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In recent years, static warhead arena tests have used stereoscopic cameras to count fragments in real time and

correlate their individual velocity and mass. This new technique provides the ability to generate higher confidence

dynamic fragmentation data that in turn can be used for code validation and much more realistic lethality and

collateral damage calculations. Arena tests involve detonating static warheads; whereas, in reality, warheads arrive

and detonate at high speeds. State-of-the-art simulations for high-speed warhead detonations can be challenging and

time consuming while potentially missing the relevant physics of real-world detonations. In this investigation, a

framework to predict warhead fragment track characteristics from real-world static arena experimental data and

dynamic simulation data is explored.Amodel is trained on simulation and experimental data to predict the number of

fragments that pass through a defined surface of interest givenwarhead in-flight terminal conditions. Distributions of

fragment–surface intersections aremodeled byGaussianmixturemodels (GMMs), and random forest regressors are

trained to predict these GMMs. Monte Carlo methods are used to show that random forests trained by both

simulation and experimental data can predict fragment–surface intersection distributions of both static and

dynamic high-speed warhead configurations.

Nomenclature

fi = individual regression tree in a random forest regressor
g = random forest regressor
N = the Gaussian distribution, either single variate or multi-

variate
N = number of fragments
p = probability distribution described by a Gaussian mixture

model
S = region on a sphere surface
u = vector input to a random forest regressor or regression tree
x = scalar random variable in a single-variate distribution
x = vector random variable in a multivariate distribution
Θ = parameters defining a probability distribution
θ = azimuthal angle
μ = mean of single-variate distribution
μ = mean vector of a multivariate distribution
πk = mixing coefficient associated with components of a Gaus-

sian mixture model
Σ = covariance matrix of a multivariate distribution

σ2 = variance of a single-variate distribution

ϕ = polar angle

I. Introduction

WARHEAD detonations eject fragments over large distances,

causing collateral damage to structures, vehicles, and person-

nel. It is therefore imperative to accurately understand warhead

detonation characteristics so that collateral damage estimates and

lethality estimates can be used to make decisions regarding effective

target application [1,2]. Many techniques exist to estimate the col-

lateral damage and lethality of a fragmenting munition [3,4]. The

fragmentation properties used to characterize lethality and collateral

damage estimation include fragment counts, masses, velocities, and

shapes [5]. In recent years, stereoscopic vision systems have been

implemented in static arena tests to track individual fragments after a

warhead detonation, providing data on fragment counts, masses, and

velocities [6]. Although these experiments provide valuable, realistic

information that improves lethality and collateral damage estima-

tions, real warheads arrive at targets at high speeds [7]. Conversely,

although simulation techniques allow for fragment track generation

for nonstatic cases, there are many real-world effects (e.g., air resis-

tance) not present [8].
Before 1943, much of the focus in ballistics research and develop-

ment was on launch and flight systems, and not on the final delivery

components. Analytical methods to model explosive fragmentation

such as Mott’s methods for exploding cylindrical shells were devel-

oped in the 1940s, and they are statistical in nature [9]. Munitions

designers continue to use these analytical techniques to make mass

distribution and velocity distribution predictions. As a consequence,

Mott’s theory has dominated empirical models in many fields (frag-

mentation, hypervelocity impacts, etc.). Similarly, the theories of the

early tomid-20th century inform the simulation capabilities available

at present day [10].
Several simulation tools have been developed to predict fragmen-

tation and track behaviors. Picatinny arsenal fragmentation is one

example that combines analytical and experimental techniques

through high-strain/high-strain-rate computer modeling [5,11]. One

software titled “Combined Hydro and Radiation Transport Diffusion

Squared to the Three Halves”, which was developed at Sandia
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National Laboratories, uses Eulerian finite difference techniques
to model multidimensional shock wave physics [12]. Simulation
techniques have also been developed at NASA Johnson Space Center
to model fragmentation from explosions and collisions of rocket
bodies and spacecraft in lowEarth orbit. These simulations, however,
are largely based on empirical data; and they are not driven by
physics-based equations [13]. Alternatively, a research software
developed at the U.S. Naval Air Warfare Center’s Weapons Division
(NAWCWD), based on an iterative solution to Langevin’s equations
of motion, is leveraged in this paper because it captures multiphysics
solutions found in the real world [14]. The NAWCWD research
software solves the static and dynamic fragment flyouts, accounting
for the multiphysics encountered in the trajectories emanating from
an explosion. Additionally, the research software optimizes the sim-
ulations by leveraging an explicit vector operator partitioning on
a Lagrangian frame of reference. Currently, the NAWCWD high-
fidelity research software, which is currently under review by the
U.S. Navy, represents one of the best methods to model static and
dynamic fragment flyout from explosive detonations.
The Joint Munitions Effectiveness Manual provides a procedure

for the collection of fragmentation data from static arena warhead
detonations [15]. This manual has been used to characterize dynamic
events during experiments using collection panels as well [16]. Also,
high-speed optical stereoscopic video (HSV) techniques have been
implemented for three-dimensional tracking of fragments after static
detonations [17,18].
The goal of this research paper is to combine the benefits of real-

