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a b s t r a c t

Atmospheric density is the most important factor for accurate estimation of the drag force
exerted on spacecraft at Low Earth orbits. Empirical models provide the most accurate
estimation of the density currently available, although they still suffer from estimation
errors. This work presents a novel approach based on Neural Networks for reducing the
error in the density estimated by empirical models, along the orbit of a spacecraft. The
Neural Networks take as inputs the density estimated by DTM-2013, NRLMSISE-00 and
JB2008, three of the latest empirical atmospheric models available. Density estimated
from the accelerometers of the CHAMP and GRACE missions are used as targets for the
training, validation and testing of the Neural Networks. In addition, this work studies the
use of the spacecraft's average speed as an input to the Neural Networks. The test results
indicate that the Neural Networks produce density estimates with less error than the
density from the three empirical models studied.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Low Earth Orbits (LEO) contain the majority of artificial
satellites currently in operation. At LEO, atmospheric drag
force becomes a significant factor in the motion of spacecraft.
For spacecraft below 700 km the drag force is the second
most dominant force after gravity. Consequently, for accurate
orbit propagation and determination, accurate estimation of
the drag force is fundamental. The physical properties of the
spacecraft (mass, crosswind area and drag coefficient) and the
medium through which it flies (atmospheric winds and
density of the medium) determine the drag force. However,
as indicated in [1], the density is the parameter with the
largest variations. Hence it is critical to properly model the
ll rights reserved.
density in order to estimate the drag force accurately, and
therefore to correctly model the motion of spacecraft in the
thermosphere. The density variations are caused by the
drastic and sudden changes that can occur in the thermo-
sphere (80–640 km as defined in Ref. [2]). These changes are
driven by the Sun's interaction with the thermosphere
through solar radiation and solar wind. In turn, these phe-
nomena are driven by solar activity which is still not fully
understood. Therefore, accurately modeling the density in the
thermosphere is a challenging problem that has received
increasing interest in recent years. In addition, to improve
orbit propagation and determination, a better density/drag
estimation will be useful for further developing methods for
maneuvering spacecraft at LEO using differential drag (see
Refs. [3–8]). The doctoral dissertation of one of the authors [9]
shows an example of how an accurate knowledge of the
density/drag force can be used for creating realistic guidance
trajectories for coplanar relative maneuvering of spacecraft
using drag forces. Any drag/density estimation method used

www.sciencedirect.com/science/journal/00945765
www.elsevier.com/locate/actaastro
http://dx.doi.org/10.1016/j.actaastro.2014.12.018
http://dx.doi.org/10.1016/j.actaastro.2014.12.018
http://dx.doi.org/10.1016/j.actaastro.2014.12.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2014.12.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2014.12.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2014.12.018&domain=pdf
mailto:perezd4@ufl.edu
mailto:bevilr@ufl.edu
http://dx.doi.org/10.1016/j.actaastro.2014.12.018


Nomenclature

A Spacecraft cross-wind section area for chaser
and target spacecraft

ad Drag acceleration
ATMOP Advanced Thermosphere Modeling for Orbit

Prediction
B Bias in the artificial neuron
CHAMP CHAllenging Minisatellite Payload
CD Spacecraft drag coefficient
DCA Dynamic Calibration of the Atmosphere
DDTM Number of delays for the density estimated by

DTM-2013
DJB Number of delays for the density estimated

by JB2008
DMSISE Number of delays for the density estimated by

NRLMSISE-00
DS Number of delays for the averaged speed
DTM Drag Temperature Model
Dst Disturbance storm index, geomagnetic

activity index
FTDNN Feed Forward Time-Delay Neural Network
f( . ) Overall nonlinear function for the FTDNN
F10.7 10.7 solar radio flux, solar extreme ultraviolet

radiation index
F20 20-cm solar flux
Fd Magnitude of the drag force
g( . ) Overall nonlinear function for the RTDNN
GRACE Gravity Recovery and Climate Experiment
HASDM High Accuracy Satellite Drag Model
JB Jacchia-Bowman
LEO Low Earth orbit
m Spacecraft's mass

MADM Modified Atmospheric Density Model
M10.7 Middle solar ultraviolet radiation index
MgII Ratio of the irradiance at the core of the Mg II

feature, solar radiation index
MSE Mean squared error
MSIS Mass Spectrometer and Incoherent

Scatter Radar
n Number of samples in a data set
N Number of inputs for the Neural Networks
R Pearson correlation coefficient
RMSE Root mean squared error
RTDNN Recurrent Time-Delay Neural Network
SIP Solar Irradiance Platform
S10.7 Solar extreme ultraviolet radiation index
sρ̂, sρ Standard deviations of the Neural Network

outputs and targets
s Spacecraft's speed averaged over the previous

orbital period
t Time
ts Sampling period of the density data
vs Spacecraft velocity vector magnitude with

respect to the Earth's atmosphere
W Weight in the artificial neuron
x Input of the artificial neuron
y Output of the artificial neuron
Y10.7 Solar X-ray emission index
ρ Atmospheric density
ρ̂ Atmospheric density estimated by the Neural

Networks
ρDTM Atmospheric density estimated by DTM-2013
ρJB Atmospheric density estimated by JB2008
ρMSISE Atmospheric density estimated by NRLMSISE-

00
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for autonomous maneuvering using the drag forces, must be
able to run on-board and to provide real time density
estimations.

Since the early 1950s many different atmospheric
models have been developed for calculating the main
parameters of the thermosphere, including density. A
summary of the different models available is presented
by Vallado in [10], chapter 8.6.2. These models can be
classified into empirical and physics-based models.
Physics-based models, also known as global circulation
models, solve the equations that govern the thermal,
electromagnetic, chemical, and flow dynamics in different
regions of the atmosphere. However, the physics-based
models can suffer from bias caused by misrepresentation
of the physics in the atmosphere (see Ref. [11]). In addi-
tion, physics-based models are computationally intensive
since they calculate the state which often contains large
numbers of variables and this is done over large portions
of the atmosphere. For these reasons, physics-based mod-
els are not commonly used for orbit propagation and
determination and are certainly not suitable for onboard
implementation.

The alternative to the physics-based models are the
empirical atmospheric models. As explained by Vallado
et al. [12], most of the recent efforts in this field are
focused on improving existing models. This has resulted in
classes of atmospheric models consisting of improvements
of a previously developed model. The Jacchia models are
one of the most used classes of models. The earliest of
these empirical atmospheric models is the Jacchia 1960
model [13], which uses an empirical formula that esti-
mates the density as a function of the geometric height,
the 20-cm solar flux (F20) and the angular distance to the
center of the diurnal solar bulge. Further improvements on
this model, include Jacchia models from 1970 [14], 1971
[15], 1977 [16], Jachhia-Roberts [17], up to Jacchia-Bowman
2006 (JB2006) [18] and 2008 (JB2008) [19]. The Mass
Spectrometer and Incoherent Scatter Radar model (MSIS-
77) [20] is the first model of the MSIS class of empirical
models. MSIS-77 uses data from satellites as well as
ground-based measurements from incoherent scatter
radars to estimate density. Several improvements to the
original MSIS from 1977 were made, including MSIS-86
[21], MSISE-90 ([22]), and NRLMSISE-00 developed by the
U.S. Naval Research Laboratory [23]. Another class of
empirical atmospheric models is the DTM class. The ear-
liest of these models is the Drag Temperature Model
(DTM-78) [24], which was developed in terms of spherical
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harmonics, using data covering nearly two solar cycles.
This model has been further developed as DTM-94 [25];
DTM-2000 [26], the first model to use the MgII index,
which represents the solar UV and EUV emissions instead
of the F10.7 index; DTM-2009 [27], used assimilated
density data derived from the accelerometers onboard
the CHAllenging Minisatellite Payload (CHAMP) [28] and
Gravity Recovery and Climate Experiment (GRACE) mis-
sions [29]; DTM-2012 [30], developed by the Advanced
Thermosphere Modeling for Orbit Prediction (ATMOP)
project and DTM-2013 [31], which is the latest of the
DTM models.

