UNCOOPERATIVE OBJECTS POSE, MOTION AND INERTIA TENSOR ESTIMATION VIA STEREOVISION

Vincenzo Pesce¹, Michèle Lavagna¹, Riccardo Bevilacqua²

¹Department of Aerospace Science and Technology, Politecnico di Milano-Italia

²University of Florida, US

PROPOSED SOLUTION

DYNAMICAL MODEL

- Non-linear relative translational motion model
- Combination of the Euler equations for the relative rotational motion
- Torque free motion

OBSERVATION MODEL

- Pinhole camera model
- Image velocity as approximation of the optical flow
- Disparity computation

Pseudo-measurement constraint for the inertia ratios estimation

NUMERICAL SIMULATIONS

[0, 0, 0, 1]

log(0.9231)

log(0.782)

Relative position error Inertia Matrix Parametrization **State Initial Conditions** e^{k1} $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 12 \end{bmatrix} = k_1 = \log \frac{I_{11}}{I_{22}} \quad k_2 = \log \frac{I_{22}}{I_{33}}$ [10, 60, 10] m ρ_0 $I_T =$ [0.01, -0.0225, -0.01] $\dot{\rho}_0$ m/s - IEKF Ξ^{1.2} [-0.1, -0.1, 0.034]deg/s ω_0

 q_0

 k_1

 k_2

 $0 = I_T \dot{\omega}_T + \omega_T \times I_T \omega_T$

($\dot{\omega}_T$ computed with numerical differentiation method)

Relative Errors – Statistical results							
Percentiles	$\rho_0[m]$	$\dot{\rho}_0[m/s]$	$\omega_0[deg/s]$	$\theta[deg]$	$k_1[-]$	$k_{2}[-]$	
50	0.51	0.0062	0.0035	0.49	0.067	0.037	
70	0.64	0.0067	0.0036	0.61	0.13	0.051	
90	0.73	0.0073	0.0039	0.77	0.24	0.23	
100	0.9	0.011	0.0043	0.87	0.53	0.23	Results for 100 r

• No pseudo-constraint – High relative angular velocity

State	Initial	Condition	S
-------	---------	-----------	---

Relative Errors – Statistical results

ρ_0	[10, 60, 10]	m	
$\dot{ ho}_0$	[0.01, -0.0225, -0.01]	m/s	
ω	[-1, -1, 0.934]	deg/s	
q_0	[0, 0, 0, 1]	-	
k ₁	log(0.9231)	-	
k ₂	log(0.782)	-	

Percentiles	$\rho_0[m]$	$\dot{\rho}_0[m/s]$	$\omega_0[deg/s]$	$\theta \lfloor deg \rfloor$	$k_1[-]$	$k_2[-]$
50	0.53	0.01	0.012	1.8	0.035	0.021
70	0.64	0.013	0.013	2	0.043	0.024
90	0.76	0.017	0.014	2.2	0.069	0.032
100	0.94	0.02	0.016	2.5	0.15	0.043

Exact value

Experimental Result (constant density $\rho = 1 \frac{g}{cm^3}$)

I = 1

The exact value is obtained with a CAD model, imposing the

same constant density value

0

 $kg \ cm^2$

0

819.33

Estimated value

855.07

 $kg \ cm^2$

0

978.07

• A POSTERIORI IMAGE PROCESSING FOR COMPLETE INERTIA MATRIX RECONSTRUCTION

FINAL HIGHLIGHTS

The developed algorithm performs the relative state estimation with no restrictive assumption. It outperforms the recent results in the literature. It demonstrate that it is possible to estimate the inertia ratios, in torque free motion, with different values of the relative angular velocity, with or without pseudo-constraint. The filtering procedure allows for a computationally efficient implementation. Finally, a rough inertia matrix estimation is obtained with a video-processing procedure.