activity, diurnal cycles,
etc. Yet, the simplest models tend to average out these variations,
showing only variations due to altitude. The forthcoming analysis
examines the behavior of the two satellites, under saturation,
assuming that themainvariations of the density are due to altitude and
any other effect is averaged out. Still, the effects due to the expected

uncertainties on the dynamics will be addressed. Hence, for the
forthcoming analysis, the exponential atmospheric model CIRA-72
published in ([1] p. 564) will be used, as it captures the
aforementioned behavior and allows us to keep the math tractable. In
this model, the atmospheric density is computed as

ρ�h� � ρHe
−h−h0∕H (43)

where ρH,h0, andH denotemodel parameters that are tabulated in the
aforementioned reference for various intervals of altitude h.
Since the orbits are assumed circular (assuming spherical Earth

with radius Req), Eq. (43) can be approximately reformulated as

ρ� �a� � ρHe
− �a−�h0�Req�∕H (44)

where the constant h0 represents the lowest altitude of the interval of
interest. Since the mean semimajor axes of the satellites are expected
to be sufficiently close, from Eq. (44), ρ�C can be modeled as

ρ�C ≃ ρ�T � ∂ρ
∂ �a

����
�aT

Δ �a � ρ�T

�
1 −

Δ �a

H

�
(45)

whereH is (a single value) selected for the proper range of altitudes.
Any density variations due to solar activity would result in time-
varying coefficients for the model [Eq. (44)]. Yet, the same relation
[Eq. (45)] would be obtained, provided that the semimajor axes of the
satellites are sufficiently close. Moreover, notice that, for a constant
density model, Eq. (44) is still valid with H that tends to infinity.
To proceed, the region in which Eq. (42) has solutions βC ∈ R and

βT ∈ R is first determined. From inequality (29) and introducing
Eq. (45), this region is obtained as

SUΔ�θ�MU ≥ Δ �a ≥ ML � SLΔ�θ (46)

where

SU ≜
−k1

k2 � �C�
B0∕H�ρ�T

> 0 (47)

SL ≜
−k1

k2 � �C�
B0∕H�ζρ�T

> 0 (48)

MU ≜
�1 − ζ�CB0

k2∕ρ�T � C�
B0∕H

> 0 (49)

ML ≜ −
C�
B0�1 − ζ�

k2∕ρ�T � CB0∕Hζ
< 0 (50)

where k1 and k2 are the first and second components of the matrixK,
respectively.Notice that, for a givenρ�T ,Δ �a is boundedby anupper line
LU and a lower line LL of positive slopes. Figure 2 shows these lines
(dashed–dotted) for arbitrary (but typical) values of the parameters of

the inequality [Eq. (46)] (namely, CD � 2.2, C�
B0 � 0.0134 m2∕kg,

S1 � 0.06 m2,S2 � 0.01 m2,m � 5 kg,k1 � −1.830310−101∕km,

k2 � 1.854210−101∕km2, H � 58.5150 km, and ρ�T �
2.56310−12 kg∕m3) corresponding to an altitude of 421.87 km ([1]
p. 564). For the following explanation, the zone in betweenLU andLL

will be referred to as the nonsaturated zone. Moreover, Fig. 2 also

illustrates the solid lineO that satisfiesΔ _�a � 0. This line isobtainedby

solving k1Δ�θ� k2Δ �a � 0. The slope of this line is −k1∕k2 > 0, and

it passes through the origin. Above(below) O, Δ _�a < �>�0.
Furthermore, notice that above(below) the line Δ �a � 0, Δ_�θ < �>�0.
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Notice that the lineO does not constitute an equilibrium of the system,

as only Δ _�a vanishes on it but not Δ_�θ. The only equilibrium of the

system is at the origin of the plane Δ�θ − Δ �a.
According to Eq. (16), there are two necessary conditions that must