There has also been some interest in developing meth-
ods for calibrating previously developed models. The
Modified Atmospheric Density Model (MADM) [32] uses
observations from one calibration satellite to generate a
global calibration factor that allows for the improvement
of the Jacchia 1970 model. A further refinement of these
principles resulted in the High Accuracy Satellite Drag
Model (HASDM) [33–35]. HASDM uses the Dynamic Cali-
bration of the Atmosphere (DCA) [36] to calibrate the
Jacchia 1970 model, based on observations from 75 cali-
bration satellites, and thus produces an improved time
varying density field. In addition, a method has been
developed for exploiting precision orbit ephemeris (POE)
of a spacecraft as observations to calibrate the density
estimated by an empirical atmospheric density model
along its orbit [37–39]. The models calibrated using this
method were Jacchia 1971, Jacchia-Roberts, Committee on
Space Research (COSPAR) International Reference Atmo-
sphere (CIRA) 1972 [40], MSISE-90, and NRLMSISE-00.
Shoemaker et al. developed a method for correcting
(calibrating) a density model using a tomography based
approach [41]. Measurements of the changes of the spe-
cific energy of spacecraft are used to solve for corrections
factors using Tikhonov regularization.

Neural Networks have been widely used for many
different applications over the last couple of decades (see
[42–45]). Over the last two years, there has been an
increasing interest in utilizing Neural Networks for appli-
cations in the field of space weather. Yu et al. [46]
presented a method for calculating the third adiabatic
invariant Ln using a Neural Network instead of the com-
putationally expensive line integration method used in the
past. The Neural Networks were trained using empirical
magnetic field models. This method was further extended
in [47] to drift shells obtained from a physics-based
magnetic field model. Choury et al. [48] presented a
method for forecasting the exospheric temperature, which
can be used for obtaining more accurate density predic-
tions. Ref. [1] presents a method for predicting the density
of a spacecraft along its future orbit using Neural Net-
works, provided that the value of the density at the
present is known.

This work presents a method for calibrating empirical
density models in order to obtain a more accurate estimate
of the density. The method consists of combining the
outputs of the three latest models of the MSIS, DTM and
Jacchia classes of models (NRLMSISE-00, DTM-2013 and
JB2008 respectively), along the orbits of a spacecraft. By
using the densities estimated by the three models along
the orbit of the spacecraft, as inputs to Time Delay Neural
Networks, a more accurate value for the density is pro-
duced. This method exploits the flexibility of Neural Net-
works to process diverse inputs, in order to calibrate
multiple models at the same time instead of only one as
previously done [32–39]. The Neural Networks are trained
and validated using accelerometer-derived data from the
GRACE [29] mission, during January 2003 as targets. In
essence the networks combine the density estimates from
the three models and improve them by assimilating the
accelerometer density data. Hence, the networks calibrate
the density estimates using the assimilated data. An
evaluation of performances is obtained through tests using
the accelerometer-derived data as targets, which were
collected by the CHAMP [28] mission. In the first tests
the Neural Networks and the models are tested along the
orbit of CHAMP from January to September 2007. Two days
from this time interval were selected to examine the
performance of the Neural Networks and the models
during days of high and low solar and geomagnetic
activity. A final test was done using CHMAP density data
from 2004 to 2008.

Two different Neural Networks architectures are tested:
a Feed Forward Time Delay Neural Network (FTDNN), and
a Recurrent Time Delay Neural Network (RTDNN). The
FTDNN was previously used in [1] for forecasting the
density along the orbit of a spacecraft. Additional tests
are presented in which the average speed of the spacecraft
over its previous orbital period is used as an additional
input to the Neural Networks. Using this additional input
takes advantage of the relationship between the behavior
in time of the spacecraft speed and its acceleration. This in
turn, provides information about the evolution of the orbit
(which is affected by the density via the drag force) to the
Neural Networks. The method presented here can be used
for on-board implementation since it would only require
running the three empirical models and the Neural
Networks.

The foremost contributions of this work are as follows:
1)
 Development of a novel calibration method for com-
bining the density estimated by different empirical
models and assimilate density measurements to obtain
an improved density estimate.
2)
 Testing of two different Neural Network structures: the
FTDNN and a RTDNN. In the tests, different numbers of
delays for each input for the two Neural Network struc-
tures were tested to find an appropriate combination.
3)
 The use of the average speed over the previous orbit of
the spacecraft as an additional input to the Neural
Network is proposed and tested.
4)
 Comparison of the results obtained in the estimation of
the density between the three empirical models (DTM-
2013, JB2008, NRLMSISE-00) and the Neural Networks.
These results cover five years (from 2004 to 2008) of
CHAMP density data which are used as targets.
The paper is organized as follows. Section 2 describes
the atmospheric drag, density and the three empirical
atmospheric models used. Section 3 describes the two
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Neural Networks architectures used. Section 3 is dedicated
to the data used for training, validating, and testing the
Neural Networks. Section 4 presents the results of the
different tests performed using the Neural Networks and
evaluates their performances. Section 5 presents the
conclusions.

The Neural Networks presented in this work are avail-
able for download at the Mathworks File Exchange
webpage.1
2. Calculating the drag force and atmospheric density

The drag equation can be used for calculating the drag
force experienced by spacecraft at LEO. Even though this
equation has limited applications at LEO, as pointed out by
Vallado et al. [12], it is still useful for showing the main
parameters that determine the drag force and it still
widely used in the literature. The magnitude of the
aerodynamic drag force as given by the drag equation is
as follows

Fd ¼ adm¼ 1
2
ρCDv2s A ð1Þ

where Fd is the magnitude of the drag force, ad is the
magnitude of the drag acceleration, m is the spacecraft
mass, ρ is the density of the local atmosphere, CD is the
drag coefficient, vs is the speed of the spacecraft relative to
the medium and A is the cross-sectional area perpendi-
cular to the atmosphere's relative velocity. The mass and
the cross-sectional area are known by design, provided
that the attitude of the spacecraft is known, but the
density, drag coefficient, and atmospheric wind must be
estimated to calculate the drag force. The focus of this
work is on the estimation of the density. Fig. 1 shows the
profile of the density as measured by the CHAMP satellite
along its orbit during May the 20th 2002.

The acceleration of the spacecraft is the sum of the
gravitational acceleration, and the acceleration caused by
all perturbations, including the drag force. Since the
acceleration is the time derivative of velocity, there is a
relationship between the speed (magnitude of the velocity
vector) of the spacecraft, and the drag force and therefore
the atmospheric density. The time evolution of the speed
therefore is connected to the atmospheric density. The
speed of the spacecraft is often available from its naviga-
tion systems, since the velocity of a spacecraft can be
obtain by filtering the position of the spacecraft. An
example of such method can be seen in [49], in which a
Kalman filter and an Extended Kalman filter are used to
obtain the velocity vector and angular velocity from the
position vector and quaternions. In this work the use of the
speed of the spacecraft as an additional input to obtain
more accurate estimation for the density is proposed and
successfully tested.
1 Link http://www.mathworks.com/matlabcentral/fileexchange/
49370-neural-network-calibrators-for-atmospheric-density-models
2.1. Empirical atmospheric models

This section present the three empirical atmospheric
models selected as inputs for the Neural Networks. These
three models are the latest versions of the Jacchia, MSIS
and DTM models.