world static detonation data with the benefits of machine learning
techniques trained or grounded by dynamic simulation data from
the NAWCWD fragment flyout research software. In effect, this
becomes a novel method to accurately characterize warhead frag-
mentation distributions in the dynamic case. The end product is an
equivalent transfer function that can predict in-flight fragment behav-
ior, even though experimental datamay only be available for the static
case. Whereas data from static arena detonations capture the effects
of real-world physics, simulation data allow the model to learn some
of the physical effects derived from high-speed detonation scenarios.
A model trained on a balanced combination of experimental and
simulation data learns to incorporate the physical effects present in
static experimental data along with the predictions for the dynamic
cases for which only simulation data are available. The trainedmodel
can estimate high-speed detonation fragment flyouts for those sce-
narioswhere only limited experimental data are available. Ultimately,
validation of the proposed model, along with the techniques pre-
sented in this paper, will be performed as dynamic warhead detona-
tion experiments become a reality and experimental data for the
dynamic case are available. This validation is a potential future work
that cannot be done now since the dynamic case experimental data are
not yet available.
This paper first gives an overview of the data available from static

arena tests and simulations in Sec. II. Then, an overview of the
machine learning techniques used, including Gaussian mixture mod-
els (GMMs) and random forest regressors, is given in Sec. III. The
problem statement, the proposed model architecture, and the process
for generating training data are given in Sec. IV. Monte Carlo
methods for evaluating the performance of the model are given in
Sec. V. Section VI presents the results of these Monte Carlo numeri-
cal evaluations. The results of assimilating experimental and simu-
lation data into the random forest training set are discussed in
Sec. VII. Future work is discussed in Sec. VIII, and conclusions
are given in Sec. IX.

II. Description of Available Data

Data are available for this research effort in two primary forms:
experimental data and simulation data. The experimental data come
from static pipe bomb detonations performed at NAWCWD at China
Lake. Similarly, the simulation data come from a research software
that is developed and maintained by the NAWCWD at China Lake.
The experimental data from the static pipe bomb detonations are

composed of 2, 5, and 7 mm ball-bearing tracks recorded from a pipe

bomb detonation experiment. A stereoscopic vision system is used

to perform fragment tracking, and so ball-bearing track data are

available on one side of the detonation. Photographs from the exper-

imental setup are shown in Fig. 1. An example of these ball-bearing

tracks is in Fig. 2. Due to the radially symmetric placement of ball

bearings around the pipe bomb, an assumption of symmetry is made

on the experimental data available. The tracks shown on the −Y side

of the detonation are assumed to have symmetric pairs on the opposite

side on the�Y side. Every fragment position [x, y, z] available in the
data is duplicated to the position [x, −y, z].
The simulations iteratively solve for the Langevin’s equations for

each fragment trajectory. The physics includes drag and lift models as

well as atmospherically realistic and community validated effects.

The simulations provide comprehensive track data of impelled ball

bearings for a variety of detonation attitudes and speeds. For the

experimental cases, the data-collecting instruments used are limited

in the number of recorded fragment tracks produced. In the simu-

lation cases, however, tracks for all of the 3861 simulated fragments

are available. The goal of this paper is to focus on leveraging these

two datasets (experimental and simulation) and derive a complemen-

tary Machine Learning (ML) model that captures anything in

between and expands on available applications. The simulation data

are available for a range of static and dynamic cases with varying

terminal speeds and system orientations at detonation. The delivered

simulation cases are shown in Table 1, and a diagram of the coor-

dinate system used in the simulations is shown in Fig. 3. The full

factorial design of the implemented cases resulted in 1100 total

simulations. In each simulation, a full time history of each fragment

was generated, resulting in 1.31 TB of data.

Fig. 1 Experimental setup for pipe bomb with 5 mm ball bearings to be
tracked through stereoscopic HSV.

Fig. 2 5 mm ball-bearing tracks from static detonation experimental
dataset.

Table 1 Table of NAWCWD simulation cases

Variables Simulation cases
Number
of cases Units

Terminal speed Magnitude 0, 152, 304, 457, 609,
762, 914, 1066, 1219,

1371, 1524

11 m∕s

Orientation of
weapon at
burst point

Pitch −90, −60, −30, 0 4 degrees

Yaw −60, −30, 0, 30, 60 5

Roll 0, 45, 90, 135, 180 5
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As a comment on uncertainty in the input data, and consequently
themodel, this research focuses only on using a prototypeML system
trained on empirical data available from experiments and simula-
tions. The consequences of both accuracy and/or inaccuracy of the
ML predictions stand at the same level as the accuracy of the
empirical data used currently. Unfortunately, given technological
experimental limitations in the state of the art, it is difficult to
ascertain current uncertainties. The accuracy implications, although
incredibly important, are indeterminate at this moment, and hence
outside of scope of this work. As new data become available, it is
conceivable that accuracy improvements would alsomaterialize. The
techniques demonstrated are limited by the same level of uncertainty
associated with the empirical data. The community of practice has
acknowledged the indeterminate quality of such data; however,
future technical improvements in data collection would allow vali-
dation of both current uncertainties as well as accuracy. Similarly,
once this is determined, the ML uncertainties and accuracies would
also manifest themselves since they represent analogous answers.

