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ABSTRACT

Relative motion between two or more satellites has been studied for a long time, as the

works of W.H. Clohessy and R.S. Wiltshire, dated 1960, or the studies of J. Tschauner,

dated 1967, can testify. Not only these early works are milestones for the relative motion

modelling, as they provide linear models whose accuracy in terms of motion prediction is

granted in the simplified assumption of pure Keplerian motion, but they are also powerful

tools to gain insight into the complex dynamical properties of this type of motion. These

models allow to easily find conditions on the initial relative position and velocity that

allows the relative orbits to be periodic, that is closed orbits. When perturbations, such as

Earth oblateness and air drag effects, or even simpler nonlinearities are taken into account

in the model, an analytical solution appears more and more complicated to be derived, if

not impossible. Simple relations on the initial conditions leading to periodic orbits, such as

those that are well known when considering Hill-Clohessy-Wiltshire (HCW) equations, are

not to be expected without introducing some simplifications. In these cases a numerical

approach could still be able to locate the exact conditions that result in a minimum drift

per orbit. This work investigate the possibility of using a global optimization technique

to locate the initial conditions resulting into minimal drift per orbit relative motion.

Before using this approach in the nonlinear problem, the methodology is tested on Hill’s

and Tschauner-Hempel’s models, where an analytical solution is well known. The global

optimizer is essentially a genetic algorithm that considers the initial relative velocities

between the satellites as the chromosomes defining the individuals of the population,

the initial relative position is considered as given. This not only reduces the number of

variables the GA has to optimize, but it also allows to search for closed relative orbits of

a predefined dimension. Results show that the methodology is returning the analytical

results with a satisfactorily precision and that is able to locate bounded motion also when

nonlinearities become important.



Nomenclature

LVLH = Local Horizontal Local Vertical

x, y, z = relative position in LVLH frame

ẋ, ẏ, ż = relative velocity in LVLH frame

subscript i= values at the initial time

subscript f = values at the final time

f = fitness function

ω0 = angular velocity of the circular orbit

a = semi-major axis

e = eccentricity

i = inclination

Ω= RAAN

ω = argument of perigee

n = mean motion

INTRODUCTION

Many efforts have been made in the last years on modelling and controlling satellites

relative dynamic. In (Schaub, 1999, [7]) conditions for relative orbits invariant with re-

spect to the J2 perturbation are given in terms of mean orbital elements. In literature

several linear models of relative dynamics including the second harmonic of the gravita-

tional field, eccentricity and the air drag can be found (Izzo, 2002, [4]; Izzo Sabatini and

Valente, 2003, [6]; Tschauner, 1967, [8]) but nor the analytical solution neither the initial

conditions for periodic relative orbits are obtainable in most of these cases. The use of

evolutionary/genetic approaches in the aerospace research, especially in mission analysis

and design phase, is quite recent (Kim, 2002, [5]). The difficulties encountered when us-

ing genetic algorithm in this field stand in the strong dependence that convergence speed



shows upon the choice of the fitness function, the mutation and crossover probabilities,

the population size and the number of generations. There is not a rigorous mathematical

rule to choose these parameters in the best possible way, many times convergence can be

achieved only after trial and error adjustment of the parameters with respect to the par-

ticular problem. For these reasons many think that global optimization using stochastic

algorithms is more art than science. The benefits of these techniques are, though, huge.

Stochastical global optimizers may approach many problems, otherwise unsolvable. A

review on the use of global optimisation techniques in problems related to Mission Anal-

ysis and System Design may be found in some recent studies funded under the European

Space Agency ARIADNA scheme (Myatt et al., 2004, [2]).