2.1.1. NRLMSISE-00
NRLMSISE-00 allows for the estimation of the tempera-

ture, composition and density of the thermosphere at a
given position and time. As explained by Picone et al. [23],
NRLMSISE-00 combines data from satellite accelerometers,
and orbits (including the Jacchia and Barlier datasets);
molecular oxygen density (obtained from the Solar Max-
imum Mission); and temperature obtained from incoher-
ent scatter radar. NRLMSISE-00 takes as inputs: geodetic
latitude and altitude, longitude, time, local apparent solar
time, daily value of F10.7 solar extreme ultraviolet radia-
tion index and its 81 day average, and the daily magnetic
index (AP). NRLMSISE-00 FORTRAN code can be obtained
from [50], while MATLAB and Simulink versions are part of
the Aerospace Toolbox.

2.1.2. Jacchia-Bowman 2008
JB2008 estimates the temperature, total mass density at

a given position and time and the exospheric temperature
above that position. JB2008 combines data from satellites
and accelerometers, including data from the CHAMP and
GRACE missions. JB2008 combines solar radiation indices
along with the Dst geomagnetic index. This combination
results in an improvement in density estimations. Accord-
ing to Bowman et al. [19] during non-storm periods
JB2008 provides a reduction on the density estimation
error of over 5% in comparison with Jacchia 70 and
NRLMSISE-00, while during major storms the error reduc-
tion increases up to 35% and 16% in comparison with
Jacchia 70 and NRLMSISE-00, respectively. The inputs for
JB2008 are right ascension, geocentric latitude, altitude,
time, right ascension of the sun, declination of the sun,
daily value of F10.7 solar extreme ultraviolet radiation
index (with a one day lag) and its 81 day average, daily
value of S10.7 solar extreme ultraviolet radiation index
(with a one day lag) and its 81 day average, daily value of
M10.7 middle solar ultraviolet radiation index (with a two
day lag) and its 81 day average, daily value of Y10.7 solar
X-ray emission index (with a five day lag) and its 81 day
average, and the disturbance storm time index Dst. FOR-
TRAN code for JB2008 can be obtained from [51]. The code
includes a main driver code that reads an input file
containing positions and corresponding times. Based on
these inputs the main driver code reads the solar and
geomagnetic indices from additional files and calculates all
the other inputs (such as sun position). The main driver
code calls the JB2008 code and calculates its outputs
which are stored in an output file.

2.1.3. DTM-2013
DTM-2013 calculates the temperature, composition and

density at a determined position and time, and the exo-
spheric temperature above that position. DTM-2013 uses
the F30 solar radiation index, scaled to the F10.7 index
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Fig. 1. Density from CHAMP day 140 of 2002 (obtained from [1]).

Fig. 2. Artificial neuron diagram (obtained from [1]).
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along with assimilated density data from the CHAMP,
GRACE, Stella, Starlette and GOCE missions. The inputs
for DTM-2013 are altitude, latitude, longitude, time, the
F30 solar radiation index and the Kp geomagnetic index.
FORTRAN code for DTM-2013 is available at the website of
the Advanced Thermosphere Modeling for Orbit Prediction
(ATMOP) project [52]. The code includes a wrapper routine
that provides a time and a position, computes the remain-
ing inputs (solar and geomagnetic inputs) and runs the
main DTM-2013 routine.

The 81 day averages present a challenge for using the
empirical models for estimating the current density (as
well as for forecasting) since they are calculated using the
value for the index over the past 40 days, the present day
and the future 40 days. Forecasts for the indices can be
obtained from models such as the Solar Irradiance Plat-
form (SIP) (formerly known as SOLAR2000) [53,54].
HASDM uses these forecasted indices to be able to obtain
current estimations of the density and also to forecast the
density itself.

3. Neural Networks

Artificial Neural Networks are mathematical artifacts
designed to resemble biological brains. Neural Networks
are made up of artificial neurons as the one illustrated in
Fig. 2. Artificial neurons are input output processing units,
characterized by sets of inputs, outputs, biases, weights
and a nonlinear transfer function. To build the Neural
Network, the artificial neurons are connected in layers,
which are structures of artificial neurons arranged in
parallel. Each layer may have a different numbers of
neurons, which allows for different structures that may
work better for different applications. Neural Network can
have loops feeding back data from the output or one of the
hidden layers back to the input or other hidden layers.

The following equation is the mathematical expression
for the neuron shown in Fig. 2

y¼ f
XN
j ¼ 1

WjxjþB

0
@

1
A ð2Þ

where y is the output of the neuron, f is the transfer
function, N is the number of inputs, Wj is the jth weight, xj
is the jth input, and B is the bias.

Neural Networks can store information that relates the
inputs to the outputs in the biases and weights of their
artificial neurons. During training, the weights and biases
are adapted to minimize a performance function that
measures how well the input–output relation of the
specific problem is being represented by the neural
network. A data set of inputs and outputs is selected
specifically for training. The minimization of the perfor-
mance function must be stopped at some point in order to
prevent overtraining. The training process is stopped when
one of the following conditions is satisfied: the perfor-
mance function converges, the maximum number of
epochs is reached, or the performance function of the
neural network for a different data set, called a validation
set, reaches a minimum. That way, the ability of the neural
network to model new sets of inputs and outputs is
preserved. As with any machine learning method, the
selection of the training and validation data sets is very
important; the better they represent the behaviors to be
modeled by the Neural Network, the better the Neural
Network will perform. After the Neural Network has been
trained and validated, it is tested on a third group of data
points (test set) to assess the quality of the Neural Network
for modeling new data.

As shown by the universal approximation theorem (see
[55,56]), any continuous function on a compact subset of
Rn can be approximated by a feed forward Neural Network
with one hidden layer containing transfer functions satis-
fying certain conditions. Therefore, Neural Networks are
good candidate for developing models for complex beha-
viors such as that one of value for the density. However,
sufficient input output data, representing the behavior of
the function to be modeled, must be available for training
the Neural Network appropriately. Furthermore, overfit-
ting (or overtraining), a condition in which the Neural
Network has retained too much information about the
training set, must be avoided since it causes the Neural
Network to lose its generalization ability. Conversely,
underfitting (or undertraining) is the condition in which
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the Neural Network does not have enough complexity to
properly model the input output relationship. Overfit-
ting and underfitting can be avoided by choosing a number
of neurons that provide enough complexity to learn the
behavior, without actually memorizing it and by selecting
a training data set large enough.

3.1. Feed Forward Time-Delay Neural Network (FTDNN)

The FTDNN architecture contains a set of delays at the
input layer that allows retention of the evolution of the
inputs in time, and enhances the ability of the network for
time series applications. The number of delays can be
different for each input, which allows the network to deal
with the differences in the time evolution of the inputs.
Fig. 3 shows a diagram for a FTDNN with two inputs, two
delays for one input and one for the other input, two
nonlinear neurons in the input layer and one linear neuron
in the output layer.

