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RENDEZVOUS VIA DIFFERENTIAL DRAG WITH UNCERTAINTIES
IN THE DRAG MODEL

Leonel Mazal∗, David Pérez†, Riccardo Bevilacqua‡, Fabio Curti§

At Low Earth Orbits a differential in the drag acceleration between coplanar space-
craft can be used for controlling their relative motion in the orbital plane. Current
methods for determining the drag acceleration may result in errors due to the in-
accuracy of density models and misrepresentation of the drag coefficient. In this
work a novel methodology for relative maneuvering of spacecraft under bounded
uncertainties in the drag acceleration is developed. In order to vary the relative
drag acceleration, the satellites modify their pitch angle. Two approaches are pro-
posed. First, a dynamical model composed of the mean semi-major axis and argu-
ment of latitude is utilized for describing long range maneuvers. For this model, a
Linear Quadratic Regulator (LQR) is implemented, accounting for the uncertain-
ties in the drag force. This controller guarantees asymptotic stability of the system
up to a certain magnitude of the state vector, which is determined by the uncer-
tainties. Furthermore, based on a cartesian relative motion formulation, a min-max
control law is designed for short range maneuvers. This provides asymptotic sta-
bility under bounded uncertainties. The two approaches are tested in numerical
simulations illustrating a long range re-phasing, performed using the LQR con-
troller, followed by a short range rendezvous maneuver, accomplished using the
min-max controller.

INTRODUCTION

The inertial acceleration aD generated by the drag force is usually modeled as [1, Page 549]

aD = −ρvrel ‖vrel‖ CB (1)

where vrel denotes the velocity vector of the satellite relative to the atmosphere, ρ represents the
atmospheric density, and CB is the ballistic coefficient. The ballistic coefficient is defined as CB ,
CD S/ (2m), where S stands for the cross-sectional area, CD is the drag coefficient, andm denotes
the mass of the spacecraft. Equation (1) shows that aD acts always in the direction opposed to the
vector vrel. Since the atmosphere inertial velocity is usually a small component compared to the
inertial velocity of a LEO satellite,2 it is usually neglected, leading to use the inertial velocity of the
satellite v instead of vrel in Eq. (1). Under the assumed model, drag forces cannot have components
perpendicular to the instantaneous plane of motion. This is a significant limitation for the use of
drag to maneuver. Yet, within the plane of motion, certain maneuvers can be achieved by use of
drag only, reducing the propellant needs in certain missions.3, 4
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The main effect of the drag force is reducing the semi-major axis of the orbit. The rate of the semi-
major axis decay is basically determined by quantities involved in Eq. (1). If these quantities are
judiciously exploited, relative accelerations between two or more satellite can be generated, such
that they are steered towards relative states desirable for specific multiple-satellite applications.
This idea is usually termed differential-drag (DD) maneuvering. In recent years, the use of DD
for satellite relative maneuvers has been actively investigated due to its potential for reducing the
propellant needs in formation flying and cluster flight missions.

Leonard et. al.5 derived a control scheme that utilizes drag plates acting at either maximum
or minimum drag. To that end, the in-plane dynamics was modeled with the Clohessy-Wiltshire
equations,6 and the density was assumed constant. Carter and Humi7 derived linearized equations
of relative motion that include effects caused by drag, assuming a drag force model proportional to
the square of the velocity. Kumar and Ng4 extended the work by Leonard et. al. to consider other
acting perturbations, erroneous measurements and inter-satellite distances slightly larger than those
considered by Leonard et. al., but still in the order of magnitude of few tens of kilometers.

Bevilacqua et. al.8, 9 utilized the linear formulation of Schweighart and Sedwick10 to derive a
DD-based controller for steering the in-plane relative coordinates to zero. They assumed a constant
density, and actuation provided by drag plates generating either minimum or maximum drag force.
Based on Schweighart-Sedwick equations10 and the same aforementioned drag-plates actuation,
Pérez and Bevilacqua11 removed the assumption on constant atmospheric density and proposed an
adaptive controller to perform rendezvous. Ben-Yaacov and Gurfil12 used DD to perform relative
maneuvers for cluster-keeping purposes. Dell’Elce and Kerschen13 utilized pseudospectral methods
and model predictive control for planning and effectuating rendezvous maneuvers.

