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I. Introduction

HE use of small satellites flying in close proximity is increasing

at a rapid pace for many types of missions, including space
science, Earth observation and remote sensing, Earth science, and
technology demonstration [1]. Thanks in part to the growth in
popularity of the CubeSat standard and related components and
technologies, small satellites (herein defined as those satellites with a
wet mass less than 500 kg) are generally more economical to design
and launch than large satellites [2,3]. Several small satellites flying in
formation can perform the tasks assigned to a single large satellite
while providing increased adaptability, versatility, and robustness. A
small satellite formation can be reconfigured as mission directives
change or to take on a pattern better suited to its task. It may be
adjusted to compensate for a single malfunctioning vehicle without
necessitating a mission abort. The formation could even be separated
and viable individual satellites reassigned to other missions at the end
of the original mission lifetime.

However, small satellites present their own variety of design
challenges, especially in the areas of guidance, navigation, and
control (GNC). The primary obstacle is limited onboard storage
space, which restricts both available power and propulsion system
complexity. High-performance space-qualified onboard computers
require high power to work; thus, small spacecraft generally have
limited computing capability. Moreover, in order to meet the physical
dimension constraints, they are typically equipped with small
thrusters providing low thrust and operating only in on/off
configurations with a few set force magnitudes. In addition, most
satellite configurations require a level of onboard autonomy to
guarantee highly accurate performance and an efficient and prompt
response to contingencies. This implies that GNC solutions must be
computed on board to meet mission requirements.

In light of the aforementioned information, efficient relative orbit
control techniques must be developed to satisfy the low-thrust
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constraints without reducing performance accuracy or straining the
limited computational power of the small onboard systems. Many
approaches have been investigated for relative motion control,
including impulsive and continuous strategies. Chernick and
D’ Amico developed an impulsive strategy for relative motion control
that included the effects of J, [4]. In further details, they computed
the semianalytical solution for in-plane relative motion control by
inverting the linearized equations of relative motion parameterized
using the mean relative orbit elements. Shaub et al. developed a
continuous nonlinear feedback control law based on the Lyapunov
theory to reestablish a desired J, invariant relative orbit by
formalizing the relative motion in terms of mean orbit element
differences [5].

In this Note, the input-shaping approach is investigated to derive
the guidance solution for spacecraft planar rephasing and rendezvous
maneuver. Input shaping is a technique consisting of the convolution
of a feedforward control signal with a series of delayed impulses. The
temporal distribution and magnitudes of these impulses depend on
the natural frequency and damping of the system, respectively [6].
This technique has been extensively examined for vibration
suppression of flexible manipulators; more recently, it has been
proposed for orbital maneuvering of spacecraft systems [7]. It is
worth pointing out that input shaping is not intended to reduce the
energy of the system, i.e., it cannot damp the system oscillations
completely. However, an appropriate choice of the shaper’s
parameters enables the modification of the system’s oscillatory
behavior. In the context of spacecraft relative maneuvering, this
means that input shaping can be exploited to maneuver the satellite
from one equilibrium configuration to another, where equilibrium
means a nondrifting relative state, modifying the periodic relative
motion [8]. In this Note, the input-shaping method is proposed to
compute the guidance solutions to the problems of short-distance
planar spacecraft rephasing and rendezvous when continuous low
thrust is used. The angle of the in-plane thrust vector is assumed to be
afixed user-specified parameter, which is a freedom not considered in
previous research, wherein thrust was confined to the alongtrack
direction only.

The main contribution of this Note consists of deriving an
analytical guidance solution, including the effects of J, perturbation,
for planar spacecraft rephasing and rendezvous maneuvers, which
could be easily implemented on board small spacecraft with a low-
thrust propulsion system and limited computing capabilities. The
second important contribution is the demonstrated ability to easily
and quickly compute minimum-fuel maneuvers using such analytical
solutions.

The rest of the Note is organized as follows. In the first section, the
spacecraft relative dynamics model and its analytical solution are
presented. In the next section, two types of shapers, the zero vibration
shaper and the zero vibration derivative shaper, are introduced and the
shaper profiles are described. The subsequent section is dedicated to
the derivation of analytical solutions for the final state, the center of
final relative ellipse, the final relative eccentricity, and the condition
for final orbit equilibrium. Then, the guidance trajectories obtained
using the shaped thrust profile and spacecraft dynamics model are
presented. The final section shows optimization of the shaper
parameters to obtain a desired relative eccentricity while minimizing
control action.