3.2. Recurrent Time-Delay Neural Network (RTDNN)

In essence a Recurrent Neural Network contains one or
more loops that route the outputs of the layers or of the
network itself back to other layers or the input layer. The
loops allow recurrent Neural Networks to use past context
[57]. Similarly to the FTDNN, the RTDNN architecture
contains a set of delays at the input layer, which can be
different for each input. In this work, the RTDNN archi-
tecture chosen includes a loop with a delay that feeds the
output of the network back to the input layer, and thus it is
autoregressive. The RTDNN used in this work has memory
of the inputs and outputs in its internal state, providing
context for both the inputs and outputs. Fig. 4 shows a
diagram for a RTDNN with two inputs, two delays for one
input and one for the other input, two nonlinear neurons
Fig. 3. Diagram for a FTDNN with two layers, two inputs (one with two delays an
one linear neuron in the output layer.

Fig. 4. Diagram for a RTDNN with two layers, two inputs (one with two delays an
linear neuron in the output layer, and one delay in the feedback loop.
in the input layer and one linear neuron in the output
layer. This Neural Network architecture can be trained
with the loop open or closed. If the loop is open during
training, the RTDNN has access to the targets through the
open loop. The loop is closed for testing the RTDNN, which
is the configuration used for testing and implementing the
RTDNNs. The advantage of training the network with the
loop open is that feedback outputs are treated as an
additional input during training, and thus the classical
back propagation method for training can be used. On the
contrary, if the loop is closed, the RTDNN is trained having
the same configuration it will have during testing and
therefore during implementation; however, more complex
training algorithms must be used such as back propagation
through time algorithms.

The FTDNNs and RTDNNs developed consist of two
layers, an input layer with one nonlinear neuron with a
sigmoid transfer function, and an output layer with one
linear neuron. The number of delays for each input was
determined by testing different configurations. The results
of these experiments are included in Section 4. Both
FTDNNs and RTDNNs are trained using density estimated
from accelerometer data onboard spacecraft at LEO, as the
targets, and hence learn to combine the inputs (the density
estimated by the three models), and to calibrate the
density based on the density targets. The FTDNNs and
RTDNNs, take as inputs the natural logarithm of the
density estimated by DTM-2013, JB2008, and NRLMSISE-
00 in kg/m3�10�12, and output a calibrated value of the
natural logarithm of the density in kg/m3�10�12. The
natural logarithm of the density values was used since it
helps stabilizing the variance of the density, as shown in
Ref. [58]. The exponential of the output is taken to obtain
the calibrated density in kg/m3�10�12. This work also
tests the idea of including the speed of the spacecraft as an
additional input to both types of networks. The speed is
d the second one with one), two nonlinear neurons in the input layer and

d the second one with one), two nonlinear neurons in the input layer, one
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assumed to be available at the same instant as the
densities estimated by the models. It is averaged over
the previous orbital period with the intent to include some
of the time evolution of velocity, which is related to the
acceleration of the spacecraft. The delays allow the Neural
Networks to access the density estimated by the three
models along the past orbit of the spacecraft as well as its
speed. The formulations for the FTDNN and the RTDNN,
including the natural logarithm as part of the Neural
Networks and the averaged speeds, are Eqs. (3) and (4)
respectively.

ρ̂ tð Þ ¼ g

ρDTM tð Þ;…ρDTM t�DDTMtsð Þ;
ρJB tsð Þ;…ρJB t�DJBts

� �
;

ρMSISE tð Þ;…ρMSISE t�DMSISEtsð Þ;
s tð Þ;…s t�DStsð Þ

0
BBBB@

1
CCCCA

ð3Þ

ρ̂ tð Þ ¼ f

ρDTM tð Þ;…ρDTM t�DDTMtsð Þ;
ρJB tsð Þ;…ρJB t�DJBts

� �
;

ρMSISE tð Þ;…ρMSISE t�DMSISEtsð Þ;
s tð Þ;…s t�DStsð Þ;
ρ̂ t�tsð Þ

0
BBBBBB@

1
CCCCCCA

ð4Þ

where ρ̂ is the calibrated density value (exponential of the
Neural Network output); g and f are the overall nonlinear
functions of the FTDNN and the RTDNN, respectively
(including the natural logarithms at the input and the
exponential at the output); ρDTM , ρJB and ρMSISE are the
density estimated by DTM-2013, JB2008 and NRLMSISE-
00, respectively; t is the time; ts is the sampling period of
the data; s is the speed averaged over the previous orbital
of the spacecraft; and DDTM, DJB, DMSISE and DS are the
number of delays for ρDTM , ρJB, ρMSISE and s, respectively.

The Levenberg–Marquardt algorithm ([59,60]), included
in MATLAB's Neural Network Toolbox [61], was used to train
the Neural Networks. This algorithm was chosen since it
often has higher rates of convergence than the other
algorithms provided in the Toolbox. The mean squared
error (MSE), as explained in Eq. (5), was selected as the
performance function because by minimizing it during
training, both the variance and the bias of the error are
also minimized.

MSE¼ 1
n

Xn
i ¼ 1

ρ̂i�ρi
� �2 ð5Þ

where n is the number of samples and ρ̂i and ρi are the ith
calibrated value for the density and density target value,
respectively.
Table 1
Altitude and inclination ranges of the CHAMP and GRACE-A satellites during t

GRACE-A

Data Set Training/validation
Time interval 01/01/2003–01/31/2003
Altitude (km) 473–526
Inclination (deg.) 89.0118–92.7957
Average F10.7 (sfu) 139.39
Average Dst (nT) �11.97
4. Data used

Neural Networks require input–output data sets for
training, validation and testing. The CHAMP [28] and
GRACE [29] satellites have provided the research commu-
nity with accurate density values with high temporal
resolutions estimated by using their high precision accel-
erometers. Density data derived from accelerometers
includes errors, as it is the case with any measurements
of a physical quantity. However, these measurements have
been widely used in the literature to validate empirical
models as well as physical models. For example, JB2008,
DTM2009, DTM2012 and DTM2013 have been validated
using accelerometer-derived density data from the CHAMP
and/or GRACE missions (see [19,27,30,31]). Similarly,
efforts have also been made to assimilate CHAMP and
GRACE densities into physicals based models such as GITM
in order to improve their accuracy (see IMPACT project at
LANL [62,63]). Furthermore, many other papers in the
literature (see a few examples [1,37,62–69]), assume those
densities to be reference values for the density.

The GRACE mission consists of twin satellites (GRACE-A
and GRACE-B), launched in 2002, with the objective of
measuring Earth's gravitational field. The CHAMP satellite
was launched in 2000 with the task of providing measure-
ments of Earth's gravity and magnetic fields. The density
along the orbit of the GRACE-A satellite and its speed
during January 2003 were used for training and validation
of the Neural Networks. Similarly, the density along the
orbit of the CHAMP satellite and its velocity from day 2 to
day 250 of 2007 (January 2nd to September 7th of 2007)
were used for testing the Neural Networks (Test 1). This
test data set was used to find the appropriate number of
delays by following the method described in Section 5.1.
This test data set comprising roughly seven months is
comparable in time span to the test set used by Bowman
et al. [35] for testing HASDM. A second test was performed
using density along the orbit of the CHAMP satellite and its
velocity covering years 2004 through 2008 (Test 2). This
second test allows for evaluating the capacity of the Neural
Network calibrators to operate under significantly differ-
ent solar conditions. The altitude and inclination ranges for
the GRACE-A and CHAMP satellites, and the average value
for the F10.7 and Dst indices during the training/valida-
tion, Test 1 and 2 data sets are shown in Table 1.

The density data used for training, validation and testing
of the Neural Networks was obtained from the Department
of Aerospace Engineering Sciences data base at the Uni-
versity of Colorado [70]. The velocities used came from
CHAMP Rapid Science Orbit data (CH-OG-3-RSO) and
he periods covered by the data used.

