
AAS 20-455

A MACHINE LEARNING SOLUTION TO OPTIMAL LANDING SITE
SELECTION AND LANDER CONTROL

Omkar S. Mulekar∗ and Riccardo Bevilacqua†

Previous investigations have shown that Artificial Neural Networks (ANNs) can
be trained to drive closed-loop controllers to yield near optimal trajectories. The
problem of selecting an optimal landing site near an objective is defined and in-
vestigated for a 3 Degree of Freedom point-mass lunar lander. A trajectory opti-
mization software is used to generate optimal state-action pairs to train one ANN
for use in an optimal controller. It is also used to generate data to train a site-
selecting ANN from lander initial states, surface geometry, and objective position.
The ANNs demonstrate a dynamics-based method of selecting an optimal landing
site.
Keywords: Neural networks, optimal control, lunar lander, landing site selection

INTRODUCTION

Landing technologies play a central role in lunar and planetary exploration, as they are used in
one of the most dynamic, hazardous, and critical phases of exploration missions. Surface hazards
like rocks, slopes, and craters have been a key factor in decisions made by both pilots and mission
planners for selecting landing sites. Large-scale hazards can be observed from a priori reconnais-
sance by lunar orbiters, but small and local hazards may not always be accounted for beforehand,
as demonstrated in the Apollo 11 mission when Neil Armstrong performed a downrange divert
to avoid a boulder field.1 Although the earliest Hazard Detection and Avoidance (HDA) systems
consisted of the pilot’s vision and control authority on the spacecraft,1 recent advances in computer
vision have allowed for the development of novel algorithms that perform HDA autonomously using
camera-based and LIDAR-based terrain sensing techniques.2–4

Background

The research discussed made use of Artificial Neural Networks (ANNs) to approximate solutions
to optimal control problems.

Neural Networks Machine learning techniques such as ANNs have been employed for a num-
ber of problems requiring accurate approximation of functions for which equations are not easily
defined, but for which extensive data is either available or easily produced. ANNs originated in at-
tempts to mathematically represent the brain’s information processing and learning systems.5 They

∗PhD Student, Mechanical and Aerospace Engineering, University of Florida, 939 Sweetwater Dr., MAE-A 211,
Gainesville, FL 32611.
†Associate Professor, Mechanical and Aerospace Engineering, University of Florida, 939 Sweetwater Dr., MAE-A 211,
Gainesville, FL 32611.

1

are built by ”neurons,” which map many inputs to a single output. Neurons are defined by weights,
a bias, and an activation function. The output of a neuron y given an input vector x is given by

y = φ(wTx + b)

where w is a vector of the associated weights, b is the bias, and φ is the activation function. The
classical activation function used is the sigmoid

φ(z) =
1

1 + e−z

While this activation function can be powerful, problems such as its vanishing gradient have
arisen.6 Learning techinques are typically based on the gradient of the activation function, and the
sigmoid has near-zero gradient for very large and very small inputs. Other activation functions such
as the hyperbolic tangent φ(z) = tanh(z) and the Rectified Linear Unit (ReLU), φ(z) = max(0, z)
have been employed more in recent years, especially in regression problems.

One layer of an ANN, or specifically a densely connected layer, maps the input vector to several
outputs through several neurons. For simple architectures with densely connected layers, the ANN
architecture is defined by the number of layers between the input and output vectors (i.e. hidden
layers), the number of neurons in each layer, and the activation functions used on each neuron. If
an ANN has one hidden layer, it is a shallow neural network; but if it has multiple, it a deep neural
network (DNN).5

The process of training an ANN is a supervised learning technique, meaning each input in a
set of training data xi has an associated training output ti to evaluate the ANN’s performance for
predictions yi made during training. The process of training an ANN involves iterating through
training data, evaluating some loss function E(w) that indicates the quality of the ANN’s fit to
the data (e.g. mean squared error or mean absolute error), and updating weights and biases w
accordingly through the process of back propagation. The classical training algorithm is gradient
decent which given a learning rate η updates the weights in the ANN by evaluating the gradient of
the loss function

∆w = −η∇wE

where ∆w are the changes in the weights defining the ANN.

