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Nomenclature

a = semimajor axis, km
e = eccentricity
h = angular momentum, km2∕s
i = orbit inclination, rad
m = satellite mass, kg
r = orbit radius, km
tdeorbit = time at which the satellite deorbits, s
tswap = time at which the ballistic coefficient is changed from

Cb1 to Cb2, s
tterm = time at which the satellite enters the terminal phase of

its trajectory, s
u = argument of latitude, rad
v = orbital velocity, km∕s
θ = true anomaly, rad
μ = Earth’s gravitational parameter, km3∕s2
Ω = right ascension of the ascending node, rad
ω = argument of the periapsis, rad
ωa = average orbital angular velocity, rad∕s

I. Introduction

S AFEdeorbiting of spacecraft parts surviving atmospheric reentry
is a key focus of space programs [1,2].When propulsion systems

are not an option (due to cost or volume constraints), modulation of
the aerodynamics may be a feasible way to perform reentry control.
Although extensive work exists on density modeling and spacecraft
drag estimation [3,4], and there is a body of research on relative
spacecraft maneuvering using differential drag [5–7], only two
papers can be found on a controlled deorbit algorithm utilizing solely
aerodynamic drag [8,9].
The first one [8] uses NASA’s Program to Optimize Simulated

Trajectories II trajectory-optimization tool to calculate the ballistic-
coefficient profile necessary for the spacecraft to land or break up in a
desired location. The optimizer is not tuned to the specific problem,
and has no guarantee of performance or convergence, making this
technique unsuitable for onboard guidance generation. The second
algorithm [9] uses an analytical solution to estimate the ballistic-
coefficient profile needed for the spacecraft to deorbit in a desired
location. This analytical solution, however, requires an exponential
atmospheric-density model and the assumption of a circular orbit
around a spherical Earth. These assumptions are limiting, as density
can vary by over an order of magnitude at a given orbital altitude, and
the orbit does not remain circular due to gravitational and
aerodynamic perturbations, especially near the end of the orbit life.
Additionally, the proposed analytical solution requires the evaluation
of the function

ft�a� �
�������
πH

p
erfi� ����������

a∕H
p �

−2Cb
���
μ

p
ρ0e

a0∕H
(1)

at the initial and final spacecraft semimajor axes. In Eq. (1),H is the
scale height, ρ0 and a0 are the reference density and semimajor axis,
erfi is the imaginary error function, and Cb is defined as in [10]. At a
values near the deorbit point, where H is small (below 120 km
altitude), calculating erfi� ����������

a∕H
p � leads to an overflow inMATLAB,

rendering the analytical solution unusable. As such, the authors of [9]
recognize that, if an accurate guidance is desired, this analytical
solution is useful only as a first guess in a numerical-optimization
tool, such as the one used in [8].
This paper proposes a novel algorithm that calculates the drag

profile necessary for a spacecraft to deorbit in a desired location.
Similar to [9], a trajectory is considered, in which the spacecraft
maintains some ballistic coefficient Cb1 until time tswap, Cb2 until
time tterm (which occurs at some predetermined semimajor axis), and
Cb term until the deorbit point (around 70 km altitude). A numerical-
optimization method is proposed that varies the control parameters
Cb1, Cb2, and tswap to minimize the function f�Cb1; Cb2; tswap�,
giving the error between the desired and actual deorbit points after the
trajectory is numerically propagated with the chosen control
parameters. This optimization procedure is fundamentally different
from the state of the art and offers unique benefits. At each
optimization step, an analytical solution based on a simplified orbital
model is used to estimate the set of control parameters needed for
optimal targeting. The procedure continues as shown in Fig. 1 until a
desired error tolerance is met, or a maximum number of iterations are
reached. This algorithm is analogous to the Newton–Raphson root-
findingmethod, in which an analytically solvable approximation of a
complex function is constructed at each time step to determine the
next point at which the complex function should be evaluated.
The use of this analytical solution yields superior performance

compared to traditional optimization methods, such as the conjugate
gradient and secantmethods, because it is based on orbital mechanics
principles and much more closely resembles the true function than
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the linear approximations used by the other methods. As such, the
algorithm in this paper facilitates the rapid and reliable computation
of accurate guidance trajectories. The guarantees of performance
and convergence provided by the analytical solution make this
algorithm potentially suitable for autonomous, onboard guidance
computation.