III. Used Machine Learning Topics

A. Multivariate Gaussian

Probability distributions are useful tools to describe the center,
spread, and shape of data. The Gaussian distribution is a good fit for
unimodal data that have a clear center and the characteristic sym-
metric bell shape. The single-variate Gaussian is defined by two
parameters: a mean μ that describes the data center, and a variance

σ2 that describes the data spread. It is defined as

N �xjμ; σ2� � exp�−�1∕2��x − μ�2∕σ2�����������
2πσ2

p (1)

Highermoments for the single-variateGaussian are constant, i.e., a
skewness of zero and a kurtosis of three. Equation (1) can be extended

to the multivariate case where data are in the form of vectors x,
requiring a mean vector μ and a symmetric covariance matrix Σ.
The multivariate Gaussian is defined as

N �xjμ;Σ� � exp�−�1∕2��x − μ�TΣ−1�x − μ��������������������
�2π�djΣj

p (2)

where d is the dimension of the data [19].
Often, the distribution of a given dataset has a shape too complex

for a single Gaussian (e.g., multimodal distributions). This effect is

apparent when, for a given simulation case, the intersection point

between fragment tracks and a spherical surface of defined radius R
are plotted on a polar–azimuth map. The polar and azimuth angles ϕ
and θ, shown on the “fragment location” inset in Fig. 3, can be

calculated from a surface intersection point [x, y, z] as

ϕ � tan−1
�

z����������������
x2 � y2

p
�

θ � tan−1
�
y

x

�

As an example, a polar–azimuthmap of track intersections through

a sphere with a radius of 76 m from the simulation case with a

detonation attitude of 90 deg in pitch, 0 deg roll and yaw, and a speed

of 0 m∕s is shown in Fig. 4, as well as the simulated fragment tracks

and sphere intersection points scaled to a unit sphere.

B. Gaussian Mixture Models

Although the use of only one multivariate Gaussian would not

make a good fit to the distribution in Fig. 4, it is possible to linearly

combine several to yield a probability distribution that fits these

more complicated multimodal data shapes. By performing a linear,

Fig. 3 Diagram of coordinate system used in simulations.
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weighted superposition of several multivariate Gaussian distribu-
tions, the Gaussian mixture model, which itself is a probability
distribution, can be defined as

p�x� �
XN
k�1

πkN �xjμk;Σk�

whereN is the multivariate Gaussian distribution from Eq. (2), N is
the number of components used, and πk are the mixing coefficients

where
P

N
k�1 πk � 1. The parameters that define a GMM therefore

include N mixing coefficients πk, N mean vectors μk, and N covari-
ance matrices Σk. GMMs can fit a distribution of arbitrary shape for
an infinite number of mixtures [19].
Directly fitting a probability distribution to a dataset is the process

of determining the parameters that maximize the likelihood that the
distribution predicts points in the dataset. Although there exists an
analytical method to fit a multivariate Gaussian to a dataset, fitting a
GMM to a dataset requires an iterative, numerical technique. The
most commonly used technique (and the one used in this study) is
Expectation Maximization (EM). Details on this technique can be
found in the work of Bishop [19].

C. GMM Considerations

GMM hyperparameters are different from GMM parameters,
which are themixing coefficients, means, and covariances that define
one specific GMM. The hyperparameters to choose when fitting a

GMM to a dataset include the number of components N and the

covariance type (i.e., full or diagonal). In the case of two-dimensional

data, a GMM with N components is defined by a total of 6N
parameters when full covariance matrices are used or 5N parameters

when diagonal covariance matrices are used. Although the use of full

covariance matrices requires an additionalN parameters over the use

of diagonal covariances, it allows the Gaussian distributions to fit

well to distributions that are misaligned with the coordinate axes of

the data. As an example, GMMs with four components, eight com-

ponents, full covariance matrices, and diagonal covariance matrices

were fit to a track intersection distribution; and the probability density

function (PDF) contour plots are shown in Figs. 5 and 6. The example

shown is for a simulated detonation with a pitch angle of 30 deg, yaw

and roll angles of 0 deg, and a speed of 0 m∕s.

D. Random Forest Regression

Random forest regressors are a useful regression tool that can be

trained tomap an input space to an output space.As computing power

has progressed, random forests have been an attractive prediction tool

where large datasets are available. Random forests are a machine

learning technique that makes use of many decision trees to make

predictions. Although a single decision tree fi overfits its training
dataset, random forests can avoid overfitting by fitting several deci-

sion trees on randomly selected training data points through the

process of bagging. For a given input, a trained random forest g
performs regression by taking the mean of all its individual trees

Fig. 4 Simulated fragment tracks after detonation (top-left), fragment track intersection points scaled to unit sphere (top-right), polar-azimuth map of
simulation track intersection points (bottom).
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g�u� � 1

M

XM
i�1

fi�u�

whereu is an input vector to the random forest, and the hyperparameter
M is the number of trees used to build the random forest [20].

IV. Model Overview

A. Problem Statement

The goal of this research is to create a transfer function that can
predict in-flight fragmentation behavior using static arena experi-
mental data and high-fidelity numerical simulation data. Specifically,
the tool will predict, based on a terminal state of the warhead, the
number of fragments that pass through a defined surface. System
terminal state information includes the warhead detonation attitude
(roll, pitch, and yaw angles) and velocity. Surfaces are defined by a
polar and azimuth range on the surface of a sphere of defined radius.
Predictions are based only on the system terminal state for the specific

case of 5 mm ball bearings. In this investigation, the methodology of

predicting fragment counts is discussed in detail, and a version of the
discussed methods can be explored in future investigations regarding

mass and velocity predictions.