Another training algorithm is the Levenberg-Marquardt algorithm which is a simple yet robust
alternative to gradient decent.7 The weight update equation is given by

∆w = −[JTJ + µI]−1Je

where J is the Jacobian matrix approximating the Hessian as JTJ + µI, the matrix I is the identity
matrix, µ is a damping scalar chosen to make the hessian approximation positive definite, and e is
the error vector.8 Both of the mentioned training methods for ANNs are iterative in that they cycle
through training inputs (either individually or in “batches”), and they update the ANN parameters
so that the output error decreases.5

ANNs in Optimal Controls One recent use of ANNs has been in the field of Optimal Controls,
where the goal is to design a control law that minimizes (or maximizes) some cost function given
some system dynamics and defined constraints on the controls and system states.9 In aerospace
applications, a common objective is to optimize fuel usage by minimizing the cost function

J =

∫ tf

t0

|T|dτ

2

where T is a thrust vector. The cost function is said to be constrained to system dynamics ẋ =
f(x,u) where x is the system state variable and u is the control strategy. Some optimal control
problems have analytical solutions, however those subject to nonlinear dynamics (as is the case in
astrodynamics) often require numerical methods to solve.

There are several techniques to transcribe optimal control problems to Nonlinear Programming
(NLP) problems. One example is direct collocation, which discretizes the optimal control prob-
lem’s differential and integral equations using techniques like the trapezoidal or Hermite-Simpson
methods.10, 11 Several packages in Python and MATLAB like OptimTraj, GPOPS-II, and OpenOCL
allow for optimal control problem formulation for automatically handled NLP transcription and gen-
eration of a solution.12–14 OpenOCL specifically uses direct collocation, and it provides the solution
in the form of a state and control history, or state-action pairs. These state-action pairs can then be
used to train an ANN for use in a closed loop controller. It has been demonstrated that ANNs can
learn optimal state-feedback for several aerospace applications including thrust-vectoring rockets
and drones.15 Previous investigations from Sánchez and Izzo have made use of DNNs specifically,
and they used on the order of 10 million state-action pairs for training.16 Other implementations of
DNNs from Furfaro have directly used surface images to calculate optimal thrust actions of a lunar
lander.17

Connection to a Larger Problem The work discussed serves as a preliminary investigation for
a larger problem of providing fuel optimal landings in virtually any terrain on lunar and planetary
surfaces. Traditional landing sites are limited to geometrically simple regions of the lunar surface.
Even with the advances in HDA that allow landing near locally avoidable hazards, the landing site
itself is usually not rugged. A graphic depicting this larger problem is shown in Figure 1.

Figure 1. Graphic of proposed problem

Problem Formulation

This paper aims to address the problem of landing close to an objective within a complex terrain
while balancing the minimization of fuel usage with the minimization of the landing site distance to
an objective rT , thus achieving an optimal landing site. The problem is investigated in the context
of a point mass, fuel-consuming Three Degree of Freedom (3DOF) lunar lander. The goal is to

3

minimize the cost function

J = α|r(tf)− rT |+ β

∫ tf

t0

√
ux(τ)2 + uy(τ)2 + uz(τ)2dτ (1)

where x = [x, y, z, ẋ, ẏ, ż]T is the system state variable, u = [ux, uy, uz]
T is the control input,

and r = [x, y, z]T is a position vector. Any state variable can be expressed in terms of the position
vector as x = [rT , ẋ, ẏ, ż]T . Although the state variable does not contain the system mass m, it
is still included in the system dynamics. The scalars α and β are weights chosen to balance the
terminal cost (distance to the target) with the path cost (which optimizes fuel consumption). In this
investigation, a value of 0.5 is used for both. The cost function is considered constrained to system
dynamics of a fuel-consuming point-mass with mass m. The system dynamics are defined as