II. Analytical Mapping from Initial State to Impact
Location

A. Analyzing the Effects of Drag on an Orbit

Assuming circular orbit and density as function of the semimajor
axis, the following relationship holds:

Δt2 �
Cb1Δt1
Cb2

(2)

in which the Δt1 represents the time required to decay the semimajor
axis a set amount (froma0 toaf) with correspondingCb1 (see eq. 9–24
in [11]), and Δt2 is the time required to achieve this same change in a
with some different Cb2. Similarly, the changes in true anomaly that
occur in each case are related by

Δθ2 �
Δθ1Cb1

Cb2

(3)

Dividing Eq. (3) by Eq. (2) demonstrates that the average orbital
angular velocity ωa as a spacecraft falls from a0 to af is a constant
independent of ballistic coefficient. Given a numerically propagated
trajectory, _Ωavg can also be calculated by dividing the total change in
right ascension by the orbit lifetime. Over a given time interval, the
change in right ascension can be approximated by

ΔΩ � _ΩavgΔt (4)

B. Analytically Calculating Reentry Location Based on Applied

Controls

The targeting algorithm requires the ability to calculate where a
satellite will deorbit given a set of initial conditions and applied
controls (Cb1, Cb2, and tswap). This can be performed by first
propagating an initial trajectory and analyzing perturbations from
this initial trajectory. Consider Fig. 2, in which the solid line
represents a numerically propagated trajectory, in which the
spacecraft maintains some ballistic coefficient Cb1 until time tswap,
Cb2 until time tterm, and Cb term until the deorbit point. Everything
about this trajectory is known, including the time, change in true
anomaly, and change in right ascension between any two points. The
dashed line represents a new trajectory starting from the same initial
conditions, but with a different set of control parameters (Cb1, Cb2,
and tswap) that we would like to analyze without propagating. This
new trajectory can be broken into four phases (denoted by the vertical
lines in Fig. 2), in which each phase is represented by an initial and
final semimajor axes, and the Cb remains constant for both the new
and initial trajectories throughout the phase.
TheΔt,ΔΩ, andΔθ during each phase of the new trajectory can be

calculated using Eqs. (2–4); the known Δt, ΔΩ, Δθ, and Cb of the
initial trajectory during that phase; and the new trajectory Cb during
the phase. Summing the parameter changes during each phase and
assuming that the new and initial trajectories have the same initial

conditions andmaintain the same inclination and eccentricity provide
the time and orbital-element values of the new trajectory at the deorbit
point. Note that the terminal phase (time tterm) occurs when the
satellite reaches a given semimajor axis, and both the new and initial
trajectories maintain the same Cb term during this phase, and hence
experience the same changes in time and orbital elements.

III. Latitude- and Longitude-Targeting Algorithm

Using the analytical relationship between the control parameters
and the deorbit location developed in Sec. II, the tasks of latitude and
longitude targeting can be decoupled, making it possible to
analytically calculate the control parameters needed for reentry-point
targeting.
To begin, the set of tswap values that yield perfect latitude targeting

is calculated semi-analytically. To do this, the required argument of
latitude u at deorbit must be determined. The z component of the
Earth-centered inertial (ECI) position vector at the target latitude can
be expressed in terms of the target latitude (lat) and the magnitude of
the spacecraft position vector at the target latitude [12]:

Rz � r sin�lat� � h2

μ�1� e cos θ� sin�lat� (5)

The z component of the ECI position vector is also equal to the
bottom row of the perifocal to the ECI frame direction cosine matrix
given by eq. 4.49 in [12] multiplied by the perifocal position vector.