hold in order to be able to generate differential drag for control
purposes. These conditions are formulated as −ρ�C � ρ�Tζ < 0 and
−ρ�Cζ� ρ�T > 0. If one of these conditions does not hold,Δ _�a couldnot
be generated in both directions: positive and negative. Considering
Eq. (45), these conditions entail the following requirements: 1 >
ζ� Δ �a∕H and 1 > ζ�1 − Δ �a∕H�. As was previously mentioned, the
expected values ofΔ �a are sufficiently small to avoid high natural drift
rates fromwhich, for the purposes of thiswork, they can be assumed as
jΔ �aj ≤ 10 km. Moreover, for three units (3U) or longer cubesats, ζ�
cos�π∕2−ψ�≤0.32. Hence, 1 > ζ � Δ �a∕H and 1 > ζ�1 − Δ �a∕H�
donot appear difficult to satisfy. Itmeans that, from theviewpoint of the
control law (assuming no uncertainties), the differential-drag input
(ρ�Cu

�
C � ρ�Tu

�
T) can be generated as both positive and negative, as

possibly required by the controller.
If these conditions were not satisfied, the nonsaturated zonewould

not exist, nor could the line O be defined.
Figure 2 also depicts the phase portrait of the system [Eq. (18)]

driven by Eqs. (40–42). At each point w � �Δ�θ;Δ �a�⊤, the slope of
the flow direction is computed as

dΔ �a

dΔ�θ
� Δ _�a

Δ_�θ

In the nonsaturated zone, the slope of the flow direction is given by

dΔ �a

dΔ�θ
� b

P0

�
k1

Δ�θ

Δ �a
� k2

�
(51)

whereas out of this region, the slopes are given by

dΔ �a

dΔ�θ
� −

b

P0Δ �a
�C�

B0�−ρ�C � ρ�Tζ��

� −
bC�

B0ρ
�
T�ζ − �1 − Δ �a∕H��

P0Δ �a
; if w isaboveLU (52)

and

dΔ �a

dΔ�θ
� −

b

P0Δ �a
�C�

B0�−ρ�Cζ � ρ�T��

� −
bC�

B0ρ
�
T�−ζ�1 − Δ �a∕H� � 1�

P0Δ �a
; if w isaboveLU (53)

The line defined as Δ �a � 0 along with the line O determine four

regions of the phase portrait, each of which has a distinctive flow

direction. These regions are named I, II, III, and IV. In region I, the

flow hasΔ _�a > 0 andΔ_�θ < 0. In region II, the flow evolves such that

Δ _�a < 0 andΔ_�θ < 0. In region III, the flow is characterized byΔ _�a < 0
and Δ_�θ > 0. Finally, in region IV, the flow moves with Δ _�a > 0 and

Δ_�θ > 0. Each of these regions has a subregion within the

nonsaturated zone, denoted by �·�N , and a subregion that is outside

the nonsaturated zone, which is denoted by �·�S. Hence, for instance,
region I outside(inside) the nonsaturated zone will be referred to

as IS�N�.
As time elapses, considering the slow decay of �aT and consequent

growth of ρ�T , the slopes outside the nonsaturated zone become

steeper, as seen from Eqs. (52) and (53). Due to the flow directions of

regions IS and IIIS , the trajectories will eventually reach the

nonsaturated zone. In region IVS , as long as

dΔ �a

dΔ�θ
> SL (54)

the trajectories will reach either region VN or region IS ; in which

case, they also end up at the nonsaturated zone. Inequality (54) entails

Δ �a >
ζ − 1

P0SL∕bC�
B0ρ

�
T � ζ∕H

(55)

and, with the same typical values used to build Fig. 2, inequality (54)

is satisfied as long as Δ �a > −22.03 km. In region IIS , as long as

dΔ �a

dΔ�θ
> SU (56)

the trajectories will flow toward region IIN or IIIS ; in which case,

they will eventually reach the nonsaturated zone as well. Condition

(56) implies

Δ �a <
1 − ζ

P0SU∕bC�
B0ρ

�
T � 1∕H

(57)