ẍ = ag,x(x, y, z) + 1
mux

ÿ = ag,y(x, y, z) + 1
muy

z̈ = ag,z(x, y, z) + 1
muz

ṁ = −
√

u2
x+u2

y+u2
z

Ispg0

where ag(x, y, z) = [ag,x(x, y, z), ag,y(x, y, z), ag,z(x, y, z)]
T is the acceleration of gravity at a

lander position (x, y, z) as calculated from some gravity model, Isp is the specific impulse of the
simulated model, and g0 = 9.81m/s2. The initial constraint x(t0) is defined for t0 = 0, and the
terminal constraint x(tf) = [r(tf)T , 0, 0, 0]T is defined for r(tf) ∈ X where X is a set of surface
points, or grid points, representing a terrain map produced by a surface mapping system near the
scientific objective position rT .

In this study, three-dimensional terrains are represented by a series of sine functions with ran-
domly generated magnitudes Ai, frequencies ωi, and phases φi. The equation for a terrain surface
given these randomized parameters is

zsurf (xsurf , ysurf) =
M∑
i=1

Ai sin(ωixsurf + φi) +
N∑

i=M+1

Ai sin(ωiysurf + φi) (2)

The grid points X are extracted from the generated surface, and Gaussian noise is added. The
boundary constraint r(tf) is limited to a surface grid point inX . The objective position is randomly
generated at a point near the surface. An example of a randomly generated surface, grid, and
objective can be seen in Figure 2.

Newton’s gravitational acceleration is a standard choice for the gravitational model. In this prob-
lem is implemented as ag(x, y, z) = −(µ/ρ3)ρ where µ is the gravitational parameter for the
moon, and r is the distance vector pointing from the center of the moon to the spacecraft. Here,
ρ = xêx + yêy + (z + Rmoon)êz where {êx, êy, êz} is the orthonormal basis fixed to the target
site with êz pointing up. It should be noted that this use of Newtonian gravity should be limited to
inertial reference frames. However, the simulation time is on the order of 50 seconds, and the moon
rotates once every 28 days giving reason to approximate the target-site fixed frame as inertial. In
future simulations, a Moon Centered Inertial frame rather than the target-site fixed frame, as well as
a more complicated gravitational model like the GRGM1200A Lunar Gravity Field will be used if
needed.18, 19

4

Figure 2. Examples of random surface for training data generation

MODEL DESCRIPTION

A set of two neural networks are trained and implemented: one to select the optimal landing
site (ANN 1), and one to be used in a closed loop controller to provide near-optimal control to the
landing site (ANN 2). The trajectory optimization tool OpenOCL is used to generate training data in
the form of defined ”Scenarios” for ANN 1 and state error-action pairs for ANN 2. The performance
of the trained ANNs is evaluated through Monte Carlo 3DOF simulations.

ANN Function and Training

The site selecting ANN (ANN 1) is trained to map scenario parameters to a predicted optimal
landing site. A diagram of ANN 1 is shown in Figure 3. A scenario is defined by the lander’s
initial state x(t0), grid points on the surface X , and an objective position rT . In this study, surfaces
defined from Eq. (2) are in the domain where xsurf and ysurf are between −100 m and 100 m.
The grid points X are extracted in a 21 × 21 × 3 grid. The ranges of each randomized scenario
parameter are given in Table 1. The controller ANN (ANN 2) is trained to map state errors e(t) =
x(tf) − x(t) and system mass m to a control action u(t). A diagram of ANN 2 is shown in
Figure 4. The training data for both ANNs are produced from the MATLAB trajectory optimization
package OpenOCL.14 A scenario is randomly generated, and the optimization problem is posed in
the trajectory optimizer as described, except the cost function Eq. (1) in will only include the path
cost Jpath =

∫ tf
t0

√
ux(τ)2 + uy(τ)2 + uz(τ)2dτ .