Rz �
h2

μ�1� e cos θ� sin�lat�

� h2

μ�1� e cos θ� � sin�ω� sin�i� cos�ω� sin�i� cos�i� �
2
4 cos θ
sin θ
0

3
5

(6)

Assuming that θ is the only variable changing andmust be between
0 and 2π, the bisection root-finding method can be used to rapidly

Fig. 1 Targeting-algorithm schematic.

Fig. 2 Semimajor axis over time for old and new trajectories.
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calculate a value of θ that satisfies Eq. (6). From this, the

corresponding ud � �θ� ω� values can be readily calculated. There
are always two values of u for which the spacecraft is over the target

latitude, as illustrated in Fig. 3.
These two values are related by the equation

mod�ud1 � ud2; 2π� � π (7)

Regardless ofwhichu value the bisectionmethod returns, the other

can be calculated using Eq. (7).
For each calculated value of u, a value of u� 2πk, in which k is an

integer, will also provide proper latitude targeting. As will be shown

in Sec. IV, the latitude controllability of the system can be assessed to

determine the minimum and maximum values of k. For all possible
ud values, the increase in true anomaly (Δθd) required for latitude

targeting can be calculated based on the initial ui as

Δθd � mod�ud − ui; 2π� (8)

Section IV.A shows that the Δθd that results from an increase in

tswap is given by

Δθd � ωa2Δtswap
�
1 −

Cb1

Cb2

�
(9)

The increase in tswap necessary to produce a desired Δθd is thus

Δtswap �
ΔθdCb2

ωa2�Cb2 − Cb1�
(10)

in which ωa2 is the average angular velocity during phase 2 of the

orbit shown in Fig. 4. The deorbit locations associated with all tswap
values that provide latitude targeting are recorded along with the

corresponding longitude errors. The tswap value that yields the lowest
correctable longitude error should be chosen.

For a given longitude error λe � λact − λdes, the increase in orbit
lifetime necessary to correct for this error is

Δtd � λe
ωe

(11)

inwhichωe is the rotation rate of Earth. The fact that themeanmotion
of the spacecraft at larger semimajor axes is less than at lower
semimajor axes makes it possible to change the total orbit lifetime
without varying the total change in true anomaly bymanipulating the
amount of time the satellite spends at each altitude. This facilitates a
change in the deorbit longitude without a change in latitude.
Using the variables (tsold , tsnew , Cb10, Cb20, Cb1, Cb2, Δθ10, Δθ20,

Δθ1, Δθ2, Δθt, Δt10, Δt20, Δt1, Δt2, Δtt), Eqs. (2) and (3), and
knowledge of an initial numerically propagated trajectory, we can
calculate the control parameters necessary for a new trajectory to
achieve a desired Δtt (time to terminal point). Note that, for the
variables listed earlier, a subscript 1 indicates a parameter value
between the initial time and tswap, whereas a subscript 2 denotes a
value between tswap and tterm. Variables with the subscript zero
correspond to the initial trajectory, and those without the zero
correspond to the new trajectory. The subscripts old and new are also
used to differentiate between the trajectories. The subscript t (for
total) indicates a value between the initial time and tterm. No changes
are made to the spacecraft’s Cb term, and the drag configurations are
swapped at the same semimajor axis in the new and initial
trajectories. Given the relations

Δθ1 � Δθ2 � Δθt (12)

Δt1 � Δt2 � Δtt (13)

Δθ1 �
Δθ10Cb10

Cb1

(14)

Δθ2 �
Δθ20Cb20

Cb2

(15)

Δt1 �
Δt10Cb10

Cb1

(16)

Δt2 �
Δt20Cb20

Cb2

(17)

the Cb1 and Cb2 required to achieve the desired Δθt and Δtt can be
solved for analytically as