With the same values used to build Fig. 2, inequality (56) is

satisfied as long as Δ �a < 16.06 km. For practical purposes, and due

to the aforesaid reasons, the value of jΔ �aj is expected to be

significantly smaller than ∼16 km. Since the phase portrait shows

that, due to the controller action, the trajectories always move toward

and eventually enter the nonsaturated zone, they cannot leave once

they have reached it. Actually, due to the controller, the nonsaturated

region constitutes an invariant set.Moreover, once the trajectories are

Fig. 2 Phase portrait of the system, depicted with Eqs. (51–53).
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within the nonsaturated zone, the LQR controller drives the system
toward the origin, with no saturation.
Under the presence of uncertainties, the input of the system is given

by Eq. (31). Then, η can actually affect the slopes of the flow
directions. To measure these effects, consider the following:

Δ _�a � b�νdes � η� (58)

although η does not explicitly affect Δ_�θ � −P0Δ �a. As stated by
Eq. (54), if in region IVS the slopes dΔ �a∕dΔ�θ � Δ _�a∕Δ_�θ are higher
than SL, the system will eventually reach the nonsaturated zone.
Hence,

Δ_�θSL < Δ _�a − P0Δ �aSL < bC�
B0�−ρ�Cζ � ρ�T � η� (59)

for any η. If

jηj ≤ �η < ρ�T

�
1 − ζ

�
1 −

Δ �a

H

��
� P0Δ �aSL

bC�
B0

(60)

holds, as previously mentioned, the trajectories will reach either
region IVN or region IS ; in which case, they also end up at the
nonsaturated zone. For region IIS , since Δ_�θ < 0,

Δ_�θSU > Δ _�a − P0Δ �aSU > bC�
B0�−ρ�C � ρ�Tζ � η� (61)

for any η. If

jηj ≤ �η < ρ�T

�
1 − ζ −

Δ �a

H

�
−
P0Δ �aSU
bC�

B0

(62)

holds. As previously mentioned, the trajectories will reach either
region IIN or region IIIS ; in which case, they also end up at the
nonsaturated zone. Numerical values of the expressions involved in
the inequalities will be shown in Sec. IV.

E. Computation of βC and βT
Using Eqs. (40–42), the angles βC and βT are determined. If the

system is within the nonsaturated zone, then βC and βT must satisfy
Eq. (42), which constitutes a single equation with two unknowns. To
minimize the orbital decay, it is sought that the cross-sectional areas
are always as small as possible. Therefore, one of the angles may be
arbitrarily set to yield theminimumpossible cross-sectional area, and
the other one may be determined to solve Eq. (42). Hence, the
following algorithm is proposed to determine βC and βT :8<
:
βC�90 deg and βT �90 deg; if �aC� �aT and �θC� �θT
βC�90 deg and βT � arccos if −Kw≥0

βT �90 deg and βC� arccos otherwise

(63)

IV. Numerical Simulations

The developed control law was tested in a few simulations. The
scenarios were built such that they included realistic effects that
affected the dynamics of LEO satellites while maneuvering based on
DD. Five simulations will be elaborated here. Theywill be referred to
as cases, and they are summarized in Table 1.

Every case implements the density model NRLMSISE-00 [31] as
the true density field (hence giving ρC and ρT), considering the
corresponding variations of the F10.7 solar flux index as well as the
geomagnetic index AP. To that end, the values of these indices were
retrieved from NASA/Goddard Space Flight Center’s Operating
Missions as Nodes on the Internet (OMNI) database through
OMNIWeb.§ The data were retrieved for the entire years of 2009
through 2011. The presented simulations started on 11 January 11
2010 at 12:23:00 Universal Time (UT) and, with the retrieved data,
they couldnot extendbeyond 31December 2011 at 23:59:59UT, since
simulations with realistic indices were pursued. On the other hand, the
density models that were assumed as known by the controllers, ρ�C and
ρ�T , were set as ρ

�
C � ρ�T � 1.1 · 10−12 kg∕m3, which were arbitrarily

set according to the density behavior for 2009 as modeled by
NRLMSISE-00. Notice that ρ�C and ρ�T could be also assumed to have
some kinds of variations.Whatevermodel was assumed for ρ�C and ρ�T ,
the bound for the uncertainties δρM should have been estimated
accordingly if an accurate computation of �η was desired.
NRLMSISE-00 was also used to obtain the true temperature.