B. Architecture Overview

The proposed implementation to fulfill the goals set in the problem

statement involves the use of a machine learning regressor (i.e., a
random forest) to predict probability distributions of fragment track

intersections on polar–azimuthmaps. Given an input system terminal
state and sphere radius, a random forest is used to predict the GMM

parameters of the track intersection probability distribution and the
total number of fragments. In other words, the random forest input u
includes warhead terminal state information (i.e., roll angle, pitch
angle, yaw angle, and speed) and a radius at which to predict a

fragment track intersection distribution. The random forest output
g�u� contains the GMM means μk, covariances Σk, mixing coeffi-

cients πk, and the total number of fragments reaching and passing

Fig. 5 Four-component GMMs fit to track intersections for both diagonal (top) and full (bottom) covariance matrices. Contour lines represent lines of

constant probability density for GMM. Simulation case is for a static detonation at 30 deg pitch and 0 deg yaw and roll.
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through the sphere’s entire surface Ntotal. The weapon type is not

currently used as a training input since simulation data are only

available for one simulated warhead with ball-bearing fragments.
Using this predicted GMM and a given surface defined by polar–

azimuth boundaries, an integration of the GMM can be performed to

calculate a predicted number of fragments crossing this region of the

sphere surface. For a given probability distribution p�x� of fragment

track intersections on the entire surface of a sphere, and given a region

Son the sphere surface, the number of fragments that pass through the

defined surface region is

Nfrag � Ntotal �
Z Z

S
p�x�dS

where Ntotal is the total number of fragments passing through the
sphere’s entire surface; and dS � dϕdθ, where θ is the azimuthal
angle andϕ is the polar angle. The total volume under themultivariate
probability distribution represents all track intersections, whereas the
volumeunder a specific region represents the proportion of fragments
that cross in that region. A diagram of the implemented model is
shown in Fig. 7.

C. Generating Training Data

Regressor training data are generated from 1100 simulation
results, based on NAWCWD research software. For each simula-
tion, a set of radii are generated. Looping through each radius,
polar–azimuth maps of track intersections are generated, GMMs

Fig. 6 Eight-component GMMs fit to track intersections for both diagonal (top) and full (bottom) covariance matrices. Contour lines represent lines of
constant probability density for GMM. Simulation case is for a static detonation at 30 deg pitch and 0 deg yaw and roll.
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are fit to the intersection distributions via expectationmaximization
[19,21], and the total number of intersections is counted. The
system terminal state (i.e., attitude and velocity) associated with
the simulation case and the randomly generated radius are saved as
regressor training inputs to the regressor. The GMMparameters and
the total intersection count are saved as regressor training outputs.
The “test data” for the ML model are extracted from randomly
selected track intersection distributions not included in the training
dataset, as is discussed with the performance evaluation meth-
ods (Sec. V).
It should be noted that the EM is highly dependent on its initial-

ization since it finds a local optimum (not the global optimum). By
default, many EM implementations randomly initialize the mean
vector locations. With randomized initialization, the ith mean vector
may not converge to the same location for repeated fits to the same
dataset. Additionally, mean vectors may trade their convergence
points for repeated fits to the same dataset. This lack of consistent
ordering poses a problem for training any regressor to predict GMM
parameters. The random forest would not properly learn which
components correspond to which outputs. It is therefore necessary
to implement a strict initialization strategy for fitting GMMs during
training data generation. In this study, GMM components were
initialized at a specified point on the sphere surface so that they
converge deterministically in a specific order. This initialization
provides consistency in the ordering of the GMM components pre-
dicted by the random forest.

V. Performance Evaluation Methods

A. Direct Fit GMMs

The first set of tests on the model is to strictly evaluate the
performance of GMMs. It is imperative to understand how good of
a fit GMMs are to the intersection distributions. This evaluation is
done via a Monte Carlo simulation that compares fragment counts
predicted by integration of a GMM fit directly to intersection dis-
tributions versus direct counts of the intersections.
First, fragment tracks are pulled from a random simulation

case, and a single radius and polar–azimuth range are randomly
generated. A GMM is then directly fit via expectation maximiza-
tion to the track intersection distribution on the generated radius.
The GMM is integrated on the generated polar–azimuth range
and multiplied by the total number of directly counted inter-
sections to get a predicted fragment count. The number of
fragments that pass within the polar–azimuth range are also
directly counted. The predicted counts are compared to the
direct counts, and a 95% confidence error analysis is performed.
Higher moments (i.e., skewness and kurtosis) are calculated, and
the Anderson–Darling test for normality is performed [22]. A

diagram of the implemented Monte Carlo method is shown

in Fig. 8.

B. Full Model Monte Carlo Method

The capability of the chosenmachine learning regressors to predict

GMMs that accurately describe the track intersection distributions on

a sphere surface for a given system terminal state is determined by

evaluating the performance of the full model described via a Monte

Carlo simulation.

First, the system terminal state is pulled from a random simulation,

and a radius and polar–azimuth range are randomly generated. These

randomly generated conditions correspond to track intersection

distributions not seen in the random forest training dataset and can

therefore serve as the test dataset. A direct count of fragments through

the polar–azimuth range is calculated from the simulation data.