CHAMP

Test 1 Test 2
01/02/2007–09/07/2007 01/02/2004–31/12/2008
341.7–380 416.9–320.8
87.22–90.89 87.22–90.94
74.57 83.8
�9.57 �11.1
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GRACE-A GPS navigation data (GA-OG-1B-NAVSOL), which
can be found at the website of the Information System and
Data Center from the German Research Centre for Geos-
ciences [71]. The GRACE-A and CHAMP satellites were
launched into similar, nearly polar orbits; consequently,
the time periods for the training/validation data set and the
two test data sets were chosen so that there would be some
differences in the altitudes of the orbits of the spacecraft
(see Table 1). However, this table also shows that the
inclination of the orbits of GRACE-A and CHAMP satellites
are similar during the training/validation and the two test
periods.

The information about the orbits of both satellites
(altitude, latitude, longitude and time), during training/
validation and test periods, was used to estimate the
density, using the three models along their orbits. These
are used as inputs to the Neural Networks. The training/
validation data set was sampled randomly, 70% of its data
was used for training, and the remaining 30% for valida-
tion. All the data was linearly interpolated between the
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4.1. Solar and geomagnetic activity

Figs. 5 and 6 show the daily averaged values for the
F10.7 and Dst indices (solar and geomagnetic activity
indices) during the training/validation and Test 1 periods,
respectively, while Fig. 7 contains the F10.7 and Dst indices
averaged every 27 days during Test 2 period.

As it can be seen from Figs. 5 and 6, and the average
value for the Dst index shown in Table 1, during the
training/validation and Test 1 time intervals, there was
mostly low geomagnetic activity (Dst above �20 nT) with
some sporadic periods of medium geomagnetic activity
(Dst between �20 and �50 nT). In contrast, the solar
activity, as represented by the F10.7 index shown in Figs. 5
and 6 and its average values included in Table 1, is fairly
different between these time intervals. The average value
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for F10.7 during training/validation is almost twice as large
as it was for the test period. As shown in Figs. 6 and 7 the
F10.7 index is much larger during years 2004 and 2005
than during Test 1 period.

To further observe the performance of the Neural
Networks during periods of low and high solar and
geomagnetic activity, two days within the test period were
selected. The first of the two days chosen is day 30
(January the 30th) of 2007, which as can be seen in
Fig. 6, corresponds to a region near a high peak of the
F10.7 curve (F10.7¼84.9 sfu) and a negative peak in the
Dst curve (Dst¼�33 nT, which according to [72] corre-
sponds to a weak geomagnetic storm). The second day is
day 231 (August the 19th) of 2007, which as can also be
seen in Fig. 6, corresponds to region near a valley of the
F10.7 curve (F10.7¼69.4 sfu) and a high peak in the Dst
curve (Dst¼4 nT).

Fig. 7 shows a significant decrease in the F10.7 index
during the five years, indicating a reduction in the solar
radiation in the latter years. Likewise, it can be seen how
the Dst index decreases in magnitude, indicating a similar
reduction on geomagnetic activity. These changes are part
of the 11 year solar cycle as Sun goes from solar maxima to
minima.
5. Test results

To assess the performance of the Neural Networks,
different metrics were used: the MSE (shown in Eq. (5),
and used as the performance parameter of the Neural
Networks); the Pearson correlation coefficient of the
targets to the model outputs (shown in Eq. (6), which
measures the linear dependence between two values; the
root mean squared error (RMSE) (shown in Eq. (7)), which
is better for comparing the results from different models,
since it has the same units of the quantity being modeled;
and the mean of the ratios of the targets to the outputs
ðρ=ρ̂Þ, which measures the bias in the estimated density.

R¼ 1=ðn�1ÞPn
i ¼ 1 ρi�ρ

� �
ρ̂i� ρ̂
� �

sρ̂sρ
; ð6Þ
where sρ̂ and sρ are the standard deviations of the Neural
Network outputs and targets, respectively.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i ¼ 1

ρ̂i�ρi
� �2

vuut ð7Þ

5.1. Method for determining the appropriate number of
delays for the FTDNNs and RDTNNs

As explained in Section 3, the delays in both the
FTDNNs and RDTNNs allow them to access the recent
evolution of the inputs through time. Therefore the num-
ber of delays greatly influences the performance of the
Neural Networks. The following method was used to find
an appropriate number of delays in the FTDNNs for each
input:
1.
 Set DJB and DMSISE to zero.

2.
 Vary DDTM from zero to ten in increments of two while

training, validating and testing the resulting FTDNN.

3.
 Pick the best value for DDTM by selecting the FTDNN

that had the lowest MSE (which was the performance
function for the Networks) over the test data set.
4.
 Repeat same procedure for finding the best value for
DJB and DMSISE in that order.
5.
 Repeat steps 2 through 4 but only for the two odd
values adjacent to the best even value found before.
6.
 A FTDNN is trained, validated and tested using the best
combination of delays, out of the six even numbers
tried in steps 2 through 4 and two odd numbers tried in
step 5.

To find an appropriate number of delays in the RTDNNs
for each input the following slightly different method was
followed:
1.
 Set DJB, DMSISE and DS to zero.

2.
 Vary DDTM from zero to ten in increments of two while

training with the loop open, validating and testing the
resulting RTDNN ten times.
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3.
 Pick the best value for DDTM by selecting the RTDNN
that had the lowest MSE over the test data set.
4.
 Repeat same procedure for finding the best value for
DJB, DMSISE and DS in that order.
7.
 Repeat steps 2 through 4 but only for the two odd
values adjacent to the best even value found before.
8.
 100 RTDNNs are then trained with the loop open,
validated and tested using the best combination of
delays, out of the six even numbers tried in steps 2
through 4 and two odd numbers tried in step 5.
9.
 Repeats steps 1 through 8 with the loop closed and
select the RTDNNs with the lowest MSE out of the 200
networks trained with the best combination of delays
(100 trained with the loop open and 100 trained with
the loop closed)

The characteristics of the learning algorithm (the
weights and biases are initialized randomly) causes varia-
tion in the MSEs of the test for Neural Networks trained
with the exact same architecture, the same number of
delays. In the case of the FTDNNs, this variation was small
(in the order of 0.001 (kg/m3�10�12)2). However, in the
case of the RTDNNs this variation was significant (in the
order of 0.01 (kg/m3�10�12)2). This is the reason for
training the RTDNNs several times for the same exact
architecture and number of delays, while the FTDNN was
only trained once. These variations are likely caused by the
learning algorithm converging to local minima. Therefore,
this error can be fixed by changing the convergence
condition for the learning algorithm. It should be noted
that these two methods are brute force methods for
finding an appropriate number of delays, and that there
are other methods which should be computationally less
taxing for finding the number of delays.

5.2. Test results for 01/02/2007 through 09/07/2007 (Test 1)

The two methods illustrated above were followed for
four cases: 1) a FTDNN with three inputs (density esti-
mated by the DTM-2013, JB2008 and NRLMSISE-00), 2) a
RTDNN with the same three inputs, 3) a FTDNN with four
inputs (density estimated by the DTM-2013, JB2008 and
NRLMSISE-00; and the averaged of the spacecraft speed
over the previous orbit), 4) and a RTDNN, with the same
four inputs. As an additional bench mark the average of
the densities estimated by the three models (average of
models) was also calculated. The performance metrics of
the resulting four Neural Networks, the three empirical
atmospheric models and the average of models are com-
pared in Table 2.