Cb2 �
Cb20�Δt20Δθ10 − Δt10Δθ20�
�Δtt��Δθ10� − �Δt10��Δθt�

(18)

Cb1 �
Δθ10Cb10Cb2

ΔθtCb2 − Δθ20Cb20

(19)

In this case, Δθt will be the same as in the trajectory with tswap
calculated for latitude targeting, and Δtt will be the original orbit
lifetime plus the desired increase in orbit lifetime necessary for
longitude targeting (Δtd) given by Eq. (11). Note that only the drag
profile before the terminal point will be manipulated by the targeting
algorithm, and so the time to deorbit and the total change in true
anomaly and right ascension of the new trajectory after the terminal
point will be the same as for the initial trajectory after this point.
Because Eqs. (12–19) assume that the swap points occur at the same
semimajor axes for the new and initial trajectories, it will be necessary
to update tsnew so that this is the case. This is performed by imposing

Fig. 3 Argument of latitude at target latitude.

Phase 3 

Phase 1 

Phase 2 

Phase 4 

Fig. 4 Effects of only changing swap time.
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tsnew � tsoldCb10

Cb1

(20)

This procedure analytically finds a set of control parameters thatwill
result in minimized latitude- and longitude-targeting errors based on
the last available numerically propagated trajectory. This analytical
solution facilitates the numerical-optimization process diagrammed
in Fig. 1.

IV. Controllability Analysis

A. Latitude Controllability

If the maneuver initiates with insufficient orbit life remaining; if
poor initial Cb1, Cb2, and tswap values are chosen; or if the ballistic
coefficient of the spacecraft cannot be varied significantly, the
spacecraft may be unable to target the desired longitude and latitude.
This section investigates the factors that contribute to the
controllability of the system [13].
First, let us consider the effects on the impact location of deviations

in the value of only tswap from an initial trajectory. Consider the case,
in which tswap is increased, whereas Cb1 and Cb2 remain constant.
Changing tswap will mean that phase 2 of the new trajectory (the phase
between tsold and tsnew ) will have a different time and change in true
anomaly than phase 2 of the initial trajectory (assuming that Cb1 and
Cb2 are not identical). The total changes in true anomaly and times
required for phases 1, 3, and 4 of the new trajectorywill be the same as
in the initial trajectory, as illustrated in Fig. 4. If t20 is the time
required for phase 2 of the initial trajectory, the time t2 required for
phase 2 in the new trajectory is equal to the change in tswap and is
related to t20 by Eq. (2) as

Δtswap � t2 �
Cb2t20
Cb1

(21)

The total increase in orbit lifetime resulting from the increase in
tswap is then given by

Δtd � t2 − t20 � Δtswap
�
1 −

Cb1

Cb2

�
(22)

Once the change in orbit lifetime has been calculated, the
difference in the total change in true anomaly between the new and
old trajectories can be calculated by

Δθd � ωa2Δtd (23)

in which ωa2 is the average angular velocity during phase 2 and is
calculated based on the initial trajectory.
If tswap in the new trajectory is set to its maximum possible value,

phase 3 in Fig. 4will not exist and themaximum tswap can bewritten as

tsmax
� tsold � �ttermold

− tsold �
Cb2

Cb1

(24)

From the set of possible swap times, the one that results inminimum
latitude error and the minimum correctable longitude error should be
chosen. The ability to change orbit lifetime by at least 12 h guarantees
that the target longitudewill pass beneath the orbital plane at least once
and that the longitude error will be no greater than Earth’s angle of
rotation over half an orbital period. The worst-case longitude error
from a variation of only tswap is thus about 1250 km for an equatorial
target location, but is usually much less. In Fig. 5, the solid lines
represent deorbit points that can be reached through a variation of only
tswap. In the left image, the area between the solid and dashed lines
represents the additional points that can be targeted through longitude
control if the maximum spacecraft Cb is 0.025 m2∕kg and the
minimum is 0.01 m2∕kg. Because the right image represents a much
higher initial altitude, the set of feasible points that can be targeted
through longitude control spans the entire Earth at all latitudes below
the orbital inclination and is not plotted.