These temperature values were used to implement the models of drag
coefficient variations, as will be elaborated in the following
subsections.
For cases 1 and 2, the real drag coefficient CD was arbitrarily

considered to be 2.39 and constant, whereas for other cases, a more
realistic model that accounted for the spacecraft attitude, the
temperatures of the atmospheres, and the surfaces of the spacecraft,
as well as their chemical composition, was simulated. For all the
cases, the C�

D assumed by the controller was set as C�
D � 2.2,

generating a realistic amount of uncertainty in this parameter.
Moreover, the masses of the satellites were set as 5 kg each, whereas
S1 � 0.06 m2 and S2 � 0.01 m2.
The simulations were run in Cartesian elements with the

corresponding nonlinear differential equations. Since the theoretical
developments considered the secular effects generated by the J2
zonal harmonics, all the simulations included the corresponding J2
terms in the equations of motion. Moreover, to assess dynamical
effects not considered in the development of the LQR, cases 4 and 5
included zonal harmonics terms up to the eighth degree, as well as
corotation of the atmosphere, which added more uncertainties than
those accounted for in the presented developments.
The equations of motion integrated in the simulations are given by

�r � ∇R −
1

2m
ρkv − vatmk�v − vatm�

X3
i�1

AiCDi
(64)

where Ai stands for the cross-sectional area of the surface i; and CDi

denotes the drag coefficient corresponding to the same surface, which
in general will be considered as functions of the attitude. The velocity
of the atmosphere is denoted byvatm. For cases 1, 2, and3, it is assumed
that vatm � 0; whereas for cases 4 and 5, it is assumed that
vatm � ΩE × r, whereΩE represents the angular velocity of the Earth
in an Earth-centered inertial (ECI) frame, assumed to be
ΩE � �0; 0; 2π∕86164.1�⊤ rad∕s: r � �x; y; z�⊤ represents the posi-
tionvector of the satellite in theECI frame.R represents the considered
geopotential, including zonal harmonics, and is given by ([1] p. 543):

R � μ

r

�
1 −

XL
l�2

Jl

�
RE

r

�
l

Pl

�
z

r

��
(65)

and ∇ is the gradient operator taken in Cartesian coordinates.
Moreover, r � krk, and Pl�z∕r� denotes the Legendre polynomial of
the first kind and order l, computed at the ratio z∕r.
It is worthmentioning that, inmostworks and simulations found in

the literature dealing with DD maneuvering, the effects due to
variations of solar and geomagnetic indices, the corotation of the
atmosphere, and the variation of the drag coefficient with the attitude
and temperature are neglected. Even simulations performed with
Systems Tool Kit (STK®) using the high-precision orbital

Table 1 Summary of the cases simulated

Case no. CD Corotation
Zonal

harmonics �iC∕T , deg Gains ~q1 � ~q2

1 2.39 No Up to J2 10 5 · 10−17

2 2.39 No Up to J2 97 5 · 10−17

3 Eq. (66) No Up to J2 10 5 · 10−17

4 Eq. (66) vatm � ΩE × r Up to J2 97 5 · 10−17

5 Eq. (66) vatm � ΩE × r Up to J2 97 5 · 10−19
§Data available online at http://omniweb.gsfc.nasa.gov/.
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propagator (HPOP) tend to neglect some of these effects because the
HPOP considers a constant CD.
Since the controllers are formulated in terms of mean orbital

elements but the dynamic equations are formulated in Cartesian
elements, transformations frommean (osculating) orbital elements to
osculating (mean) orbital elements should be implemented. To that
end, this work implemented the first-order approximation of the
Brouwer theory [32], which for the purpose of this work is seen as a
tool to convert from osculating (mean) elements to mean (osculating)
representations.
In terms of mean elements, the considered initial conditions

are given by �aC�t0� � 6800 km, �eC�t0� � 0.0005, �aT�t0� �
6800.01 km, �eT�t0� � 0.001, �ΩT�t0� � �ΩC�t0� � 0 deg, �ωT�t0� �
�ωC�t0� � 0 deg, �MT�t0� � 20 deg, and �MC�t0� � 0 deg. Finally,
the initial inclinations are specified for each simulation in Table 1.
These initial conditions are transformed into the corresponding
osculating counterparts and then into Cartesian elements to be
integrated. The gains used for the simulations are ~q1 �
~q2 � 5 · 10−17, whereas a0 � �aT�t0�.
For the forthcoming simulations, the depicted results include the