The resulting four Neural Networks produced values for
the densities with less error than the three models and the
average of models (see Table 2.), with reductions on the
RMSE over DTM-2013 (the most accurate model) of 4.1%,
9.3%, 8.5% and 9.9% for the FTDNN and RTDNN with three
inputs, and the RTDNN and the FTDNN with four inputs,
respectively. The four Neural Networks also increased the
Pearson correlation coefficient between the CHAMP den-
sities and the estimated density, in comparison with the
three models and the average of models (see Table 2). The
average of the ratio of the targets to the outputs was closer
to a value of one for the four Neural Networks in
comparison with the three models and the average of
models. This means that the use of the Neural Networks
allows for density estimation with less bias. In the case of
the FTDNNs, the performance metrics also show that
including the average velocity as an additional input,
provides a significant error reduction of 4.6% in the RMSE.
This reduction also occurs for the RTDNNs, but is much
smaller (only 0.6% in the RMSE). Similarly, there is a
significant error reduction between the FTDNN and
RTDNN with three inputs (5.5% in the RMSE). This reduc-
tion also occurs for FTDNN and RTDNN with four inputs,
but its value 1.6% in the RMSE, is much smaller. Interest-
ingly, the best RTDNN with three inputs, trained with the
loop open, had a lower MSE than its equivalent trained
with the loop closed. In contrast the best RTDNN with four
inputs trained with the loop open, had a higher MSE than
its equivalent trained with the loop closed. The perfor-
mance metrics of the average of models were better than
those of NRLMSISE-00 and JB2008, but worse than DTM-
2013 and all the Neural Networks.

As shown in Table 2 the RTDNN with four inputs
provided the best results of all networks and models.
Figs. 8–11 show the plots for the daily average values of
the four performance metrics used over the whole test
period for the RTDNN with four inputs.

Fig. 8 shows that the daily averaged values for the
Pearson correlation coefficient for the three models and
the RTDNN with four inputs shows a very similar behavior.
However, significant differences can be seen in the plots
for the daily averaged MSE and RMSE for the three models
and the RTDNN with four inputs (see Figs. 9 and 10). More
specifically, it is evident that the density estimated by
DTM-2013 (red line) is the most accurate out of the three
models, followed by the density estimated by JB2008
(green line). It can also be seen that the density estimated
by the RTDNN with four inputs (black line) is the most
accurate of all. The black line follows the red line closely,
but it remains below it for most of the time. Fig. 11 shows
that the ratio of the targets to the outputs of the RTDNN
with four inputs remains closer to a value of one for most
days than this same ratio for the three models. This
indicates that the density estimated by the RTDNN has
less bias than the densities estimated by the three models.

5.3. Test results for days 30 and 231 of 2007

As explained in Section 4.1 two days, included in the
test period, were selected to observe the performance of
the models and the Neural Networks. Day 30 of 2007
which presented high solar and geomagnetic activity (high
in comparison with the other test days) and day 231 of
2007 which presented low solar and geomagnetic activity.
The performance parameters for the three models, the
average of the models and the four Neural Networks tested
on these two days are shown in Table 3.

Table 3 shows that for both days, the four Neural
Networks produced density estimations with error reduc-
tions and less bias in comparison with the three models
and the average of models. For day 30, which included
more solar activity (in relation to the other days in the test



Table 2
Performance metrics for the three models, the average of models and the Neural Networks during the whole test period (bold for best results, italics for
worst).

Model R
MSE kg

m3 � 10�12
� �2

RMSE kg
m3 � 10�12

� �
Meanðρ=ρ̂Þ DDTM, DJB, DMSISE, DS

NRLMSIS-00 0.9078 0.3283 0.5730 0.8235
JB2008 0.9142 0.1794 0.4236 0.9368
DTM-2013 0.9273 0.1372 0.3705 0.9524
Average of models 0.9338 0.1622 0.4027 0.8933
FTDNN3 Inputs 0.9332 0.1263 0.3554 0.9698 1,7,9,NA

RTDNN3 Inputsa 0.9358 0.1128 0.3359 0.9617 2,4,2,NA

FTDNN4 Inputs 0.9364 0.1150 0.3391 0.9651 0,0,0,5

RTDNN4 Inputsb 0.9357 0.1112 0.3338 0.9971 6,3,5,0

a Trained with the loop open.
b Trained with the loop closed.
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data set) and a weak geomagnetic storm, the reduction in
the RMSE provided by the FTDNN and RTDNN with three
inputs, and the RTDNN and the FTDNN with four inputs, in
comparison with DTM2013 (the most accurate model for
this day) were of 11.2%, 15.8%, 17.9% and 21.1%, respectively.
These error reductions are larger than those achieved for
the whole test period. Similarly for day 231, which
included the lower solar and geomagnetic activity, the
error reductions in comparison with JB2008 (the most
accurate model for this day) were of 1.4%, 4.5%, 3.4% and
11.4% for the FTDNN and RTDNN with three inputs, and the
RTDNN and the FTDNN with four inputs, respectively. In
this case the reductions in the error for all the Neural
Networks, except the RTDNN with four inputs (which
produces a slightly larger reduction in the error), were
smaller than those achieved for the whole test period. The
Pearson correlation coefficient between the CHAMP den-
sities and the density estimated by JB2008 was the largest
of the three models and the four Neural Networks for day
30, while for day 231 it was that of DTM-2013. The
performance metrics for the average of models were better
than two of the models but worse than the remaining one
for both days.

Again, as indicated in Table 3, the RTDNN with four
inputs provided the best results of all networks and
models during these two days. The density as estimated
by the three models, and the RTDNN with four inputs, is
compared with the CHAMP accelerometer density, during
days 30 and 231 of 2007, in Figs. 12 and 14, respectively.
Zoom-in images of these density plots during the first five
hours of days 30 and 231 of 2007 are included in Figs. 13
and 15, respectively.

A comparison between Figs. 12 and 13 and Figs. 14 and
15 shows that the CHAMP density had a more complex
behavior (with more small oscillations) during day 30 than
during day 231. This occurred because the higher solar and
geomagnetic activity (including the weak geomagnetic
storm), present during day 30 causes the density to behave



Table 3
Performance metrics for the three models, the average of models and the Neural Networks during days 30 and 231 of 2007 (bold for best results, italics for
worst).

Day Model R
MSE kg

m3 � 10�12
� �2

RMSE kg
m3 � 10�12

� �
Meanðρ=ρ̂Þ

30 (F10.7¼84.9 sfu, Dst¼�33 nT) NRLMSIS-00 0.8556 0.3683 0.6069 0.8685
JB2008 0.9091 0.2866 0.5353 0.8878
DTM-2013 0.8960 0.2415 0.4914 0.9038
Average of models 0.9035 0.2669 0.5167 0.8837
FTDNN 3 Inputs 0.8920 0.1906 0.4366 0.9839
RTDNN 3 Inputsa 0.9015 0.1714 0.4140 0.9410
FTDNN 4 Inputs 0.9031 0.1628 0.4035 0.9735
RTDNN 4 Inputsb 0.9043 0.1503 0.3877 0.9778

231 (F10.7¼69.4 sfu, Dst¼4 nT) NRLMSIS-00 0.9565 0.2784 0.5276 0.7614
JB2008 0.9496 0.0583 0.2414 0.9072
DTM-2013 0.9629 0.0695 0.2636 0.9265
Average of models 0.9605 0.1045 0.3232 0.8549
FTDNN 3 Inputs 0.9495 0.0566 0.2380 0.9202
RTDNN 3 Inputsa 0.9562 0.0532 0.2306 0.9329
FTDNN 4 Inputs 0.9582 0.0544 0.2332 0.9143
RTDNN 4 Inputsb 0.9578 0.0458 0.2139 0.9683

a Trained with the loop open.
b Trained with the loop closed.
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Fig. 12. Estimated density by the three models, and the RTDNN with four inputs and CHAMP accelerometer derived density during day 30 of 2007.
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in a more chaotic manner. This resulted in the larger
estimation errors, for all models and Neural Networks,
for day 30 in comparison with day 231 that can be
observed in Table 3.