The trajectory optimizer loops r(tf) through the four grid points in X closest to the objective rT ,

5

Figure 3. Diagram of inputs and outputs for ANN 1

Figure 4. Diagram of inputs and outputs for ANN 2

6

Table 1. Ranges and values for randomized parameters defining a scenario

Parameter Group Parameter Range/Value Unit

Surface Parameters Ai [−20, 20] m
used in Eq. (2) φi [−3, 3] rad

ωi [−0.1, 0.1] rad/m
M 3 -
N 6 -

Initial Conditions17 x [−2000, 2000] m
y [−2000, 2000] m
z [1000, 1500] m
vx [−15, 15] m/s
vy [−15, 15] m/s
vz [−10, 0] m/s
m 1300 kg

Objective Position x [−100, 100] m
y [−100, 100] m
z zsurf + [−10, 0] m

producing a trajectory for each. At present, this restriction is preferred over looping r(tf) through
every point in X , which would require optimization of 441 trajectories to yield one training data
point for ANN 1. Instead, just four trajectories must be optimized to yield one training data point
for ANN 1. This restriction is no doubt a limitation on the overall optimization of the landing site
selection since the optimal landing site is not necessarily limited to the four grid points close to the
trajectory. A resolution to this problem will be investigated in future research.

Each trajectory produces 100 state error-action pairs. The state error-action pairs for each trajec-
tory can be used as training data for ANN 2. The full cost (i.e. including the terminal cost) in Eq.
(1) of each trajectory is evaluated. The final state of the trajectory with the minimum evaluation of
Eq. (1) is saved as training data for the output of ANN 1. The grid X , initial conditions x0, and
objective position rT are saved as the corresponding training data for the input of ANN 1.

The initial state is a 6 × 1 vector, the objective position is a 3 × 1 vector 3 × 1 vector, the input
grid points come from a 4× 3 array (three position coordinates for four grid points), and the output
landing selected landing site is a 3 × 1 vector. The initial mass is not included as an input to ANN
1 because each simulation starts with 1300 kg. ANN 1 therefore maps 21 input values defining the
scenario to the 3 output values defining the selected landing site. The controlling ANN (ANN 2) is
used in a feedback controller, and therefore maps state error and system mass to a control input u.
The state error with respect to the target landing site e = [ex, ey, ez, evx , evy , evz]T is a 6×1 vector,
the system mass m is a scalar, and the control input u is a 3 × 1 vector. ANN 2 therefore maps 7
inputs to 3 outputs.

For a given scenario, ANN 1 is used to select a landing site, which is used as the reference in a
feedback loop. This feedback loop uses ANN 2 to drive the lander in a near-optimal trajectory to
the landing site. A block diagram of ANN 2 implemented as a closed loop controller is shown in
Figure 5.

Effectively, to produce one training data point for ANN 1, the optimization package must produce
several purely fuel-optimal trajectories from the randomized initial condition to several landing sites
near the objective point. The trajectory that yields the lowest full cost, corresponds to the optimal

7

Figure 5. ANN used in closed loop controller for optimal control. Reference refers to
the target landing site expressed as a system state.

landing site which ANN 1 must learn to predict. For one trajectory that provides a training data
point for ANN 1, several trajectories each provide 100 state error-action pairs to train ANN 2.

In producing the training data for both ANNs, there is abundantly more training data available
for ANN 2. However, the data from fewer trajectories are used to train ANN 2 than ANN 1. A total
of 1,000 scenarios are used to train ANN 1, and the state error-action pairs from 500 trajectories
(50,000 state error-action pairs) are used to train ANN 2.