Then, the trained regressor [23] uses the system terminal state and

radius to predict the total fragment count and the GMM parameters.

The GMM is integrated and multiplied by the predicted total frag-

ment count to get a predicted count of fragments through the defined

surface. The predicted counts are compared to the direct counts, and a

95% confidence error analysis is performed. Higher moments (i.e.,

skewness and kurtosis) are calculated, and theAnderson–Darling test

for normality is performed [22]. After many runs with randomized

conditions, the count error distribution is plotted as a PDF for one of

the cases. A diagram of the Monte Carlo method described is shown

in Fig. 9.

Fig. 7 Diagram of proposed model to predict fragment counts.

Fig. 8 DiagramofMonteCarlomethod evaluatingGMMs fit directly to

track intersection data.

Fig. 9 Diagramof theMonteCarlomethod to evaluate the performance
of the full model.
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VI. Monte Carlo Numerical Results

A. Direct Fit GMMs

The performances of GMMs are evaluated for four different sets of
hyperparameters, shown in Table 2. One could usemanymore GMM
components than were used in the four cases listed; however, using
too many components in the GMM could overfit a specific track set
and radius. Additionally, the random forest regressor in this model is
tasked with predicting a higher-dimensional space than its input.
Although the four-component diagonal covariance GMMs have

visibly poorer fits than the other three GMM types, Monte Carlo
simulations are still run on cases 1 and 2 in order to evaluate the fit
numerically and not just visually. Additionally, it may be the case that
higher-order GMMs fit the data better, but it would be wrong to
assume the random forest can predict low- and high-order GMMs
equally well. This does, however, turn out to be true for the cases
used. The 95% confidence interval, standard deviation, skewness,
and kurtosis for the fragment count errors from the direct fit Monte
Carlo numerical simulations are provided in Table 3. Generally
speaking, good performance of the model is characterized by a
confidence interval that includes zero error and a small standard
deviation.
Performance of the GMM increases when the number of compo-

nents is increased from four to eight, as seen in the results in Table 3.
The confidence interval includes zero error for the two diagonal
covariance cases (cases 1 and 3); however, there is a tradeoff with
the lower standard deviations in the full covariance cases (cases 2
and 4). The substantial decrease in the error standard deviation
indicates that fewer of the Monte Carlo runs resulted in large count
errors. Additionally, the Anderson–Darling normality test results in
rejection of the hypothesis that the error distribution is Gaussian for
all four cases. Although the difference in standard deviations result-
ing from switching the covariance type from diagonal to full is
smaller than that which results from increasing the number of com-
ponents, it is enough to justify running the full model Monte Carlo
simulation on all four cases.

B. Full Model Monte Carlo Method

Although the results of the direct fit GMM Monte Carlo simula-
tions represent how accurate of a fit GMMs are to the intersection
distributions, the ability of the random forest regressor to predict the
GMMs is evaluated via the Monte Carlo method on the full model.
The 95% confidence interval, standard deviation, skewness, and
kurtosis for the fragment count errors from the full model Monte
Carlo numerical simulations are provided in Table 4. A PDF of the
count error distribution that results from the full model Monte Carlo
simulations performed is provided for case 4 in Fig. 10.
As expected, the performance of the predicted GMM is not

as accurate as the directly fit GMM. This reduction in performance
is indicated by the increase in the standard deviation of count
differences. One similarity between the direct fit Monte Carlo

simulation and the full model Monte Carlo simulation is that case
4 (i.e. eight components and full covariance) yields the lowest
standard deviation of fragment count differences. Only case 1 yields
a confidence interval that includes zero error; however, there is a
tradeoff with it having the highest standard deviation of count
errors. Additionally, the Anderson–Darling normality test results
in rejection of the hypothesis that the error distribution is Gaussian
for all four cases.
To better understand which Monte Carlo simulation runs yield

high count differences, an example of a high count difference can be
examined. Plots of the intersection distribution, predicted GMM, and
directly fit GMM are shown in Fig. 11. For a given polar–azimuth
range of this specific run, the model predicted 222 fragments,
whereas 80 are counted directly (difference of −130). The predicted
total fragment count is 1985, whereas the directly counted total is
1997 (difference of only 12).
Although visual inspection of the regressor predicted GMMmight

indicate it is a good fit to the intersection distribution, the Monte
Carlo simulation run allowed for the realization of high count
differences. At close inspection of the plots in Fig. 11, the contours
of the GMMs can be seen. The direct fit GMM shows high-valued
contours passing through a smaller portion of the polar–azimuth
boundary rectangle than the high-valued contours of the regressor
predicted GMM. Higher-valued contours passing through a larger
portion of the integration box yield a higher fragment count predicted
by integration of theGMM. Evenwhen the predicted GMM is a close
match to a GMM directly fit to the intersection distribution, slight
differences in the contours can lead to a few high count differences in
polar–azimuth boundaries on the edge of the distribution. Despite
these few instances of high count differences, the random forest
regressor has demonstrated its ability to learn to predict the param-
eters of a GMM that accurately describes the fragment distribution
for a given warhead system terminal state.
Since the intended application of the developed technique is to

allow for fast prediction of fragment flyouts, some discussion and
comparison of the computational runtimes iswarranted. It should be
noted that the machine used to run the detonation simulations is