GENETIC ALGORITHMS

Genetic Algorithms (GA) are stochastic global search methods that are based on the

principle of natural selection and evolution of the species. These kinds of algorithms

result to be effective for optimization problems containing different local optima with

discontinuous parts between them. In these cases the calculus-based methods can converge

to a local optimum rather then to the desired one. In the present paper a genetic algorithm

is applied to minimize the drift per orbit in the simple case of two different linearized

keplerian dynamic models. The first model of dynamics (HCW) considers a reference

orbit without eccentricity (Hill-Clohessey-Wiltshire equations, [10]), the second model

(TH) takes into account the eccentricity (Tschauner-Hempel equations [8] and [11]). After

showing the convergence of the method to the well-known analytical conditions that exist

for these simple dynamics, the algorithm is run with the the nonlinear keplerian relative

motion equations and considering an eccentricity value of e=0.3. The relative motion is

shown in the LVLH frame. The objective function chosen and maximized by the genetic

algorithm has the following form:

f(x, y, z) = −
√

(xf − xi)2 + (yf − yi)2 + (zf − zi)2 (1)



representing the error in relative position between the initial conditions and those

obtained at the end of the integration. The integration is performed over one orbital

period in the linearized cases. For the nonlinear model five periods have been used to

make the algorithm converge in a satisfying manner.

If a non linear dynamic, that takes into account all the possible perturbative effects, is

considered, there is no clear argument that tells us information on the convexity of the

objective function. On the other hand, in the Hill and T.-H. models, the objective function

is expected to be convex in the [e, ẏ, f] space. The software used for the numerical search

is the online PIKAIA freely available tool (Charbonneau, 1995, [1]). PIKAIA uses a

decimal alphabet made of 10 simple integers (0 through 9) for encoding the chromosome

(ẋ, ẏ, ż). The mutation and crossover characteristic are the default PIKAIA’s ones (see

Charbonneau, 1995, [1]).

VALIDATION OF THE GA

Using the genetic algorithm to find analytical Hill’s solutions

Considering the simple HCW equations to describe the relative dynamic between two

orbiting objects we have that the analytical condition,

ẏ0

x0

= −2ω0 (2)

on the relative initial conditions, assures a periodic motion. If we now perform some

numerical simulations considering a circular orbit with semimajor axis of 7000 km for

which the above relation returns a ratio of ẏ0

x0
= −2.156E − 3s−1 we get the results

contained in Table 1. The optimizer is able to converge to the global minimum that, in

this case, is also the only minimum of the problem.



Individuals Generations ẏ0

x0
pikaia Fitness function

20 50 -2.154459E-3 -2.721005E-2

20 100 -2.154459E-3 -2.721005E-2

50 100 -2.155201E-3 -1.425242E-2

100 100 -2.155892E-3 -2.164824E-3

100 500 -2.155892E-3 -2.164824E-3

100 1000 -2.155892E-3 -2.164824E-3

Table 1: Convergence of the GA increasing generations and population size

Using genetic algorithm to find analytical Tschauner-Hempel’s solutions

As soon as we consider also the effect of the eccentricity on the relative satellite mo-

tion the linear equations become with time periodic coefficients (Tschauner, 1967, [8]). In

this case the relations between the initial conditions in order to obtain a periodic orbit are

dependent on the true anomaly of the reference orbit and are quite complicated (Inalhan

et al., 2002, [3]). When the true anomaly is zero, though, it is possible to write a simple

analytical relation shown in Equation 3 (Inalhan et al., 2002, [3]):

ẏ0

x0

= − n(2 + e)

(1− e)
3
2 (1 + e)

1
2

(3)

To perform the numerical simulations 100 individuals and 100 generations have been

used. Higher values do not improve the quality of the solution.

The results in Table 2 are plotted in Figure 1.

As it was expected the behaviour of the fitness function indicates an infinite number of

minima but located in agreement to the Equation 3 (the real fitness has opposite sign with

respect to the one here reported as the minima shown in Figure 2 are optimal maximum

for the GA).



Eccentricity ẏ0

x0
eq.(1) ẏ0

x0
pikaia Percentage difference Fitness function

e = 0 -2 -1.999999 -0.00005% -3.4e-10

e = 0.1 -1.9091 -1.90899 -0.0058% -5.2e-8

e = 0.2 -1.8333 -1.83339 0.00491% -6.9e-8

e = 0.3 -1.7692 -1.76920 -0.000056% -2.9e-8

e = 0.4 -1.7143 -1.714199 -0.005892% -8.9e-7

e = 0.5 -1.6667 -1.666599 -0.006060% -1.2e-6

e = 0.6 -1.625 -1.624998 -0.000123% -3.3e-10

e = 0.7 -1.58823 -1.58819 -0.002519% -4.9e-6

e = 0.8 -1.55556 -1.555599 0.002507% -6.4e-5

e = 0.9 -1.526315 -1.526399 0.005503% -1.6e-5

Table 2: GA restitution of the analytical TH conditions for different eccentricities

SEARCHING CLOSED RELATIVE ORBITS FOR THE NONLINEAR

DYNAMIC

When applying the above presented methodology to find the formations with minimal

drift per orbit in a non linear dynamic case, problems arises in the propagation scheme

that introduces difficulties in the calculation time and in the accuracy of the solution.