II. Dynamics Model

Unlike the work presented by one of the authors of this Note in [7],
this study uses a more accurate relative dynamics model to derive the
analytical guidance law through the input-shaping technique. This
model, developed by Schweighart and Sedwick (SS), includes the
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effects of the second-order perturbative term of the Earth’s
geopotential by adding the linearized J, force as a forcing function
[9]. This leads to the following set of linearized constant-coefficient
differential equations of relative motion [10]:

¥=2my—(4m® —i?)x = u,

2% = uy 1)

P+ Qm? -z =u, 2)

rflznref 1+k12,

n= Rypef 1- k/l (3)

with J, = 0.0010827, and R, as the mean Earth radius. The
preceding equations are expressed in the local vertical, local
horizontal (LVLH) reference frame initially centered in the chief’s
center of mass and moving on a circular orbit of radius r.; and
inclination i ¢ with the rotational rate .. Note that x points radially
away from the planet to the reference satellite, z is the direction of the
orbit’s angular momentum, and y completes the right-handed
orthonormal basis. Although accurately describing the relative
motion under the effect of J, potential, the SS equations can still be
solved analytically and then ease the derivation of the analytical
guidance solution.

From Eqgs. (1) and (2), it is clear that the motion in the z direction is
decoupled from the motion in the x and y directions. For this reason,
we consider only the in-plane (x—y) dynamics in this study. The
analytical solution to the SS equations for planar motion is the
following:

Xr Xo

Yr — Yo Uy
J'Cf - (I)([, t()) 720 + ‘P(Z){ uy }
Vs Yo

;—i—%cos(fzt) 0 sin(a) 4 (1—cos(nr))
_ab (dt ““<"’>) 1 =& (1 —cos(iir) Lsin(iir)—Ldi
D(t,1y) = o
b(%) 0 cos(nt) 4sin(nt)
—L(1—cos(nr)) 0 —sin(nr) Z—zcos(flt)—%
L (1 —cos(7in) (dt 5‘““”)
W(t,1) = (dl m(m)) (ﬁzﬁjb)(l_cos(ﬁl))_ _bzdzrz 4)
o sin(an) £ (1—cos(7t))
n n-
—4(1—cos(iif)) sin’(;ﬁt)+%(sin’(;)7r)_dt)
where
a=2m b =5m? - 2nZ, dt =t—1ty (5)

III. Input-Shaper Basics

The main idea of the input-shaping method is based on the
convolution of the command signal with a sequence of Dirac
impulses. These impulses must be applied in specified moments of
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time and with specified amplitude in order to nullify the residual
vibrations of the system [6].

This study investigates two classes of shapers, namely, the zero
vibration (ZV) shaper and the zero vibration derivative (ZVD) shaper.
They are used to shape a bang—bang thrust profile of amplitude u.

A. Zero Vibration Shaper

The ZV shaper is probably the simplest input shaper. It is designed
to filter an incoming signal such that the system driven by the new
shaped command will not have vibration arising from the frequency
filtered out by the ZV shaper [11]. It consists of two impulses for
which the temporal distribution and magnitudes are

T=[t,n]=[0 Af] (6)
A=A A= ! 7
[A},Ay] = crlot1 @)
where
¢ = ebr/V1-E 8)

with ¢ the damping ratio of the system. The values 7" and A are the
time by which each impulse is delayed and its corresponding
amplitude. Note that, when At = n/w,, where w, indicates the
damped natural frequency of the system, the command shaper
described by Eqs. (6-8) will suppress the system residual vibrations.

For the purpose of deriving a control profile for the in-plane deputy
maneuvering, the aforementioned shaper can be used to shape a
bang-bang continuous command of amplitude u. In further detail, let
us assume that the deputy provides a continuous thrust

U = [uy, uy]" = [usin(a), u cos(a)]”

where u is the shaped bang—bang command, and « is a fixed user-
specified parameter defined as the angle between the in-plane
projection of control vector and the y axis of the LVLH reference
frame. Then, the shaped control command can be formulated as
follows:

=Aifu+ASn &)
where
0 t>t*
fu =4 usign(ys—yo) t<t*/2

—usign(y,; —yg) t*/2<t<t*

fo=fult-AD) (10)

where yj is the initial relative alongtrack position, y, is the desired
alongtrack position of the center of the ellipse representing the final
relative motion, and ¢* is the bang—bang time (i.e., t* /2 is the bang—
bang switching time). Note that the impulse delay At has to be lower
than #*/2. Moreover, the impulse magnitudes A; are equal to 0.5
because the damping of the in-plane dynamics described by Eq. (1)
is¢=0.

B. Zero Vibration Derivative Shaper

The formulation of the ZVD shaper is similar to that of the ZV
shaper. However, the ZVD shaper provides higher robustness to
modeling errors by forcing the derivative of the vibration amplitude
with respect to the frequency to be zero [12]. The cost of the added
robustness is a longer time to cancel the residual oscillation of the
system. The ZVD consists of three impulses for which the temporal
distribution and magnitudes are

T=][t),t,,t3] =[0 Ar 2At] 11)
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A=[A15A21A3]=|: i|

PH+2+1'P+2+1"2+2+1
(12)

with ¢ given by Eq. (8). In accordance with the analysis carried out in
the previous section, the ZVD shaped input vector

U = [uy, uy]" = [usin(a), ucos(a)]”

can be formulated as follows:

u=Afn+Axfn+Asf3 (13)
where
0 t>t*
fa =1 usign(Gq —yo) t<r*/2
—usign(y; —yg) t/2<t<t*
fn :frl(t_At)
fin= ftl(t - ZAt) 14)

Here, the impulse delay Ar is constrained to be lower than ¢* /4,
and the impulses’ magnitudes are A;; = 1/4 and A, = 1/2.