Table 3 Error statistics from the GMM direct fit Monte Carlo

numerical evaluations

Case 95% confidence interval Standard deviation Skewness Kurtosis

1 [−0.18, 0.06] 20.0 1.4 30.0

2 [−0.31, −0.12] 16.0 0.97 29.0

3 [−0.046, 0.071] 9.9 1.5 41.0

4 [−0.093, −0.0022] 7.7 0.41 26.0

Table 4 Mean and standard deviation of fragment count differences
from full model Monte Carlos

Case 95% confidence interval Standard deviation Skewness Kurtosis

1 �−0.75, 0.15] 32.0 −1.0 34.0

2 [−0.86, −0.029] 30.0 −1.5 35.0

3 [−1.0, −0.36] 23.0 −2.0 49.0

4 [−1.1, −0.43] 22.0 −2.1 59.0

Fig. 10 Histograms of count differences from full model Monte Carlos
for case 4.

Table 2 Hyperparameter variation for
GMMs

Case Number of components Covariance type

1 4 Diagonal
2 4 Full
3 8 Diagonal
4 8 Full

8 Article in Advance / MULEKAR ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
FL

O
R

ID
A

 o
n 

A
ug

us
t 1

1,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
06

02
26

 

https://arc.aiaa.org/action/showImage?doi=10.2514/1.J060226&iName=master.img-009.jpg&w=239&h=190


different from the machine used to train and run the model devel-
oped in this study. The simulation setup time is measured in
minutes, whereas runtimes can vary; depending on the scenario
being computed, the runtime ranged from minutes to up to 2 h. The
machine learning computational time is similarly split into two
constituents: in this case, the training and prediction runtimes.
Setup and training of the machine learning algorithm ranged from
1 to 3 min, whereas the trained model takes less than 1 s to predict a
fragment intersection distribution at a single radius. It should be
stressed that this computation time comparison is only qualitative
since 1) the two techniques are not exact analogies because they
focus on different computational regimes, 2) the developedmodel is
not intended to be a replacement for the high-fidelity simulations

given their different applications, and 3) both the high-fidelity
simulations and machine learning algorithms are still developmen-
tal in nature, and hence there is opportunity for code optimization in
the future.

VII. Assimilation with Experimental Data

So far, the model performance has only been assessed in the
prediction of fragment–surface intersection distributions appertain-
ing to simulation data. Although theMonte Carlo simulations used to
evaluate the model performance showed that the random forest
regressor is able to predict distributions that match what is seen in
simulation data, it is important to recall the ultimate goal of predicting

Fig. 11 Monte Carlo simulation run resulting in high count difference. The black rectangle is the polar–azimuth boundary for this case.
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real-world behavior of warhead fragment flyout. Although the data
from dynamic warhead detonations are not available, it is still pos-
sible to resolve the difference between the model predictions and the
static arena experimental data, and thenmake qualitative assessments
of predicted fragment–surface intersection distributions in various
high-speed cases. An assessment of the distribution features in the
simulation and experimental data can be used to determine how this
assimilation must be performed. Another Monte Carlo numerical
simulation can be used to evaluate the validity of the assimi-
lated model.

A. Distribution Features: Simulation Versus Experimental

Although simulation cases are available for various detonation
attitudes and speeds, the real 5mmball-bearing experimental data are
available for the specific case of pitch, yaw, and roll angles of 0 deg,
as well as a speed of 0 m∕s. The track intersections distribution
from the simulation for this specific static case as well as the track

intersection distribution from the experimental data are shown in
Fig. 12. The distribution is shown on both the surface of a unit sphere
and on a polar–azimuth map.
There are a few key feature differences that can be observed in

the intersection distributions. The features that both distributions
share are the columns of intersection points at azimuth angles near
�90 deg. One example of a feature of the experimental data distri-
bution tha tis not present in the simulation data distribution is the
presence of intersections on the �X side of the detonation. On a
polar–azimuth map, this feature corresponds to intersection points
seen at azimuth angles close to zero. One example of a feature present
in simulation data distributions not seen in the experimental data
distribution are the sections of intersection columns at polar angles
above 60 deg and below about 5 deg. Missing regions in the exper-
imental data distributions are expected since data are only available
for some of the fragments that pass through the camera fields of view.
However, the regions of data not present simulation data distributions

Fig. 12 Track intersection distributions shown on polar–azimuth map and scaled to unit sphere for static simulation case (top) and real static test
(bottom).
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directly affect model predictions when included in the training set for

the random forest. Therefore, amethod of assimilating the simulation

and experimental data is needed so that the regressor can predict

features of both.