Subtracting directly the Cartesian coordinates of the two satellites can easily degrade the

quality of the relative position obtained, as it subtract two very close values. In (Vadali,

2002, [9]) an approach based on a geometric method (called unit sphere projection) is pro-

posed. Integrating the relative dynamic in terms of orbital elements (for the keplerian case

just the true anomaly has to be used, see [9]) and subsequently translate the differences

in terms δx, δy, δz is numerically more accurate and the computation time is dramatically

reduced. This approach has been used here. In Table 3 the genetic parameters used:

After numerous trials the number of generations has been set to 500 with a population



Figure 1: TH analytical solution vs. TH solution with GA

of 100 individuals and simulations have been performed for different relative orbit sizes.

The initial dimension of these orbits increase from a 2 km relative position on the three

axes to a 500 km one.

Comparing the analytical relation of TH with the ẏ0

x0
rate obtained trough the GA it

is easy to notice how the linear condition looses its capability to produce bounded orbits

as the formation dimension increase. Figure 3 shows the comparison between the results

given by Equation 3 and the one given by the genetic algorithm. As the size increases the

ratio ẏ0

x0
, as obtained from our numerical simulations, decreases drastically. As expected

the relation given in Equation 3 allows to obtain closed orbit only for small formations.

The GA approach is therefore suitable to get the condition of periodic motion in these

cases. In Figure 4 and Figure 5 a plot of ten orbits is shown as obtained propagating the

initial conditions given by Equation 3 and by the GA and for two different formations of



Figure 2: fitness value vs. eccentricity and ẏ

different sizes: a small one (2 km) ad a larger one (200 km).

As an additional proof of the GA convergence to a satisfying solution the orbital

parameters of the two spacecrafts are calculated and compared in Table 4:

The only parameter that clearly maintains its value unchanged (considering the nu-

merical errors) is the semi-major axis a. This result coincides with the only constrain to

close a relative orbit in a keplerian motion: the equality of the semi-major axis. In this

way the two orbits have the same orbital period T and obviously the relative position is

repeated every T seconds.

CONCLUSION

The GA strategy here used resulted to be a valid instrument to analyse the behaviour

of the nonlinear relative dynamics between two satellites in keplerian orbit. After having

re-obtained the Hill’s and T.-H.’s solutions for bounded trajectories to check the validity



Crossover probability Mutation rate

initial minimum maximum

0.85 0.005 0.0005 0.25

Table 3: genetic parameters for nonlinear approach

Vehicle N1 Vehicle N2 % difference

a 7000 km a 7000.124 km 0.0018 %

e 0.3 e 0.2928 2.4 %

i 35 i 35.012 0.034%

Ω 35 Ω 33.99 2.9%

ω 35 ω 1.405 95.99 %

Table 4: Orbital parameters comparison

of the algorithm, the GA has been run for the complete mathematical model of relative

motion in keplerian orbit. Considering the numerical approach and the limitations in

terms of accuracy for the solutions, the matching period condition have been obtained

for closing the relative orbit. The initial velocities generated with the genetic calculation

match the analytic relation for T.-H. demonstrating the validity of the linear approach

for low dimensions orbits. Increasing size results in a obliged switching to the conditions

obtained numerically. Future developments of this new approach to the formation flying

problem include the analysis of J2 and drag effects. The present paper represents an

introduction and a validation work for the authors whose aim is to apply and study the

possibilities given by the genetic algorithm to the most complete as possible model of the

relative dynamics of satellites.



Figure 3: ẏ0

x0
ratio compared for the linearized and the nonlinear models (logarithmic scale

on x axis)



Figure 4: 10 orbits (TH vs. nonlinear) for low size (2 km)



Figure 5: 110 orbits (TH vs. nonlinear) for high size (200 km)
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