A shallow architecture was chosen for both ANNs due to the limited size of the training data
compared to previous studies.15, 17 ANN 1 has 15 neurons in its hidden layer, and the sigmoid is the
chosen activation function. ANN 2 has 90 neurons in its hidden layer, and sigmoid is the chosen
activation function. A form of gradient decent, Scaled Conjugate Gradient,20 is used to train ANN
1, and the Levenberg-Marquardt algorithm is used to train ANN 2.

Monte Carlo Simulations

The performance of the ANNs in selecting landing sites and driving the lander in an optimal
trajectory to its final state is evaluated via Monte Carlo Simulations. Scenarios are randomly gener-
ated independently from those generated for ANN training data. A 3DOF simulation is then run for
each scenario, producing an ANN-selected landing site and an ANN-driven trajectory to that land-
ing site. Optimal landing sites and trajectories are also generated in OpenOCL for each scenario.
These trajectories serve as a reference against which to compare the ANN-selected landing sites
and ANN-driven trajectories. The costs of the trajectories produced by the trajectory optimizer are
compared to the costs of the closed-loop ANN controlled trajectories to assess the capability of the
ANNs to learn the optimal solution.

RESULTS AND DISCUSSION

The Monte Carlo simulations are run on 200 scenarios randomly generated independently from
the ANN training data. The resulting selected landing sites, trajectories, and control histories are
compared to those produced by the trajectory optimizer. First, the characteristics of landing sites
selected by ANN 1 are assessed. Then the capability of ANN 2 to drive a near fuel-optimal trajectory
is assessed. Then, the overall performance of the entire implemented system is discussed.

8

Site Selection

An evaluation of how close the lander gets to the scientific objective is needed, though the prox-
imity to the scientific objective is only part of the overall goal. Evaluation and comparison of the
terminal costs of both the ANN-driven and optimal trajectories is performed. The difference be-
tween the terminal costs for each Monte Carlo simulation is computed, and a histogram is used to
visualize the distribution of cost differences. The difference is taken as Jterm,OCL − Jterm,ANN

where Jterm,OCL is the terminal cost of the optimal trajectory from OpenOCL, and Jterm,ANN is
the terminal cost of the ANN-driven trajectory. This histogram is shown in Figure 6. It should be

Figure 6. Histogram of terminal cost differences between ANN-driven and optimal trajectories

noted that the terminal cost is an evaluation of distance from the scientific objective to the final
lander position (i.e. selected landing site). While such an evaluation would typically have units of
distance (meters), the α weighting term in Eq. (1) has units of Ns/m, and the β weighting term
is dimensionless so that the terminal and path costs can both have units of Ns and can be added
together. The mean cost difference of the data provided in Figure 6 is 2.91 Ns. A positive terminal
cost difference implies the optimal trajectory from OpenOCL lands further from the scientific ob-
jective, so the positive mean terminal cost difference indicates that the ANN learns to select landing
sites closer to the objective than is necessarily optimal.

In addition, the assessment of the viability of the chosen landing site is also needed. The imple-
mented site selection method in OpenOCL requires the final position of the lander to be one of the
grid points, which are approximations of points on the surface defined by Eq. (2). There is no such

9

limitation on the sites chosen by the ANN (though future investigations can include one). ANN
chosen landing are not directly on surface grid points, and they are also not necessarily at points
between them. One example of an ANN-selected landing site that is neither at nor between surface
grid points is in Figure 7. It was found however, that the ANN generally selected a point that was

Figure 7. ANN-selected landing site not between grid points, and therefore not viable.

between grid points and the selected landing sites appeared on the surface approximated by the grid
points. An example of an ANN-selected landing site that is between grid points is shown in Figure
8.

One option for modifying the ANN-selected landing site is to implement a grid point limitation
on the ANN output. The landing site used as a reference for the feedback controller can be limited
to a grid point that is closest to the ANN-selected landing site. A histogram of the terminal cost
differences from a the Monte Carlo simulation that implements this grid point limitation on the
ANN-selected landing sites is shown in Figure 9. The mean cost difference is 2.17 Ns, which is only
a 25% decrease from mean terminal cost difference from the Monte Carlo without the implemented
grid point limitation.