B. Longitude Controllability

Once the most desirable tswap value has been determined, Cb1 and
Cb2 must be varied to eliminate the remaining longitude error by
changing the orbit lifetime without varying the total change in true
anomaly. The maximum amount by which the orbit lifetime can be
varied in this manner will depend on the characteristics of the initial
trajectory and the selected tswap value. If ω10 is the average orbital
angular velocity between the initial time and tswap�Δt10� in the initial
trajectory and ω20 is the average angular velocity between tswap and
tterm�Δt20�, we can rewrite Eq. (18) as

Cb2 �
Cb20�Δt20�ω10 − ω20��

�Δt20��ω10 − ω20� � �Δtd�ω10 − �Δθd�
(25)

Assuming Δθd � 0 (no desired difference in change in true
anomaly between the trajectories) and solving for Δtd yield

Δtd � Δt20�ω10 − ω20�
ω10

�
Cb20

Cb2

− 1

�
(26)

For a given value of Cb2, the Cb1 needed to ensure Δθd � 0 is
calculated using Eq. (19), and the resulting increase in orbit lifetime

Fig. 5 Feasible deorbit locations with aerodynamic control.
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(Δtd) is given by Eq. (26). Figure 6 illustrates theCb values required to
achieve various increases in the deorbit longitude (given by −Δtdωe)
for a 300 km initial circular orbit with a tswap value of 480,000 s
(133.3 h),Cb10 � 0.025 m2∕kg; and Cb20 � 0.01 m2∕kg. Note that,
for certain Δtd values, the required Cb1 and Cb2 values may not be
physically attainable.
The maximum and minimum Δtd values (for Δθd � 0) are

determined by the minimum and maximum Cb1 and Cb2 values. To
find the maximum Δtd value, choose the maximum possible Cb2

value that does not require Cb1 to be below the minimum value for
Eq. (19) to be satisfied with Δθt � Δθ10 � Δθ20. This extends the
orbit life for a given total change in true anomaly because the
satellite remains at a large semimajor axis for as long as possible and
experiences a slower mean motion. Similarly, the minimum Δtd
(usually negative) occurs at the minimum possible Cb2 value that
does not require Cb1 to be above the maximum value for Eq. (19) to
be satisfied with Δθt � Δθ10 � Δθ20. Before performing longitude
targeting, the minimum andmaximum values ofΔtd corresponding to
feasible combinations of Cb1 and Cb2 should be computed. It is
important to note that the closer a tswap value is to the beginning or end
of the orbit lifetime, the more limited the longitude controllability will
be, as shown in Fig. 7 for a 300 km initial circular orbit with
Cb10 � Cbmax � 0.025 m2∕kg; and Cb20 � Cbmin � 0.01 m2∕kg.
For this set of initial conditions, there is sufficient controllability to target
any desired deorbit location with a latitude below the orbit inclination.

V. Software Implementation and Simulation Results

A. Targeting-Algorithm Process

The targeting algorithm uses the previously discussed principles
and procedures to generate a ballistic-coefficient profile (Cb1, Cb2,
tswap) that a spacecraft must follow to deorbit in a desired location.
The numerically propagated trajectory associated with this ballistic-
coefficient profile is called the guidance, and the spacecraft will
continually modulate its ballistic coefficient to track this guidance.
Algorithms for spacecraft rendezvous using differential drag [10,14]
could be used for guidance tracking, but they are not the focus of this
Note and will not be discussed further. Additionally, measurement of
the aerodynamic drag force from onboard accelerometers can be used
to help characterize the uncertainties in the drag force and modulate
the ballistic coefficient to minimize drift from the guidance. This
implementation of the guidance generator closely follows the
diagram in Fig. 1 with a minor modification. The latitude-targeting
algorithm is conducted first using a variation of only tswap. Once a
numerically propagated trajectory is created with minimal latitude
error, the longitude-targeting sequence is activated. This process
continues until a trajectory is created with zero latitude error, and the
minimum possible longitude error or a maximum number of
iterations is reached.
In this implementation, the terminal point was set to a mean