time history ofΔ�θ,Δ �a, V, βC, and βT ; ρC and ρT ; ρ
�
C and ρ�T ; and �aC

and �aT . Plots of the distance between the two satellites and out-of-
plane coordinate of the relative position vector are shown for cases 4
and 5, in which corotation and J8 are taken into account. In cases 1, 2,
and 3, the behaviors of the distance between the two satellites and the
out-of-plane coordinate of the relative positionvector are very similar
to those shown.

A. Numerical Estimation of the Uncertainty

This section provides an estimation of the uncertainty on themodel
with respect to the reality defined for the simulations, based on
Eq. (36). As previously stated, ρ�C � ρ�T � 1.1 · 10−12 kg∕m3.
Considering the assumed ρ� and according to retrieved data of
density for the expected time of the maneuver, δρM is considered as
δρM � 1.0 · 10−12 kg∕m3, which represents about 90% of the error
in the density model. According to Eq. (17), the maximum value for
u�C and u�T can be stated as u�M � 0.013382 m2∕kg. To estimate
δuM, with Eq. (2) and a model for CDi

retrieved from [26–28] that
accounts for variations of the drag coefficient due to attitude and
temperature, the variations of the ballistic coefficients as a function of
the angle β and temperature of the atmosphere are depicted. For
completeness, this model will be elaborated on in Sec. IV.C. It is
shown in Fig. 3, which also includes the errors with respect to the
modeled ballistic coefficient given by CB0 cos�β − ψ�.
From Fig. 3, it was determined that δuM � 0.005223 m2∕kg.

Finally, �η � 4.86966 · 10−11 1∕km. Recalling, inequalities (60) and

(62), consideringΔ �a up to 4.9 km and with the values corresponding
to the forthcoming simulations, the right-hand sides of Eqs. (60) and
(62) attain values larger than �η, showing that, under the expected
uncertainties, the system will converge to the nonsaturated zone.
Consider that the inequalities given by Eqs. (60) and (62) are
sufficient conditions but not necessary. With the aforementioned
values for ~q1 and ~q2, the value for expression (39) is obtained as

kPBk
λmin

� 2 · 108

which means that, as long as kwk > 0.02, _V < 0. Recall that the
involved quantities were adimensionalized using 1 km, 1 rad, 1 kg,
and 1 s.

B. Cases 1 and 2

The first two cases consider CDi
� 2.39 for every surface of both

satellites. The initial mean inclination of case 1 is set as
�iT�t0� � �iC�t0� � 10 deg; whereas for case 2, it is set as
�iT�t0� � �iC�t0� � 97 deg. Since DD cannot exert controlled out-
of-plane differential specific forces, the simulations are always
initiated with same orbital planes for the chaser and target.
For these cases, the parameter L of Eq. (65) is set as two, so it only

considers the J2 zonal harmonic.
The results for case 1 are depicted in Figs. 4 and 5; whereas for case

2, they are plotted in Figs. 6 and 7. The final distances between the

Fig. 3 Variation of u and δu with β and atmospheric temperatures
ranging from 700 to 1500 K.

Fig. 4 Rephasing maneuver, case 1: Δ�θ, Δ �a, and V.

Fig. 5 Rephasing maneuver, case 1: β, ρ, and �a (SMA, semimajor axis).
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two satellites are 25.12 and 6.047 km for cases 1 and 2, respectively;
whereas the out-of-plane coordinate oscillated between 	1.28 and
	0.90 km for cases 1 and 2, respectively. These oscillations are
caused by other perturbations, like zonal harmonics. Differences in
the mean semimajor axes generate differences in the rates of change
of the right ascensions of the ascending nodes ( _ΩC and _ΩT), which
produce the out-of-plane components.
Figures 4 and 6 show the convergence of the maneuver, as