5.4. Test results for 2004 through 2008 (Test 2)

The Neural Networks and the models were tested using
the Test 2 data set which covers the years from 2004 to 2008.
This test allows to evaluate the performance of the Neural
Networks over a wide temporal resolution covering different
solar conditions. The performance parameters for the three
models, the average of the models and the four Neural
Networks tested on the five years are shown in Tables 4 and 5.

The results from Test 2 in Tables 4 and 5 show that the
Neural Networks performance decreases for the years
2004 and 2005 which are the furthest away in time from
the Test 1 time interval which was used to find the number
of delays. During 2004, only the RTDNN with three inputs
performs better than the models and during 2005, none of
the Neural Networks perform better than the three mod-
els. The reason for this is that at those years the solar cycle
is at a different stage than during the Test 1 time interval
(January to September 2007). Hence, the solar activity is
different (both F10.7 and Dst are higher during 2004–2005
than during 2006–2008). On the preceding and following
years to Test 1 interval (2006 and 2008) and during 2007
itself, the Neural Networks performed better than the
models with the exception of the FTDNN with three inputs
during 2006. Over all, during the whole Test 2 interval the
RTDNNs with three and four inputs present the best
results, with the former been the best overall (5.3%
improvement in RMSE over DTM-2013), while the two
FTDNNs fall behind DTM-2013 (which is the best of the
three model during the Test 2 interval). This further
confirms that the RTDNNs provide better results than the
FTDNNs for this application. Interestingly, the average of
the models provide better results overall than the three
models (3.3% improvement in RMSE over DTM-2013) and
all but one of the Neural Networks (the RTDNN with three



Table 4
Performance metrics for the three models, the average of models and the Neural Networks during years 2004, 2005 and 2006 (bold for best results, italics
for worst).

Year Model R
MSE kg

m3 � 10�12
� �2

RMSE kg
m3 � 10�12

� �
Meanðρ=ρ̂Þ

2004 (F10.7¼106.0 sfu, Dst¼�12.0 nT) NRLMSIS-00 0.9038 0.3348 0.5787 0.9696
JB2008 0.9313 0.2571 0.5070 1.0584
DTM-2013 0.9257 0.2981 0.5459 0.9642
Average of models 0.9463 0.1895 0.4353 0.9844
FTDNN 3 Inputs 0.939 0.3753 0.6126 1.0735
RTDNN 3 Inputsn 0.9429 0.2439 0.4938 1.0411
FTDNN 4 Inputs 0.9439 0.3179 0.5638 1.0747
RTDNN 4 Inputsnn 0.9437 0.2722 0.5217 1.0694

2005 (F10.7¼91.1 sfu, Dst¼�15.6 nT) NRLMSIS-00 0.8840 0.4207 0.6486 0.9676
JB2008 0.9030 0.3775 0.6144 1.0694
DTM-2013 0.9160 0.3103 0.5571 1.0289
Average of models 0.9277 0.2699 0.5195 1.0109
FTDNN 3 Inputs 0.9236 0.5526 0.7434 1.1171
RTDNN 3 Inputsn 0.928 0.3726 0.6104 1.0797
FTDNN 4 Inputs 0.9273 0.4776 0.6911 1.1117
RTDNN 4 Inputsnn 0.9259 0.4368 0.6609 1.1174

2006 (F10.7¼80.1 sfu, Dst¼�12.2 nT) NRLMSIS-00 0.9051 0.2788 0.528 0.8747
JB2008 0.9198 0.1843 0.4293 0.9758
DTM-2013 0.9211 0.1667 0.4083 0.9793
Average of models 0.9341 0.1562 0.3952 0.9330
FTDNN 3 Inputs 0.9283 0.1784 0.4224 1.0143
RTDNN 3 Inputsn 0.9330 0.1422 0.3770 1.0004
FTDNN 4 Inputs 0.9337 0.1534 0.3917 1.0102
RTDNN 4 Inputsnn 0.9329 0.1526 0.3906 1.0351

n Trained with the loop open.
nn Trained with the loop closed.

Table 5
Performance metrics for the three models, the average of models and the Neural Networks during years 2007, 2008 and all five years (2004 to 2008) (bold
for best results, italics for worst).

Year Model R
MSE kg

m3 � 10�12
� �2

RMSE kg
m3 � 10�12

� �
Meanðρ=ρ̂Þ

2007 (F10.7¼73.1 sfu, Dst¼�8.3 nT) NRLMSIS-00 0.8988 0.4200 0.6480 0.8027
JB2008 0.9076 0.1949 0.4415 0.9304
DTM-2013 0.9177 0.1417 0.3764 0.9625
Average of models 0.9276 0.1825 0.4272 0.8858
FTDNN 3 Inputs 0.9264 0.1266 0.3558 0.9665
RTDNN 3 Inputsn 0.9294 0.1172 0.3423 0.9579
FTDNN 4 Inputs 0.9303 0.1160 0.3406 0.9621
RTDNN 4 Inputsnn 0.929 0.1132 0.3365 0.9924

2008 (F10.7¼68.7 sfu, Dst¼�7.5 nT) NRLMSIS-00 0.8883 0.9980 0.8883 0.7403
JB2008 0.9004 0.2605 0.5104 0.9757
DTM-2013 0.9134 0.3255 0.5705 0.8841
Average of models 0.9196 0.3646 0.6038 0.8461
FTDNN 3 Inputs 0.9149 0.2586 0.5085 0.9344
RTDNN 3 Inputsn 0.9204 0.2388 0.4886 0.9134
FTDNN 4 Inputs 0.9194 0.2353 0.4851 0.9324
RTDNN 4 Inputsnn 0.9180 0.2232 0.4724 0.9527

2004–2008 (F10.7¼83.8 sfu, Dst¼�11.1 nT) NRLMSIS-00 0.8715 0.4896 0.6997 0.8711
JB2008 0.9134 0.2547 0.5047 1.0019
DTM-2013 0.9198 0.2482 0.4982 0.9639
Average of models 0.9278 0.2322 0.4819 0.9321
FTDNN 3 Inputs 0.9231 0.2980 0.5459 1.0212
RTDNN 3 Inputsn 0.9287 0.2227 0.4719 0.9985
FTDNN 4 Inputs 0.9272 0.2598 0.5097 1.0182
RTDNN 4 Inputsnn 0.9287 0.2394 0.4893 1.0334

n Trained with the loop open.
nn Trained with the loop closed.
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inputs), and during years 2004 and 2005 it provides the
best results; however, during the remaining years its
performance drops below DTM-2013.
Since the RTDNN with three inputs presented the best
performance overall, a new RTDNN with three inputs was
created using the method described in Section 5.1 but with



Table 6
Performance metrics for DTM-2013, the average of models, and the RTDNNs with three inputs with number of delays determined using the Test 1 and data
sets during the five years.