For the sake of example, Fig. 1 shows the thrust profile shaped
through the ZVD and ZV shapers, respectively, when y; < y,.
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A. ZV Shaper

Using the analytical SS solution given by Eq. (4) with the filtered
control signal given by Eq. (9) and the generic initial condition
Xo=1[xo Yo Xo Yol,thein-plane final state can be computed as
given by Eq. (Al) listed in Appendix A. The alongtrack location of
the center of the ellipse representing the final relative orbit is given by
the following formula [13]:

2k i

F=y- (15)

Using the expression of the final state reported in Eq. (A1), Eq. (15)
can be rearranged as follows:

¥ = f(Xo. 1%, At, m, i, a, it)
-1 _. _ _ s e
= 4—’_!2[8mx0 — 42y + 32m3 1 xy + 16m2 1y, — 4’1y,
— 42t ity + 727 iy + 328003y, + 16A6>y, — 4Ati*Y,

— 8Ammi*xy — Smi*t* x| (16)

where i, = icos(a) and u, = usin(a). Then, Eq. (16) can be

solved for the bang—bang time ¢* such that j(t*) = j, i.e.,
2 -3 S0 = =2 PR
1= —————=-[8m’xg + 4m"y, — 2mnxy — n“yy £ A] (17)
iy (4m* — n*)
where

16m* 32 + 432 — 253 — ity + A2ty 3

A= (4}’;12 - }712) +16i’;’l3X0)‘70

+ 2mit,xo — 4m*n*x} + 8Atm i, xg (18)

FAAGRL Y — Atiitity 3 — 4mitxgy, — 2AHRA X

IV. Input-Shaping Analytical Guidance

This section presents the steps to derive the closed-form solutions
for the final relative state and eccentricity when the ZV and ZVD
shapers are implemented. The process is as follows. First, the
expressions for the in-plane final state X ; and alongtrack location of
the center of the final ellipse y are computed. Given a desired
alongtrack location of the center of the final ellipse y ,, the expression
for y is solved for the necessary bang—bang time ¢*, which results in
y =y, at the end of the maneuver. Then, the requirements for an
equilibrium final condition are determined. Finally, an expression for
the final relative eccentricity is derived as a function of X, t*, At, m,
n, u, and a.

To obtain a closed, nondrifting relative orbit at the end of
maneuver, the following conditions must be satisfied [14]:

yr = —2mx; 19)
or, equivalently
2%
F=dr 4+ 2L =0 0)
m

where x represents the radial location of the center of the final ellipse.
Using the final state equations obtained through the application of the

— 7D
i .""‘“-'—‘—] ———T
3u’;4__ 1 - |
> " |
é‘ /2 — ¢ —
= Y At 24t 2 ¢
= | 1 i -
% = | | ! = t'+At =
£ —%- | — + 24t t* + 24t
= i -
/. E—
_3:7; — ¢
4
I e A
o | 2+ ¢

Maneuver time t (s)

Fig.1 Shaped control profile.
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shaped control profile [i.e., Eq. (Al)], the term x becomes

i=4xf-+2¥=4xo+@ (21)
m m

This indicates that the application of the thrust profile described by
Eqgs. (9) and (10) guarantees a nondrifting closed relative orbit if the
initial motion is an equilibrium. If the initial motion is not an
equilibrium, the final motion may drift from the desired final orbit
after the conclusion of the maneuver. The eccentricity of the final
relative orbit is given by the following formula [13]:

ety = \ O = D7 + (7 = 5)/2)° 22)

The relative eccentricity can be written as a function of X, t*, At,
m, n, u, and a, substituting the expression of the final state
[Appendix A, Eq. (Al)] in Eq. (22). The final form is listed as
Eq. (C1) (see Appendix C).