At present, the ANN has very roughly approximated selection of an optimal landing site. Of
course, a larger training data set would likely improve the ANNs ability to approximate selection of
an optimal landing site. One concern when training on a larger data set is that rather than learning an
underlying dynamics based method for determining the optimal landing site, the ANN may simply
learn to match its output to one of the grid point inputs. This would be a subtle indication of

10

Figure 8. Viable ANN-selected landing site between grid points

Figure 9. Histogram of terminal cost differences between ANN-driven and optimal
trajectories, landing site limited to grid points

11

overfitting, since the optimal landing site is not necessarily one of the grid points.

Feedback Control

Assessing performance of ANN 2 in providing near-optimal control of the lander to the land-
ing site selected by ANN 1 is done by inspection of the controller behavior near the landing site,
inspection of the thrust profiles, and evaluation of the full trajectory cost from Eq. (1).

There are two types of observed behavior of the controller near the landing site: one that drives
the trajectory to converge and settle on the selected landing site, and one that drives the trajectory
near the landing site but boosts the lander away in an extreme trajectory. Of the 200 Monte Carlo
simulations, 189 properly converged onto the landing site, while 11 exhibited the mentioned boost
into an extreme trajectory. An example of a properly converging trajectory is shown in Figure 10.

Figure 10. ANN-driven and optimal trajectories

One possible explanation for the Monte Carlo runs with extreme trajectory is the associations
provided from the training data. One characteristic of the optimal thrust profiles is a high thrust
maneuver at the beginning of the trajectory followed by a coast, and then a high thrust maneuver at
the end of the trajectory. Because of this high thrust maneuver at the end of optimal trajectories, the
ANNs learn to associate low state errors with high thrusts for some trajectories, causing the lander
to boost away from the landing site after approaching close to it. After this boost away, although
the position error is in a region the ANN learns to associate with a coasting maneuver, the velocity
vector is pointed away from the landing site. Such an error configuration does not exist in the
training data for the ANN, so there is no reasonable expectation for what control action the ANN
would command. A possible correction to this issue is to expand the region of starting positions in

12

randomly generated scenarios to include regions closer to the landing site.

Thrust profiles of the optimal solution and the ANN-driven trajectory are compared to evaluate
the ability of the ANN to learn the optimal solution. An example of an ANN-driven thrust profile
that follows closely to the optimal thrust profile is shown in Figure 11. An example of an ANN-
driven thrust profile that controls the lander successfully to the landing site, but does not follow the
optimal thrust profile closely is shown in Figure 12.

Figure 11. ANN-driven thrust profile that closely matches optimal solution

In addition to inspection of the thrust profiles produced by the ANN, a comparison of trajectory
cost evaluations for both the ANN-driven trajectories and the optimal trajectories can be done to
assess the ability of the ANN to associate optimal control actions to lander state errors. The differ-
ence between the full costs for each Monte Carlo simulation is computed, and a histogram is used to
visualize the distribution of cost differences. The difference is taken as JOCL−JANN where JOCL

is the full cost of the optimal trajectory from OpenOCL, and JANN is the full cost of the ANN-
driven trajectory. A histogram of the percent differences is shown in Figure 13. The mean percent
difference between the costs of the ANN-driven and optimal trajectories is -32.3%. A negative cost
difference implies a higher cost of the ANN-driven trajectory, which is expected given that the ANN
is meant to approximate the optimal solution. However, there are a several cases that yielded a pos-
itive cost difference as seen in Figure 13. In these cases the full cost of the ANN-driven trajectory
is lower than the trajectory generated by OpenOCL. It is not the case that the ANN is capable of
yielding a trajectory that is ”more” fuel optimal, as this would be impossible. The lower full costs
are characteristic of scenarios in which the ANN chose a landing site that allowed for a lower tra-
jectory cost. In these cases, the landing site selected by the ANN and the landing site selected in
OpenOCL are not the same, so the boundary constraints on the trajectory being optimized via NLP
are not the same as those used by the ANN to drive a trajectory. In these specific cases, the model

13

Figure 12. ANN-driven thrust profile that does not closely match optimal solution

Figure 13. Histogram of full cost percent differences between ANN-driven and optimal trajectories

14

successfully selected a landing site that allowed for less fuel usage.