B. Assimilation Method and Assessment

The discrepancy in the distribution features seen in simulation and

experimental data can be resolved by assimilating random forest

training data. GMMs fit to experimental data are combined into the

dataset of GMMs fit to simulation data. A Monte Carlo method that

randomizes the polar–azimuth boundary of integration on a single

GMMprediction is used to assess the performance of the assimilated

model. Each sample from experimental data corresponds to a radius

at which regressor training data are produced, and samples not in the
training set are used as a test set in the Monte Carlo simulation.
Assessment is done by comparing count proportions and visual

inspection for specific distribution features. In the previously pre-
sented Monte Carlo assessments, model predicted counts are
compared to direct counts from simulation data for performance
evaluation. This evaluation technique is not appropriate for predic-
tions compared to experimental data because the total number of
fragment tracks in experimental data is close to 400 (close to 800
when duplicated), and 3681 fragments are simulated. Since most of
the random forest’s training set comes from simulation data, the
regressor always predicts higher fragment counts than what appears
in the experimental dataset. The “integration error” is used in place of
the count difference, and it is defined as

Fig. 13 Predicted GMMs from random forests trained with (from top to bottom) 0, 100, 200, and 400 experiment samples in its training set. GMM
contours are overlaid onto experiment intersection data.
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Ierror �
Ndirect

Ndirect;total

−
Z Z

S
p�x�dS (3)

where p is the GMM predicted by the random forest. A 95% con-

fidence interval is calculated for the integration error distribution.

Higher moments (i.e., skewness and kurtosis) are calculated, and the

Anderson–Darling test for normality is performed [22].
The tradeoffs of this assimilation method and the analysis of an

assimilated model’s performance should be noted. It is not time

consuming to retrain a random forest compared to the time required

to preprocess simulation data into training sets. Also, allowing the

random forest to learn directly from experimental data guarantees

that it will learn some features from the static arena detonations.

Including experimental data in the training set for the random forest,

however, could lead to overfitting. It is possible that the random forest

may simply learn the features of the test data and may not learn the

general patterns of the distributions. The best validation for the

assimilated model will come from a real dynamic detonation test.
At present, evaluation can be performed from the prediction of static

cases and the visual inspection of features in dynamic cases.

C. Assimilation Results and Predictions

The number of samples from experimental data corresponds to the
number of different radii at which track intersection distributions

were used to fit GMMs. The Monte Carlo method evaluating the

GMM prediction from a random forest trained with zero experimen-

tal samples was performed first to be used as a reference. Then, the

Monte Carlo method was run for various amounts of experimental

Fig. 13 (Continued)
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data samples included in the random forest training set, from 75 to
400. The predictedGMM for the static casewith 0 deg roll, pitch, and
yaw at a 7.62 m radius is shown as a contour plot overlaid onto
experimental sphere intersection points. The plots for the cases of 0,
100, 200, and 400 experiment samples included in the training set are
shown in Fig. 13.
In the case of only zero experimental samples included in the

training set, the predicted GMM closely matches the distribution
from the simulation data seen in Fig. 12, and there are no distinct
features of the experiment distribution visible, as expected. After
increasing the number of included samples to 100, the predicted
GMM shape begins to morph away from the distribution shape seen
in just the simulation data. After increasing the number of included
samples to 200, the predicted GMM shape shows features of both the
simulation and the experiment data. The 95% confidence interval,
standard deviation, skewness, and kurtosis for the fragment integra-
tion error from Eq. (3) for eachMonte Carlo simulation are shown in
Table 5. Again, count differences would not be appropriate for the
assimilated model since the random forest is expected to greatly
overpredict the number of fragments seen in experimental data
because not all fragments are tracked in experimental data.
The Anderson-Darling normality test results in rejection of the

hypothesis that the integration error distribution is Gaussian for all
cases. Since performance of the assimilated model is roughly char-
acterized by a mean integration error close to 0% and small standard
deviations, Table 5 shows that as more experiment samples were
added to the training set, performance of the model increases up
to a point between 100 and 400 added experimental samples. This
characterization of good performance should be used cautiously,
however, to avoid the effects of overfitting. A good model should
not be expected to predict the experiment data perfectly, since the
experiment data itself is not perfect, and it has regions of missing
data where the cameras are unable to track fragments. However,
combining performance indicated by the integration difference with
the inspected features in the predicted GMMs can indicate that
the random forest is predicting good GMMs without overfitting its
training set.
In addition to the evaluation of the features present in the predicted

GMM, an assessment of the symmetry assumed on the experiment
data, and the preservation of this symmetry in the predicted GMMs is
useful. The GMM predicted from a random forest trained on both
simulation and experiment data can be integrated across a hemi-
sphere. An integral yielding a value of 0.5 indicates total preservation
of symmetry. A plot of the predicted GMM with a box around the
region integrated is shown in Fig. 14.
The integral yields

Z
π

0

Z
π∕2

−π∕2
p�x� dϕdθ � 0.5054

where ϕ is the polar angle, and θ is the azimuthal angle. This
integration indicates that a small amount of symmetry is lost during
the assimilation of the data. However, this small amount of lost
symmetrymeans that, in general, the random forest is able to preserve
symmetry in its predictions.
The ultimate goal of this investigation is to create a prediction tool

for the characterization of warheads detonating at high speeds. For

the case of the same attitude of 0 deg pitch, yaw, and roll, a GMMcan
be predicted by the random forest for various speeds (here presented
between 0 and 1524 m∕s at 305 m∕s intervals). Plots of the predicted
GMMs for a radius of 7.6 m and intersection points randomly
generated from the predicted GMMs for detonations at these various
speeds are shown in Fig. 15. The plots show that as thewarhead speed
parallel to the ground increases, the spread of the intersection dis-
tribution decreases and converges to the region corresponding to the
direction of the warhead’s speed.
The results of the presented attempt at assimilating experimental