B. ZVD Shaper

Substituting the ZVD control signal given by Eq. (13) in
Eq. (4), considering a set of generic initial conditions
Xo=[x0 Yo Xo Yol leads to thefinalstate reported in Eq. (B1)
(see Appendix B). As discussed in the previous section for the ZV
shaper, the alongtrack location of the center of the final relative ellipse
is given by the following formula:
S 2m =l . 72 53 4% 72 £,
y =yf—7=ﬁ|:8mxo—4n y0—|—32m t X0+ 16}71 t Yo

— 42155 — APt iy, + 7207 iy, + 64Atm1 X, + 32Atm Y,

— 8A1 Yy — 16AnTA X, — 8n'1r'zzt*x0] (23)

The bang-bang time #* can be computed by solving y(*) = y,,
which yields

2

=
ity (4% — %)

[8ﬁ13x0 M2y, — 2mAtxg — ii2yg £ A]
(24)

where
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Table 1 Initial state X, for studied cases

Simulation scenarios  xp, km  yg, km Xy, km/s ¥, km/s

Case 1 0 —4.258 0 0
Case 2 -0.604 —4.258 0.0004 0.0014

Table 2 Parameters
for studied cases

Parameter Value

m, 1/s 1.1309¢ — 3
n, 1/s 1.1317¢ - 3
T,s 5.5517e¢ + 03
Tref, KM 6778.1363
ety 1/ 1.1313¢ - 3
ky, —6.7728¢ — 04

Table 2 lists additional parameters used in the following
simulations. It should also be noted that the reference orbit is circular
with an inclination of 97.99 deg.

The initial relative eccentricities

Crel0 = \/|:xo - (4)60 + 2*)_}0)]2 + [(yo ~Oot (2560”_1/’_’2)))}2
m 2

(26)

for cases 1 and 2 are 0 and 0.6792, respectively. For all sample cases,
the maximum thrust magnitude is assumed tobe &t = 2 - 1078 km/s?
and the desired alongtrack location of the center of the final relative
ellipse is y; = 0.

As a first example, for case 1 with @ = 45 deg and A¢/T = 0.5,
with T = 2z /n, the relative state components evolve over the course
of the maneuver times: t,, = * + Atrand t,, = t* + 2At for ZVand
ZVD, respectively, according to Fig. 2. It can be verified by this
example that using the ZVD shaper results in a longer time than the
ZV shaper to nullify the oscillations introduced to the system by the
control accelerations. In Fig. 3, the equations of the final relative
eccentricities [Eqgs. (C1) and (D1)] are plotted over a range of At/T
values: for case 1 (left) and case 2 (right) when a = 45 deg. For
case 1, the minimum final relative eccentricity e s is zero when

16% 3% + 4252 — 293 — i,y + 2,3
163030 + 2t %o — 4mi2x% + 16A1m3 i, X 25)
+8AHR Yo — 2A17% 1, Yy — 4t xgYo — AAtmiati,x,

A= |@m?-i2)

Also, for the ZVD case, the nondrifting condition x = 0 (i.e.,
¥y = —2mx;) at the end of the maneuver, ,, = ¢* + 2At is satisfied
if the initial motion is an equilibrium. In other words, Eq. (21) is
still valid.

Ultimately, the eccentricity of the final relative orbit can be
computed through Egs. (22) and (B1), and it is listed in Appendix D
as Eq. (D1).

V. Numerical Simulations

This section presents the guidance trajectories obtained using the
thrust profile derived in the previous sections and the initial relative
states listed in Table 1. Two different scenarios are considered
hereafter. For the first one (case 1), the initial relative state is a leader—
follower initial condition for the linear equations [Eq. (1)], i.e., no x
displacement or relative velocity. For the second scenario (case 2), the
initial condition is an equilibrium motion, i.e., yo = —2mx,. Table 1
summarizes the initial relative state X, for both scenarios.

At/T = 0.5 for both ZV and ZVD shapers. The maximum e ; is
obtained when A¢/T = 0 or At/T = 1 for both classes of shapers.
Note that the value of A7 must be lower than #* /2 and ¢* /4 for ZV and
ZVD solutions, respectively. In light of this, because the bang—bang
times ¢* are 5.57 and 5.962 h for case 1 and case 2, respectively, the
value of Az/T must be 0.9 at most when the ZVD shaper is
implemented, for both simulated cases. For case 2 using the ZV
shaper, At/T = 0.3134 yields the minimum e, ; and At/T =
0.8209 yields the maximum ey, ;. Additionally, when the ZVD
shaper is used, At/T = 0.1891 yields the minimum e, and
At/T = 0.8519 yields the maximum e, ;. For case 2, it is clear that
neither shaper can completely damp the system oscillation (i.e., force
er1¢ 1o zero). In fact, the shapers are designed to suppress the
vibrations introduced by maneuver control input rather than to cancel
the existing initial oscillations. However, for both cases and both
shapers, the final relative eccentricity matches the initial relative
eccentricity when At/T = 0.5. Figure 3 also visualizes the higher
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0.2 5
— —
E} X
M -0.2 —Zv >
—Z7ZVD
-0.4 -5
0 5 10 0 5 10
N. Orbits (dim) N. Orbits (dim)
-5 -4
5 x10 5 x10
2o R
i P
-5 -5
0 10 0 10

5 5
N. Orbits (dim) N. Orbits (dim)
Fig. 2 Relative state vector components resulting from ZV and ZVD
shaping for case 1 (N, number; dim, dimensionless).

robustness to the system uncertainties of the ZVD shaper with respect
to the ZV shaper. For the sake of simplicity, let us consider the case 1
reported in Fig. 3a. It is clear that, in the vicinity of the zero
eccentricity condition, an error on the system frequency (i.e., on the
design parameter At) causes a rapid increase of the final eccentricity
when the ZV shaper is used. On the contrary, the ZVD shaper
produces a smaller variation of the final eccentricity in presence of an
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error on the system frequency because it sets the derivative of the
vibration amplitude with respect to the frequency equal to zero [11].