Final Comments on Orders of Magnitude

The orders of magnitude of different parameters in the model discussed have an impact on its
performance. Future investigations should take care to assess the impact of varying these parame-
ters. Two particular parameter sets include the α and β weighting terms in Eq. (1) and the volume
of training data used to train both ANNs.

It has been discussed that the full cost in Eq. (1) is comprised of a path cost which optimizes fuel
usage and a terminal cost which optimizes distance to a scientific objective on the lunar surface. It
was mentioned that a value of 0.5 was chosen for the weighting terms α and β that balance the effect
of these costs on optimization. Due to the large difference in orders of magnitude of the terminal
and path costs, this value for the weighting terms may not be appropriate. The terminal costs are
on the order of 101 Ns while the path costs are on the order of 108 Ns. Future investigations should
make use of a large value for α and a small value for β to assess the effect of more appropriately
balancing the terminal and final costs.

It was mentioned that previous investigations from Sánchez and Izzo trained DNNs from approx-
imately 10 million data points. In this investigation 50,000 data points were used to train the ANN
used in a feedback controller. While the ANN trained in this investigation is capable of driving the
lander to the desired state, and in many cases in near-optimal trajectories, inspection of the thrust
profiles emphasizes a need for more training data. Future investigations will include a much larger
training data set that would allow the ANN to more properly learn to produce the thrust profiles
associated with the optimal solution.

CONCLUSION

This paper discusses an early investigation of the larger problem of finding dynamics-based so-
lutions to the landing site selection of variable leg-length landers in geometrically complex terrain.
The research effort developed a dynamics-based method that uses a terrain data to determine a target
state of a landing system near a scientific objective. It was demonstrated that an ANN can learn to
determine optimal landing sites given surface points and system state information, a concept that
can be extended and used in the introduced larger problem. One primary limitation on the model
developed is the light amount of training data used for its two ANNs. Future investigations will
take care to assess the effects of tuning the cost function weighting parameters and increasing train-
ing data. Refinement of the described system would be extended to the described larger problem.
A highly robust landing system would reduce constraints on landing site selection during space
mission planning, providing more opportunities for scientific exploration and discovery on other
terrestrial bodies than were previously available.

ACKNOWLEDGMENT

This investigation was supported by the NASA Space Technology Graduate Research Opportu-
nity (Grant Number 80NSSC20K1188) and the Graduate Student Preeminence Award from Univer-
sity of Florida Department of Mechanical and Aerospace Engineering.

REFERENCES
[1] T. Brady and S. Paschall, “The challenge of safe lunar landing,” 2010 IEEE Aerospace Conference,

2010, pp. 1–14.

15

[2] C. D. Epp, E. A. Robertson, and T. Brady, “Autonomous Landing and Hazard Avoidance Technology
(ALHAT),” 2008 IEEE Aerospace Conference, 2008, pp. 1–7.

[3] J. M. Carson, M. M. Munk, R. R. Sostaric, J. N. Estes, F. Amzajerdian, J. B. Blair, D. K. Rutishauser,
C. I. Restrepo, A. M. Dwyer-Cianciolo, G. Chen, and T. Tse, The SPLICE Project: Continuing NASA
Development of GN&C Technologies for Safe and Precise Landing, 10.2514/6.2019-0660.