semimajor axis of 6528 km, and the spacecraft was considered to
have reentered the atmosphere when its distance from the center of
Earthwas 6448 km (approximately 70 km altitude). For propagations
beyond the first one, the terminal point was specified by a time value
(tterm) instead of a mean semimajor-axis value, because even the
mean semimajor axis oscillates slightly. This was done by estimating
the times required during phases 1, 2, and 3 of each new trajectory
(see Fig. 2) and summing the times together to get the new tterm.
This method provided targeting convergence even for highly

perturbed, eccentric orbits (tested up to e � 0.01) because the effects
of the perturbations and noncircular orbits were captured in the
numerically propagated trajectories.

B. Orbit Propagator and Initial Guidance Conditions

An orbit propagator was created in MATLAB considering
gravitational perturbations through degree and order four,
atmosphere rotating with Earth, and NRLMSISE-00 density using
historical F10.7 andAp values. This propagatorwas validated against
the high-precision orbit propagator (HPOP) contained in the Systems
Tool Kit (STK)simulation suite and agreed within less than 3% error
after over a week of propagation. The guidance generator was also
configured to optionally use the HPOP propagator directly, and the
optimizer converged in all scenarioswhere thiswas done, proving the
robustness of the solution process with high-fidelity propagators. In
practice, the choice of when to start guidance generation depends on
the mission at hand and the capabilities of the satellite. If a spacecraft
must be landed in a very precise area and significant computational
power is available, guidance generation should start two or more
weeks before deorbit to ensure sufficient longitude controllability to
target the desired deorbit point. The authors considered the more

Fig. 6 Cb values required to produce given changes in longitude.

Fig. 7 Maximum and minimum longitude increase.

Table 1 MC simulation parameters

Variable Range Distribution

Semimajor axis [6668, 6778] km Uniform
True anomaly [0, 360] deg Uniform
Eccentricity [0, 0.004] Uniform
Right ascension [0, 360] deg Uniform
Argument of the
periapsis

[0, 360] deg Uniform

Inclination [1, 97] deg Uniform
Impact latitude [0, inclination −0.1] deg Uniform
Impact longitude [−180, 180] deg Uniform
Cbmax [0.033, 0.067] m2∕kg Uniform
Cbmin [0.0053, 0.027] m2∕kg Uniform
Epoch [1 November 2003,

1 November 2014]
Uniform
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common case to be one in which a spacecraft with limited computing

power and limited drag control must deorbit somewhere over a wide

oceanic region to prevent debris from falling over populated areas. In

this case, a longitude error of up to �1250 km is acceptable, and

guidance generation can begin at a lower altitude. This enables the

rapid creation of realistic and trackable guidances.

C. Monte Carlo Simulations

To analyze the effectiveness of the targeting algorithm, a set of

1000 Monte Carlo (MC) simulations with various initial conditions

and target locations was conducted. Parameters were randomly

selected from uniform distributions within the ranges given in

Table 1.

The semimajor-axis range corresponds to average altitudes

between approximately 290 and 400 km. This is a common range for

the deployment of low-Earth-orbit (LEO) satellites, and targeting

would be unlikely to begin at any higher altitude. Note that, although

orbits at the upper altitude range may last for several months,

guidance generation was set to beginwhen the satellite had 1 week of

orbit lifetime remaining in the minimum drag configuration. The

upper bound on eccentricity was set to 0.004 because the mean

eccentricity of the International Space Station has not exceeded 0.004

based on data between the years 2000 and 2016 from the STK

spacecraft database [15]. Satellites in LEOs tend to naturally

circularize due to higher drag at the perigee while the space station

experiences greater eccentricities due to the frequent thrusting

maneuvers required to maintain altitude. The minimum and

maximum ballistic-coefficient ranges correspond to what may be

reasonable for small, LEO satellites withmaneuverable drag devices.