In the following figures, guidance trajectories are plotted for each
case and each shaper using the values of Az/T calculated previously
when a = 45 deg. The three plots in each figure use Az/T values
that result in minimum, intermediate, and maximum final relative
eccentricities.

Figures 4 and 5 show trajectories using case 1 initial conditions
when the ZV and ZVD are applied, respectively. The values of At/T
used are 0 (for maximum ey 7), 0.25 (for intermediate e, r), and 0.5
(for minimum e f).

Figures 6 and 7 show the control input components corresponding
to the trajectories shown in Figs. 4 and 5 when the ZV and ZVD
shapers are applied, respectively.

Figures 8 and 9 illustrate the guidance trajectories using case 2
initial conditions when the ZV and ZVD shapers are applied,
respectively. The values of At/T used are 0.8209 (for maximum
€rer r), 0.5 (for ey f = ey ), and 0.3134 (for minimum ey ) when
the ZV shaper is applied; and they are and 0.8519 (for maximum
erer p)s 0.5 (for ey f = ere1), and 0.1891 (for minimum e, ) when
the ZVD shaper is applied.

Figures 10 and 11 show the control input components
corresponding to the trajectories shown in Figs. 8 and 9 for both
ZV and ZVD.

Finally, Fig. 12 illustrates the trajectory obtained using the ZVD
shaper with A#/T = 0.5 when the case 2 initial conditions are
propagated through a more realistic nonlinear dynamics, including

0.035 : : : : 0.683 : : ; :
—ZV
0.03 | 0.682
0.025 | 0.681
g o002} g 0.68
= =
< 0.015 < 0.679
) ]
0.01 | 0.678
0.005 | 0.677
0 ' ' ' : 0.676 ‘ ‘ ' '
0 02 04 06 08 1 0 02 04 06 08 1
a) At/T(dim) b) At/T(dim)

Fig.3 e, s vs At/T for a) case 1 and b) case 2.

0.05 T T T
O Initial Condition
—ZVAUT=0
o- @ —ZVAtT=0.25 .
ZVAUT =0.5
-0.05+ B
— 0.1} §
g
=
015 \\ 7
-0.2 .
-0.25 B
_0'3 1 | 1 1 1 1 | 1 1
-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

Y (km)
Fig. 4 Guidance trajectories given by ZV shaper for case 1, for three values of e, ; (@ = 45 deg).
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—ZVDAUT=0
0 0 —ZVDAUT =0.25 -
ZVDAt/T=0.5
-0.05+~ -
— -0.1- -
g
=
M 015 \ 1
-0.2 -
-0.25- -
_0'3 1 1 1 1 1 L L 1 1
-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

Y (km)
Fig. 5 Guidance trajectories given by ZVD shaper for case 1, for three values of ¢, ; (@ = 45 deg).

-8
2 P 10 T T T T T
—2ZV AYT =0
1+ —ZV AUT =0.25| |
& ZV AT =0.5
~
5o .
& s |
_2 | | | 1 | | |
0 1 2 3 4 5 6 7 8
t/T (dim)
-8
2x10 : :
—ZV AUT =0
1+ —ZV AUT =0.25| |
& ZV AUT =0.5
2 |
g0 :
} 1
_2 | | | 1 1 1 1
0 1 2 3 5 6 7 8

4
t/T (dim)
Fig. 6 Control profile shaped by ZV for case 1, for three values of e, ; (@ = 45 deg).

-8
2 x10 :

—ZVD AT =0
——ZVD At/T =0.25| |

1 -

L~| ZVD At/T =0.5
0
A0 f

u, (km/s?)

2 T T T T T T
—ZVD At/T =0
——ZVD At/T =0.25| |

1 [

L~| ZVD At/T =0.5
0
NN 4

2 1 I I | | L I
(1} 1 2 3 4 5 6 7 8

t/T (dim)
Fig.7 Control profile shaped by ZVD for case 1, for three values of e, ; (@ = 45 deg).
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Fig. 8 Guidance trajectories given by ZV shaper for case 2, for three values of e, s (@ = 45 deg).
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Fig. 11  Control profile shaped by ZVD for case 2, for three different values of e s (@ = 45 deg).

the perturbing effects of J,. At the end of the maneuver (i.e.,

t, = 1* +2A1), the position error ey = v/x(1,,)* + y(1,,)?
between the guidance and the nonlinear trajectory is 107 m. In
addition, the center of the relative ellipse is shifted of 186 m with
respect to the desired position (i.e., y; = x; = 0). It is worth
remarking that the inclusion of J, through the SS dynamics model for
the shaper design allows improvement of the accuracy of the
guidance solution. In fact, in [8], it was shown that the guidance
solution given by the ZVD shaper based on the unperturbed dynamics
model provided an accuracy of 445 m.