Year Metric RTDNN 3 inputs delays found using Test 1 data
(DDTM¼2, DJB¼4, DMSISE¼2)

RTDNN 3 inputs delays found using Test 2
data
(DDTM¼4, DJB¼2, DMSISE¼10)

2004 (F10.7¼106.0 sfu,
Dst¼�12.0 nT)

R 0.9429 0.9410
MSE

kg
m3 � 10�12

� �2

0.2439 0.2184

RMSE
kg
m3 � 10�12

� � 0.4938 0.4674

Meanðρ=ρ̂Þ 1.0411 1.0462
2005 (F10.7¼91.1 sfu,

Dst¼�15.6 nT)
R 0.9280 0.9260
MSE

kg
m3 � 10�12

� �2

0.3726 0.3294

RMSE
kg
m3 � 10�12

� � 0.6104 0.5739

Meanðρ=ρ̂Þ 1.0797 1.0817
2006 (F10.7¼80.1 sfu,

Dst¼�12.2 nT)
R 0.9330 0.9279
MSE

kg
m3 � 10�12

� �2

0.1422 0.1497

RMSE
kg
m3 � 10�12

� � 0.3770 0.3870

Meanðρ=ρ̂Þ 1.0004 1.0159
2007 (F10.7¼73.1 sfu,

Dst¼�8.3 nT)
R 0.9294 0.9243
MSE

kg
m3 � 10�12

� �2

0.1172 0.1250

RMSE
kg
m3 � 10�12

� � 0.3423 0.3535

Meanðρ=ρ̂Þ 0.9579 0.9759
2008 (F10.7¼68.7 sfu,

Dst¼�7.5 nT)
R 0.9204 0.9174
MSE

kg
m3 � 10�12

� �2

0.2388 0.2461

RMSE
kg
m3 � 10�12

� � 0.4886 0.4961

Meanðρ=ρ̂Þ 0.9134 0.9233
2004–2008 (F10.7¼83.8 sfu,

Dst¼�11.1 nT)
R 0.9287 0.9272
MSE

kg
m3 � 10�12

� �2

0.2227 0.2135

RMSE
kg
m3 � 10�12

� � 0.4719 0.4621

Meanðρ=ρ̂Þ 0.9985 1.0087
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the Test 2 data (the full five years) set instead of the Test 1
data set. In order to reduce the computation time of testing
on the Test 1 data set instead of the Test 1 dataset, only five
and ten iterations were made in steps 1 and 8, of the method
in Section 5.1. The performance parameters for the three
models, the average of the models and the four Neural
Networks tested on these two days are shown in Table 6.

The results in Table 6 indicate that by determining the
number of delays using the data from the whole five years
(Test 2 data set) for the RTDNN with three inputs, its
performance can be increased over the whole five years in
comparison with the other RTDNN with three inputs (7.3%
vs 5.3% improvement in RMSE over DTM-2013 respec-
tively). The latter was the best performing over the five
years, and which had its number of delays determined
using the Test 1 data set covering from January to
September 2007. This improvement occurs over the years
2004 and 2005 at the cost of a slight decrease in perfor-
mance during years 2005–2008. This indicates that a
Neural Network can be created to calibrate the models
over a large time span covering a wide range of solar
conditions; however, individual networks created for spe-
cific solar conditions can achieve better performance
during those specific conditions, at the cost of poorer
performance under different solar conditions.

The results presented show that Neural Networks
provide a valuable method for combining the densities
estimated by the three models and calibrating them
based on accelerometer data. This method captures the
benefits of the individual models, and further reduces the
error and bias in the estimated density by assimilating
accelerometer data.
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6. Conclusions

All the Neural Networks presented (FTDNNs and
RTDNNs with three or four inputs) provide a significant
error reduction in the estimation of the atmospheric
density along the orbit of CHAMP, during the Test 1 period
(from January to September 2007, which was used to
choose the number of delays), in comparison with DTM-
2013, JB2008 and NRLMSISE-00. Similarly, the Neural
Networks reduce the bias in the estimated density for
the same period in comparison with the three models.
Furthermore, the FTDNNs and RTDNNs also increase the
value of the correlation factor between the estimated
density and the CHAMP density, again in comparison with
the three empirical models, during the Test 1 period.

The tests done for the two days of interest, show that
the FTDNNs and RTDNNs can also provide better results
than the three empirical models during periods with both
higher and lower solar and geomagnetic activity (in
comparison with the other days in the test data set).
Moreover, the results of the FTDNNs and RTDNNs were
considerably better than those of the three models during
day 30 of 2007, when a weak geomagnetic storm occurred.

During the Test 2 period (the five years) the RTDNNs
provide better performance than the three models in
terms of the correlation factor, the error and the bias,
while the FTDNNs failed to do so. This suggests that the
RTDNNs provide more robustness against changes in the
solar activity, and are therefore better suited for calibrating
the density. Similarly, for Test 1 the RTDNNs provide better
results than the FTDNNs, further confirming that the
autoregressive nature does allow for a better estimation
of the density. Nonetheless, there was a large variation on
the MSE for the tests done with the RTDNNs for a given
number of delays, due to the local minima in the training
of the Neural Networks. This issue was mitigated by
training several RTDNNs for a given number of delays,
and picking the one with the lowest MSE, which is a very
computationally costly solution (as described in Section
5.1). Therefore, further study for determining the appro-
priate learning algorithm for the RTDNNs and its conver-
gence conditions must be done. As an alternative to Neural
Networks, kernel methods could be used, given that they
do not suffer from the local minima issue.

A second RTDNN with three inputs was created by
repeating the method described in Section 5.1 (which is
used to define the number of delays) using the Test 2 data
(the full five years) set instead of the Test 1 data set. This
RTDNN provided better results over the five years, but it
had poorer performance than the original RTDNN with 3
inputs during the Test 1 period (January to September
2007). This result highlights the importance of the number
of delays for the inputs in the performance of the
networks. This suggests that a group of networks with
the number of delays chosen for the different solar condi-
tions over a time interval, might perform better than just
one networks with delays set for the whole interval
covering those same solar conditions. Such a group of
networks could be combined through a committee of
machines to create a calibrator valid for different solar
conditions. Another possibility would be to create an
adaptive calibrator which is retrained as the solar condi-
tions evolve.

The use of the speed averaged over the previous orbits
of the spacecraft as an additional input provided an error
reduction during the Test 1 period, but not during the Test 2
period. Consequently, more tests must be performed to fully
comprehend its effect on the performance of the networks.

Surprisingly, the average of models provided better
results over all than the three models over the five years.
This improvement was very significant during the years
2004 and 2005 during which the solar activity was higher.
The good performance of the average of models suggests
that it may be used as an additional input to the Neural
Networks to improve their performance. The good perfor-
mance of the average of models also confirms that com-
bining different atmospheric models can lead to better
density estimations.

This work verifies the feasibility of using Time Delay
Neural Networks, for calibrating the density estimated by
atmospheric models, while assimilating accelerometer
derived densities, and using accurate navigation data, if
available. This method can be further developed to create
an atmospheric density model, specifically designed for
orbit propagation and determination. Furthermore, this
method can be run onboard since the Neural Networks
have a low computational cost and the three models, and a
method for obtaining the spacecraft's speed from the
navigation systems can both be run onboard.

Future work will be the development of a group of
calibrators defined for different solar conditions and the
creation of a committee machine calibrator to combine the
individual networks. Moreover, the possibility of imple-
menting adaptive neural networks to create a dynamic
calibration method is also of interest, since it may provide
the methodology presented here, with the ability to
exploit real time data to calibrate the models, in a similar
fashion as HASDM does.
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