and simulation data into a single training set show that the random
forest is capable of learning to predict GMMs with an appropriate
combination of features from both datasets in the static case. In
dynamic cases, the assimilated model predicts distributions that
change in accordance with physical expectations. Namely, higher-
speed scenarios yield spatial distributions in more dense clusters in
the direction of motion than do lower-speed detonations. The novel
method explored in this paper represents the transfer function that
could potentially predict high-speed fragment flyout behavior,
despite only static experimental detonation data being available
and while leveraging high-fidelity numerical flyout calculations.
The GMM prediction and integration to yield a fragment count
represent a new ability to quickly estimate collateral damage and
lethality for a given detonation scenario. Dynamic warhead detona-
tion experimental datawould be used to further provide confidence in
verifying and potentially validating the model.

VIII. Future Work

Future work will be directed toward characterizing model perfor-
mance on the prediction of data available from static arena tests that
do not use ball bearings. Data from static arena tests with natural
fragmentation will be incorporated into the model. In addition, a
method to predict mass and velocity distributions of fragments cross-
ing a sphere surfacewill be implemented via amodified version of the
techniques described in this paper. Velocities of fragments that
intersect the sphere surface will be considered weights on the inter-
section point, and a version of expectation maximization developed
by Gebru et al. [24] for weighted data will be used to fit GMMs to the
fragment intersection distributions. A similar technique can be used
for prediction of mass distributions as well. Other future work can
explore methods to incorporate fragmentation theory into the model.
Another popular regressor that predictsmixturemodels is themixture
density network [25]. This neural network architecture can be
explored in a future investigation. Another potential project is the
exploration of mixture models that are made from probability dis-
tributions other than the multivariate Gaussian. Other distributions

Table 5 Error analysis for integration errors evaluated fromEq. (3)a

Experimental
samples assimilated
into training set

Confidence
interval

Standard
deviation Skewness Kurtosis

0 [−0.0072, 0.37] 3.1 −0.01 4.8

100 [0.37, 0.64] 2.2 0.64 5.3
200 [0.34, 0.65] 2.5 0.53 4.8
400 [0.37, 0.64] 2.1 0.88 5.1

aThe confidence intervals and standard deviations are given as percentages.

Fig. 14 Predicted GMM with assimilated data integrated in the shown
box to evaluate preservation of symmetry.
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include the Poisson, gamma, and t distributions. A generalized

mixture model can be defined as

p�x� �
XN
k�1

πkP�xjΘk�

whereP is the base probability distribution that composes themixture

model, and Θk are the distribution parameters (e.g., the mean and

covariance for the Gaussian) [19].

The methods described predict the spatial distributions of frag-
ments given a set of training data. Because the training data (which at
present come primarily from dynamic simulations) as well as the
methods used are refined, the fragment distribution prediction
performance as evaluated on real experimental data will improve.
These novel techniques will ultimately be verified once dynamic
warhead detonation experimental data become available. As it stands,
it was demonstrated that experimental and simulation datasets can be
assimilated into a model that can perform fast prediction of fragment
flyout from both static and high-speed terminal configurations.
These fragment flyout predictions can be used for fast estimation

Fig. 15 Predicted distributions and randomly generated intersections for detonations at (from Figs. 15a to 15a) 0, 305, 610, 915, 1220, and 1525 m∕s.
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of lethality and collateral damage caused by the high-speed detona-
tion of warheads, allowing for more informed decision-making
regarding warhead application to targets. Better informed decisions
regarding warhead application will lead to reduced unintended
damage to structures and personnel that surround specific targets in
combat zones.

IX. Conclusions

This study aims to investigate techniques to predict warhead frag-
ment flyout characteristics, making use of fragment tracks from
dynamic simulation data and a real static detonation test. A random

forest regressor is successfully trained to predict the number of frag-
ments that passes through a sphere surface of a given radius as well as
the probability distribution of fragment intersections on that sphere
surface in the form of a Gaussian mixture model. The GMMs are
integrated over some polar–azimuth range and multiplied by the
predicted total number of fragments to yield a fragment count that
passes through a specific region on the sphere surface. Monte Carlo
simulations are used to evaluate the performance of the developed
model, showing that it is capable of accurately predicting fragment
intersection probability distributions based on its training set. Gen-
erally, an eight-component GMM with full covariances fits well to
intersection data, and a trained random forest regressor is able to

Fig. 15 (Continued).
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predict the parameters for such a GMM. The model is merged with

experimental data, and the performance of this assimilated model

is evaluated via visual inspection of the features in experimental

and simulation intersection distributions as well as the integration

differences from a Monte Carlo simulation. It is shown that the

assimilated model is able to learn the features of both the simulation

and the experimental data. Although this ability to learn features of

both datasets does not on its own validate the model, it does indicate

that this new tool has utility in the warhead fragmentation realm. The

model does in fact make predictions that make physical sense

for dynamic detonations (i.e., distributions close in on the warhead

direction of motion). It is expected that model predictions will
improve as more experimental and simulation data are fed onto
the training set. Although the ability to predict still lies within the
confines of this initial rendition and scenario, it shows great promise
as it can be expanded to predict more geometries such as mass and
speed distributions.
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