VI. Optimized Guidance Solution

As discussed in the previous sections, the control vector U depends
on shaper delay Ar and thrust angle a, once the parameters u and y,
are set and the initial state X, is given. In this study, a gradient-based
algorithm is proposed to find the values of At and a that minimize the

—— ZVD AUT = 0.5, NONLINEAR TRJ.
——ZVD AUT = 0.5, GUIDANCE TRLL.
Q Initial Condition
0.8 T T T T
0.6
04
02 <
-~ OF -
E
=
~ ‘"., + -
0.4
0.6
0.8
-1 1 1 1 1 1
-7 -0 5 - -3 -2 -1 0 1 2
Y (km)
Fig. 12 Guidance and nonlinear trajectories (TRJ.) given by ZVD shaper for case 2 (« = 45 deg).

maneuver cost in terms of AV = u(t*(a) — Ar), satisfying the
following constraints:

lerer (AL, @) = e pql =0

% QAT >0 for ZVD
b @7
;“) —AT >0 forZV

where e ;4 i the desired final relative eccentricity. MATLAB’s
fmincon sequential quadratic programming routine is used to solve
the preceding optimization problem. For the sake of simplicity, only
the optimized solution associated with the ZVD shaper is presented
hereafter. However, the same approach might be extended to the ZV-
related solution.


http://arc.aiaa.org/action/showImage?doi=10.2514/1.G002910&iName=master.img-017.jpg&w=320&h=241
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Fig. 13 Representations of a) AV vs a vs A¢/T; and projection of AV on b) AV—-« plane, c) a—A¢ /T plane, and d) AV-A¢/T plane.

To get insight into the permissible values of final relative (a and Ar) given a set of initial conditions X, and the design
eccentricity and facilitate the definition of space search bounds for parameters & and y,. Thus, Fig. 13 shows the surface of AV vs a vs
the optimizer, a parametric analysis was carried out showing the At/T, taking into account the constraints on At i.e., At < t* /4. For
relationships between AV and e ; and the optimizer variables the presented analysis, the case 2 initial conditions are used. From

¢ = 0.67895 At/T =0.5 AV = 0.00030549 km/s o = 0 (deg)
e =0.6999 At/T =0.24416 AV = 0.00033395 km/s o = 1.3692 (deg)
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Fig. 14 Representations of a) e,  vs @ vs At /T; and projection of e, ; on b) e, (—A¢ /T plane, c) on e, ;— plane), and d) a—At /T plane.
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Fig. 16 Control profile.

the figure, itis straightforward that the total maneuver AV decreases
when the thrust angle converges to zero value and the ratio At/T
increases up to 0.812. Figure 14 illustrates the surface of e r vs &
vs At/T. Again, the constraint Az < r* /4 is taken into account and
the case 2 initial conditions are used. From the figure, it is clear that
the achievable values of the final relative eccentricity by using the
input-shaping based solution lie in the range [0.6128, 0.7838]. In
addition, it is worth remarking that the parametric analysis can be
exploited to determine a “good” initial guess, improving the
convergence performance of the optimizer, and assess the optimizer
solution.

Assuming a desired value for the final eccentricity of 0.7, the
optimizer gives the solution A¢/T = 0.24416 and a = 1.3692 deg
with AV = 0.334 m/s. This point is shown among the initial guess
(At/T = 0.5, a = 0 deg), which leads to ey ; = 0.67895 and
AV = 0.305 m/s in the plots reported in Figs. 13 and 14.

Figure 15 shows the trajectory corresponding to the initial guess
(At/T = 0.5,a = 0 deg) and optimized solution (At/T = 0.24416,

Guidance trajectory.

a = 1.3692 deg). Figure 16 shows the x and y control profiles of each
set of conditions over the maneuver time.

VII. Conclusions

The results presented in this Note demonstrate that input-shaping
theory can be exploited to derive a general analytical guidance
solution for relative orbital maneuvering as a function of shaper delay
At and thrust angle a. The computed solutions allow a spacecraft to
move from an initial location along its orbit to a desired position on
the same course, as well as to fly around a desired point placed ahead
or behind its initial position. It is worth remarking that the derived
trajectories bring the spacecraft from an equilibrium configuration to
a new equilibrium one, where equilibrium means a nondrifting
relative state.

The main contribution of this Note consists of deriving an
analytical guidance solution, including the effects of J, perturbation,
for planar spacecraft rephasing and rendezvous maneuvers. This
could be easily implemented on board small spacecraft with a low-
thrust propulsion system and limited computing capabilities. The
second important contribution is the ability to use such analytical
solutions to easily and quickly compute maneuvers that require
minimum fuel consumption.