The epoch range spans 11 years because average density experiences

a long-term cyclic variation with a period of 11 years corresponding

to the solar cycle. Runs were conducted on a desktop PC with a

3.6 GHz Intel i7 processor using MATLAB R2016a. After 1000 MC

simulation runs, all cases had an error below 1250 km, which was the

predicted upper error bound for cases of limited longitude

controllability. Figure 8 shows the distribution of latitude and

longitude errors for all the runs.

Fig. 8 Latitude and longitude errors (right graph zoomed in).

Table 2 Average simulation results

Simulation parameter Average value

Total error, km 199.4
Longitude error, km 192.5
Latitude error, km 13.94
Orbit lifetime, day 5.5
Simulation run time, min 20.7

Fig. 9 Targeting-error histogram and CDF.
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Table 2 displays relevant average MC results. Figure 9 displays a
histogram of the targeting errors and the error cumulative distribution
function (CDF).
When the targeting algorithm is run closer to the end of the orbit

life, although there will be less discrepancy between the analytical
and numerical solutions and the algorithm will converge more
quickly, the controllability will suffer, especially the longitude
controllability. Table 2 shows that longitude error tends to be
significantly greater than latitude error due to this more limited
longitude controllability.
According to sec. 4.7.2.1 of the NASA debris mitigation

guidelines [16], a selected trajectory for guided reentry must ensure
that no surviving debris impact with a kinetic energy greater than 15 J
is closer than 370 km from foreign landmasses, or is within 50 km
from the continental United States, territories of the United States,
and the permanent ice pack ofAntarctica. Furthermore, the product of
the probability of failure to track the guidance and the risk of human
casualty associated with the failure must be less than 0.0001
(1:10,000). In reality, a spacecraft would likely break apart and
become a debris cloud upon reaching the reentry point. Mission
designers must investigate the expected profile of the debris cloud
and pick a target deorbit point, such that all debris fall sufficiently far
from land. The existence of longitudinal guidance errors of up to
�1250 km can be accepted as reasonable because a probable target
point for debris mitigation would be somewhere in the South Pacific
Ocean Uninhabited Area. For cases in which higher precision is
needed, guidance generation must begin sooner to achieve greater
controllability.

VI. Conclusions

Through mathematical analysis and simulations, the feasibility of
targeting a deorbit location with a spacecraft using solely
aerodynamic drag has been demonstrated. Although drag only acts
in the orbital plane and hence cannot create an inclination change, any
point on Earth below the satellite’s inclination can be targeted using
aerodynamic drag if maneuvering begins early enough. A numerical-
optimization scheme (targeting algorithm) based on an analytical
solution was developed to calculate the ballistic-coefficient profile
necessary for a LEO spacecraft to deorbit in the desired location. A
high-fidelity simulation environment was created for use in the
targeting algorithm taking into account a nonspherical Earth,
atmospheric rotation, and NRLMSISE-00 density. The algorithm
was tested in this environment with 1000MC runs conducted using a
set of randomized initial conditions. The algorithm converged for all
cases with a total targeting error under 1250 km. Most of this error
was longitudinal. Such an error level is sufficient to meet the NASA
debris mitigation guidelines for spacecraft disposal.
Although the average algorithm run time in MATLAB was nearly

21 min, significant performance improvements will be gained by
rewriting the code inC++, facilitating guidance computation onboard
a spacecraft.
In practical applications, the numerically propagated trajectory

with the ballistic-coefficient profile necessary to deorbit in the
desired location would serve as the spacecraft guidance. The
spacecraft’s ballistic coefficient would then be continuously
modulated using attitude changes, or the deploying and retracting
of a drag device to ensure that the spacecraft follows that guidance.
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