expected from the analysis performed in the previous sections.
However, the behaviors of the angles β look different. Case 1 presents
less oscillations in βC and βT than case 2. Examining the plots of the
densities (Figs. 5 and 7: middle plots), it is observed that the
differences between the real values of density and the values assumed
for tuning the controllers δρ are larger for case II, reaching differences
(uncertainties) of 90%duringmost of themaneuvering time;whereas
for case 1, these differences are not so accentuated. These differences
are believed to cause the oscillations in the angles β, which in case 2
vary between the extremes of the interval for almost 100 days to
overcome the high level of uncertainty in the input. This phenomenon
suggests possible difficulties for implementation because of the long
intervals with large rotations in the attitude required to attain
convergence in the presence of the uncertainties. Improving the
models of the density used for the controller, ρ�C and ρ

�
T , or fine tuning

of the LQRgains could help resulting in a smoother actionwith lower
amplitudes. Although, the latter alternative could enlarge the region
around the origin in which stability cannot be guaranteed. Another
alternativewould be to change the ballistic coefficient by othermeans

than pitching the spacecraft: for example, rotating a set of panels, as
the ORBCOMM satellites do [19]. Still, in general, for maneuvers
that require a high level of precision in relative position and velocity,
this work suggests that DD may not be a feasible alternative because
of the need of permanent corrective actions from the controller to
compensate for the uncertain models of drag actuation. Yet, for
maneuvers or stages of maneuvers with coarse requirements, DD can
be very useful.
From Figs. 5 and 7, it is appreciated that the mean semimajor axes,

�aC and �aT , undergo a decay of approximately 5 km, validating the
linearization proposed in Sec. III.A.

C. Case 3

Themain purpose of this case is to introduce amore realisticmodel
of the drag coefficient in the assumed true dynamics, which varies
with the attitude and temperature. In fact, case 3 differs from case 1
only in the manner that the real drag coefficient is modeled. Still,C�

D
assumed by the controller was set as C�

D � 2.2. The same initial
inclination as case 1 is considered, i.e., �iT�t0� � �iC�t0� � 10 deg.
Based on works [26–28], the drag coefficient of each surface is

modeled as

CDi
� 2

�
1� 2

3

��������������������������������������
1� αi

�
Ti
sat

Tatm

− 1

�s
sin ϕi

�
(66)

where

αi � 3.6ui

�1� ui�2 (67)

Ti
sat denotes the temperature of the satellite surface i, Tatm

represents the kinetic temperature of the ambient gas molecules, and
ui is the ratio of themeanmass of the incident gas atom to themass of
the surface atom of the surface i. For the purposes of this work, the
aforementioned parameters were set as Ti

sat � 273 k (as done in
[27,28]), and the temperature Tatm was obtained from the
NRLMSISE-00 model, with the corresponding F10.7 and AP
indices. The angle of attack of the ith surface is represented by ϕi,
which in fact varies with β. Finally, ui � 0.215 is arbitrarily set,
assuming a mean mass of the incident gas atom of 15 (nitrogen and
oxygen atoms) and ameanmass of the atoms of the satellite surface to
be 69.7, corresponding to gallium solar panels.
The results obtained from this simulation are depicted in Figs. 8

and 9. The obtained behaviors look very similar to those
corresponding to case 1, suggesting that the performance of the
controller is not significantly affected by the incorporation of a more
realistic model of the trueCD behavior, which varies with the attitude
and temperature. The final distance between the two satellites is
22.59 km, and the out-of-plane coordinate oscillated 	1.28 km.

Fig. 6 Rephasing maneuver, case 2: Δ�θ, Δ �a, and V.

Fig. 7 Rephasing maneuver, case 2: β, ρ, and �a.