Appendix A: ZV Final State

X = % [ﬁﬁx + 8iiiixg + i, cos(ii(Ar + 1))
+ 2ty sin(i(At + 1)) + i ii Yo + fiii, cos(TAL)
+ 2mit, sin(nAt) + nu, cos(nt*) — 2nu, cos(nt*/2)
— 20, cos(in(2At + t*)/2) + 21’ xg cos(i(At + 1))
+ 2muty sin(nt*) — 4mu,, sin(nt* /2)
— drmit, sin((2A1 + 1%)/2) + 22k sin(A(Af + 1))

— 8imiixg cos(Ai(At + 1*)) — it i yo cos( (At + t*))]
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vy =4—’154[8ﬁ12ﬁ). + iy, — 8t + 82l cos(iAT)
+ 4Rt 1+ 9o + 8Pt cos(ir*) — 16mP i, cos(ar* /2)
—16/m2i,cos(i(2A1+1%)/2) —i* 1 i, + 4A iy,
+8m?it, cos(n(At +1*)) —4mnii, sin(i(At + )
— 4, sin(Ar) +4m* i e it, + 8 Atmit* x
+ 8mi’xycos(in(At + 1*)) —dmn it sin(iat*) + 8mn it sin(it* /2)
+8m i, sin((2A1 4 ) /2) — 8mi® xosin(ii (At + 1))
+32m3 fixg sin( (AL + %)) 4 16m*ayy sin(A(Ar + %)) + 8mi** x,

_ 32 AN g — 16 Ay — 323 21 Xy — 16n'12ﬁ21*)30]

i = % I:rhﬁy + ity cos(i(At + 1)) — ity sin(ii(At + 1)) /2
+ mit, cos(nAt) — nit, sin(nAt) /2 + mii, cos(nt*)

— 2mii, cos(int* /2) — 2mity cos(n(2At + t¥) /2)

+ 2%y cos(i(At + 1¥)) — nit, sin(iit*) /2 + i, sin(iat* /2)
+ 7t sin(i(2At + %) /2) — P xg sin(ii(At + t*)

+ 271 Yo sin(A(AL + 1)) + dm2iixy sin(i(Ar + r*))]

Vp= —% [Sﬁﬁxo — 21t xg — 13 + 4o + 2, sin(AA)
+ 2%t sin(7it*) — 42, sin(iir* /2) — 4m’ii, sin(i(2A¢ + 1) /2)
+miit, 4 2m?i, sin(n(Ar + %)) + mi i, cos(nAr)
+mnicos(nt*) —2mniu,cos(int* /2)

—2miii,cos((2At + t*) /2) + 2midxy cos(n(At + t*))

8miixycos(in(At + t*)) — 4m> iy, cos(ii(At + t*))

T 2miig sin(A(Af + %)) + i i, cos((Af + z*))]

u, = usina

U, = ucosa (A1)

Appendix B: ZVD Final State

xp = % [fu}x + 16m2iixy + 4 xg cos(i(2AL + 1))
+ 4i%%, sin(n(2At + t*)) + 2iit, cos( (At + t*))
+ 4muy sin(n(At + t*)) + 8mn yo + 2nu, cos(nAt)
+ iy, cos(2nAt) + 4mit, sin(nAt) 4 2mi, sin(2nAt)
+ nu, cos(nt*) — 2nu, cos(nt* /2) + nu, cos(n(2At + t*))
—4nu, cos(n(2At + 1*)/2) — 2nu, cos(n(4At + t*)/2)
+ 2miiy sin(nt*) — 4miiy sin(nt* /2) + 2mu, sin(n(2At + *))
— 8mii, sin(n(2At + 1) /2) — 4mi, sin(n(4A1 + 1) /2)

— 817171 Yo cos((2A7 + 1)) — 16 iixg cos(ii(2A7 + l*))]
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Yr

Xy

)"f =

- % [4rh2ﬁy + diity, — 8iniiky + 8ilil, cos(i1Ar)

+ 4m?ii, cos(2nA1) + 4n*t*yo + 4m?i, cos(nAr)

— 8m?ii, cos(nt* /2) + 4m?ii, cos(n(2A1 + 1¥)

— 16m?%u, cos(n(2At + 1*)/2) — 8m?u, cos(n(4At + 1) /2)
- n*t* %, + 8A*ty, + 8m? iy, cos(n(Ar + 1))

— din i ity sin(A(AL + 1*)) — 4 it it sin(i At)

— 2 it it, sin(2iAt) + 4m2i* 20, + 16Atmitx

— 2 it ity sin(iar*) 4 4m it it, sin(r* /2)

= 2m it il sin(A(2At + t¥)) + 8m 7t i, sin(A(2At + 1¥)/2)
+ 4 i i, sin(n(4At + 1%)/2) + 8min*t*xy — 64Atm3 i’ x
— 32Atm% %y + Smn’xy cos(in(2At + 1))