[4] J. J. Hart and J. D. Mitchell, “Morpheus lander testing campaign,” 2012 IEEE Aerospace Conference,
2012, pp. 1–12.

[5] C. M. Bishop, “Neural Networks,” Pattern Recognition and Machine Learning, Springer, 2006,
p. 225–290.

[6] S. Hochreiter, “The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem
Solutions,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 6, 04
1998, pp. 107–116, 10.1142/S0218488598000094.

[7] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM Journal
on Applied Mathematics, Vol. 11, No. 2, 1963, pp. 431–441, 10.1137/0111030.

[8] H. Liu, “On the Levenberg-Marquardt training method for feed-forward neural networks,” 2010 Sixth
International Conference on Natural Computation, Vol. 1, 2010, pp. 456–460.

[9] R. Stengel, “Optimal Trejectories and Neighboring-Optimal Solutions,” Optimal Control and Estima-
tion, Dover Publications, 2006, p. 225–290.

[10] O. Von Stryk, “Numerical Solution of Optimal Control Problems by Direct Collocation,” Optimal Con-
trol Theory and Numerical Methods, Vol. 111, 04 1998, 10.1007/978-3-0348-7539-4 10.

[11] V. M. Becerra, Practical Direct Collocation Methods for Computational Optimal Control. New York,
NY: Springer New York, 2013, 10.1007/978-1-4614-4469-5 2.

[12] M. P. Kelly, “Transicription Methods for Trajectory Optimization: A beginners tutorial,” 2015.
[13] M. Patterson and A. Rao, “GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal

Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Non-
linear Programming,” ACM Transactions on Mathematical Software, Vol. 41, 10 2014, pp. 1–37,
10.1145/2558904.

[14] J. Koenemann, G. Licitra, M. Alp, and M. Diehl, “OpenOCL - Open Optimal Control Library,” 06 2019.
[15] C. Sánchez-Sánchez and D. Izzo, “Real-Time Optimal Control via Deep Neural Networks:

Study on Landing Problems,” Journal of Guidance, Control, and Dynamics, Vol. 41, 10 2016,
10.2514/1.G002357.

[16] C. Sánchez-Sánchez, D. Izzo, and D. Hennes, “Learning the optimal state-feedback using deep net-
works,” 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 2016, pp. 1–8.

[17] R. Furfaro, I. Bloise, M. Orlandelli, P. Di, Lizia, F. Topputo, and R. Linares, “AAS 18-363 DEEP
LEARNING FOR AUTONOMOUS LUNAR LANDING,” 2018.

[18] F. G. Lemoine, S. Goossens, T. J. Sabaka, J. B. Nicholas, E. Mazarico, D. D. Rowlands, B. D. Loomis,
D. S. Chinn, G. A. Neumann, D. E. Smith, and M. T. Zuber, “GRGM900C: A degree 900 lunar gravity
model from GRAIL primary and extended mission data,” Geophysical Research Letters, Vol. 41, No. 10,
2014, pp. 3382–3389, 10.1002/2014GL060027.

[19] F. Lemoine, S. Goossens, T. Sabaka, J. Nicholas, E. Mazarico, D. Rowlands, B. Loomis, D. Chinn,
G. Neumann, D. Smith, and M. Zuber, “GRGM900C: A degree-900 lunar gravity model from
GRAIL primary and extended mission data,” Geophysical Research Letters, Vol. 41, 05 2014,
10.1002/2014GL060027.

[20] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Networks,
Vol. 6, No. 4, 1993, pp. 525 – 533, https://doi.org/10.1016/S0893-6080(05)80056-5.

16

	Introduction
	Background
	Neural Networks
	ANNs in Optimal Controls
	Connection to a Larger Problem

	Problem Formulation

	Model Description
	ANN Function and Training
	Monte Carlo Simulations

	Results and Discussion
	Site Selection
	Feedback Control
	Final Comments on Orders of Magnitude

	Conclusion
	Acknowledgment