Fig. 8 Rephasing Maneuver, case 3: Δ�θ, Δ �a, and V.
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D. Case 4

The purpose of this simulation is to assess the effects of the
corotational motion of the atmosphere and zonal harmonics,
including up to the eighth degree. Hence, the corotation is added by
considering vatm � ΩE × r, whereΩE � �0; 0; 2π∕86164.1�⊤ rad∕s.
The initial inclination was set as �iT�t0� � �iC�t0� � 97 deg.
Since the corotational motion of the atmosphere is considered, and

the pitch axis is perpendicular to the plane ofmotion, it is necessary to

consider the drag generated by the impinging particles of the
atmosphere onto the lateral faces of the satellites. Hence, therewill be
an out-of-plane drag force, corresponding to the components of the
vector v −Ωatm × r perpendicular to v. The surface of each lateral

face of the satellite was assumed as S3 � 0.06 m2, like S1.
Furthermore, the variations of the drag coefficients with attitude and
temperature are modeled, whereas C�

D � 2.2.
The results of the simulation are shown in Figs. 10–12. it is

observed that adding the corotation and more terms of the zonal
harmonics series to the real dynamics actually generates larger
oscillations of the angles βC and βT , which seem to be required to

counteract the effects due to the added perturbations. This effect can
be also associated to the implementation of the first-order model of
the Brouwer transformation, which only considers first-order J2
terms. Hence, it may not be able to remove oscillations in the orbital

elements caused by higher zonal harmonics, whichmake the angles β
to increase their oscillations. Still, under the level of uncertainty in the
density and drag coefficients, and the unconsidered perturbations in
the dynamical models, the controller performs satisfactorily, driving
the two satellites to the expected encounter.

E. Case 5

The purpose of this case is to reduce the oscillations of angles βC and
βT by using smaller gains for the LQR. In this case, ~q1 � ~q2 was set to
have a value of 5 · 10−19, whereas for all the previous cases, they had a
value of 5 · 10−17. Otherwise, this case is identical to case 4.
The results of these simulations are shown in Figs. 13–15.

Comparing Figs. 11–14, it is observed that the smaller LQR gains

Fig. 9 Rephasing maneuver, case 3: β, ρ, and �a.

Fig. 10 Rephasing maneuver, case 4: Δ�θ, Δ �a, and V.

Fig. 11 Rephasing maneuver, case 4: β, ρ, and �a.

Fig. 12 Rephasingmaneuver, case 4: intersatellite distances and out-of-
plane coordinate.

Fig. 13 Rephasing maneuver, case 5: Δ�θ, Δ �a, and V.
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result in a faster reduction of the oscillation amplitude of angles βC
and βT , although the region where the fact that _V < 0 cannot be
guaranteed grows. Similar to all the other cases, case 5 shows that,
under the level of uncertainty in the density and drag coefficients, as
well as the unconsidered perturbations in the dynamical models, the
controller also performs satisfactorily, driving the two satellites to the
expected encounter.

V. Conclusions

In the last decades, the idea of propellantless spacecraft relative
maneuvering via differential drag has received substantial attention.
Nevertheless, the explicit inclusion of dragmodel uncertainties in the
control laws has been mostly neglected. This work presented a
methodology to perform differential-drag relative maneuvering of
coplanar spacecraft, toward rendezvous, under bounded uncertainties
in the drag force. The required differential-drag accelerations were
obtained by varying the pitch angles of the satellites, thus changing
their ballistic coefficients.
The developed approach enables consideration of long-range

maneuvers, assuming that both satellites are initially in circular
orbits. The developed dynamical system, based on mean semimajor
axes and mean arguments of latitude, allows for the implementation
of a linear quadratic regulator with a saturation function. In the
presence of bounded uncertainties, convergence of the trajectories
can be proved up to a certain norm of the state vector, for which an
analytical expression is provided in terms of the uncertainties. The
effect of saturation in the control is examined by analyzing the phase

portrait of the closed-loop dynamics, which shows that the system
will eventually desaturate, and hence converge.
Several simulations were presented, including realistic effects like

variation of the drag coefficients with the attitude and temperature,
the density field given byNRLMSISE-00with realistic solar flux and
geomagnetic indices behavior, and corotation of the atmosphere and
zonal harmonics. The simulations consistently showed convergence
of the maneuvers, illustrating the robustness of the approach under
actual uncertainties and modeling errors, supporting the analytical
developments.
An interesting natural extension of this work would consider lift

forces and three-dimensional attitude variations to examine the
possibility of controlling the out-of-plane relative motion of the
satellites, which could also be relevant to maneuver spacecraft that
lose the propulsion system due to failures and/or propellant
depletion.
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