— 8mit’ xo sin(n(2At + 1)) + 32m’iixg sin(2(2At + *))

+ 16m2iiy, sin((2Af + £+)) — 32w i x, — 16@2;221%]

- 4—’152 [mﬁy + 472k, cos(i(2A1 + 1))

— 43 xy sin( (At + 1)) + dmit, cos(n(At + t*))

—2ni, sin(n(At 4 t*)) + 4mii, cos(nAt)

+ it cos(2Af) — 2iiil, sin(iAAf) — itit, sin(2iA7)

+ 2mit, cos(nt*) — 4mit, cos(nt* /2) + 2mii, cos(in(2At + t*))
— 8mity, cos(n(2At + t*) /2) — 4miiy cos(n(4At + 1) /2)

— nit, sin(ar*) 4 2ni, sin(nt* /2) — nu, sin(n(2At + *))

+ 47, sin(i(2A¢ + 19)/2) + 2itii, sin(7A(4A1 + %) /2)

+ 8 1 Yo Sin(A(2A1 + 1)) + 16m2iix, sin(71(2A7 + z*))]

1
T [16r713ﬁx0 — ditxy — 20 + 8T,
Fx
+ 4mii, sin(TAD) + 2mi, sin(27Ar) + 22, sin(it*)

— 4m? i, sin(ar* /2) + 2m*i, sin(n(2At + 1*))

— ity sin(ii(2A1 + 1%)/2) — 42, sin(A(4A1 + %) /2)

+ ity + ity sin(A(AT + 1)) + 2 7 i, cos(TA)

+ mnu, cos(2nAt) + mn u, cos(nt*) —2mn u, cos(nt* /2)
+ i i, cos(i(2A7 + 1)) — dim 7t ii, cos(il(2AL + 1) /2)
—2m it ity cos(n(4At + 1) /2) + dmidx, cos(n(2At + %))
— 16m3iixy cos((2At + t*)) — 8m% iy, cos(i(2At + 1*))

o+ dimitiy sin(A(Q2AL + 1)) + 20 7t @i, cos(i (A + r*))]

U, = usina

Bl

, =ucosa B1)
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Appendix C: Final Relative Eccentricity

erel.f =

B 81;137_1)(0 _ 811_11’_!3)C0 _ 4,‘13)}0 + 4;/;12}71})0 —+ 2]71212), Sin(All’_l)

+2min*x,A + mi i, B

+2m? i, sin(ar*) — 4m*iu,D — 4m?i, sin(C) + m n i,
22, A + 7 it cOS(ALT) + i 7 it cos(it*) — 21 i it E

—2m it it, cos(C) + 2mit’xyB — 8im3iixyB — 4im*iyoB

Dini, + 2mit, B — i, A + 2, cos(Atit) — ity sin(Atii)
+21mit, cos(ir*) — 4mit, E — 4mit, cos(C) + 2n*xoB
—ftit, sin(iir*) + 2iii, D + 2ii, sin(C) — 27 xoA

AT oA + 82iixgA

where
A =sin(a(Ar +17) A= i(Q2Ar + 1)
B = cos(n(Af + %)) B = n(4At + t*)
C— n(2At + t*) 2
B 2 C = sin(2i1A1)
D= sin(%) D = cos(2nAr)
_ D = cos(2nAr)
nt*
E= COS(T) F = cos(nt*/2)
u, = usina G =sin(n(At + %))
Uy, = ucosa (@) H = cos(n(At + 1))
U, = usina
Appendix D: ZVD Final Relative Eccentricity i = iicosa

y

(D1

erel,f =

16m>n®

i, + 4ilit, cos(Ati) + 2m%i, D + 2, cos(it*) |
—4m? i, F + 2m* i, cos(A) — 8m?it, cos(A/2)
—4in2ii, cos(B) + 4mlit, H — 21 ii it,G — 2 it it sin(Atii)

—mni,C—mni,sin(nt*) + 2mnu,E — mni,sin(A)

+4mn i, sin(A/2) 4+ 2m it it, sin(B) + 4mn’x, cos(A)

—4mn’xy sin(A) + 16m3ix, sin(A) + 8m?ny, sin(A)

[ 16m>nxy — 16ma’xy — 8n°yg + 8m*nyg + 4m?ii, sin(Arn)
+2m%i,C + 2m?u, sin(nt*) — 4m*i, E + 2m?i, sin(A)
~8m2iiy sin(A/2) — 4m>ii, sin(B) + i it it, + 4im’ii,G
+20m 7t ity cos(Ati1) + m i1 it,D + it it cos(iit*) — 2m it i, F
+mn i, cos(A) —4mn i, cos(A/2) — 2mn u, cos(B)

+4midxy cos(A) — 16m3iixy cos(A) — 8>y, cos(A)

| +dmiiy sin(A) + 2m it it H
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