So far, the research in this area has been mainly oriented to close-proximity maneuvers, whereas
the potential of differential-drag based maneuvers can go beyond close-proximity operations. In-
deed, the ORBCOMM constellation14 utilizes differential drag, in an open-loop manner, to control
the relative phase angles of the satellites. One could also envision applications that require to guide
satellites, which are initially separated by large distances (order of magnitude of ∼ 1000 km.) in
the same orbital plane, along trajectories that drive them into close-proximity configurations. For
this purpose, DD can be also utilized, enabling reductions in the propellant requirements.

One of the main difficulties of designing differential-drag maneuvers is the inherent uncertainties
existing in some of the quantities in Eq. (1). The models of the Earth’s atmospheric density field,
as well as the drag coefficient values associated to various satellite geometries can be inaccurate,15

leading to uncertainties in the effects of differential-drag based maneuvers.

One of the goals of this work is to design differential-drag cooperative maneuvers explicitly
considering uncertainties in the drag models, which at the best knowledge of the authors has not
received much attention. These maneuvers are aimed at steering the satellites from given initial
conditions, to close-proximity configurations oriented to a rendezvous.

Two insights are proposed. The first insight formulates the problem using a linearized relative
motion representation, based on orbital elements. In order to perform the linearization, the main
assumption is that the difference in mean semi-major axes between the two satellites, is small com-
pared to the mean semi-major axes values. Unlike other linearized formulations,6, 10 this model
allows large distances between the satellites, as long as both mean semi-major axes are kept close
one to each other. In this manner, one can consider initially large phase-separations between the
satellites, and drive them into close-proximity configurations. Under this model, an LQR controller
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is proposed, where the input of the system is determined by the cross-sectional area of the satellites,
i.e. the pitch angles. Moreover, an analysis of the convergence of the system driven by the proposed
LQR controller in the presence of bounded uncertainties is presented. This leads to determine gains
ensuring that the system, even under these uncertainties, still convergences up to a certain norm
of the state vector. Since the cross-sectional area of the satellites is limited, an assessment of the
system under saturation is provided, showing that convergence is still achieved.

A second novel method is presented, which utilizes a min-max control16 approach on a lin-
earized cartesian formulation.10 This enables to drive the in-plane states of the satellites from close-
proximity configurations towards rendezvous conditions. The min-max method allows to explicitly
deal with bounded uncertainties in the drag acceleration, including the atmospheric density field
and the ballistic coefficients.

DESCRIPTION OF THE PROBLEM

Let two satellites, Chaser and Target, be in coplanar circular orbits. The main goal of this work is
to derive DD based, closed-loop controllers that steer the satellites to an encounter. These maneuvers
will be performed by varying the drag force generated on either satellite, with no thrust usage.

Figure 1. Assumed geometry of the satellite.

Motivated by the rapid increase in the number of missions composed of cube-sats, this work
assumes that the satellite geometries are rectangular parallelepipeds, as the one illustrated in the 3D
View of Figure 1. In this paper, these bodies are endowed with one rotational degree of freedom,
being the axis of rotation always perpendicular to the plane of motion and depicted as a ”dash-dot”
line in the 3D View of Fig. 1. The input considered for the control laws is the attitude of the satellite
parametrized by the angle β, according to Fig. 1. To measure β, define a line lying on the orbital
plane, perpendicular to the velocity vector, as the dashed line illustrated in the 2D View and Orbital
View of Fig. 1. β is measured from the aforementioned line towards the velocity vector. In Fig. 1,
SA and SB denote the surfaces perpendicular to the plane of motion. The total cross-sectional area
will be given by

S = SA| cosβ|+ SB| sinβ| (2)

Note the vector v indicates the inertial velocity of the satellite. Changing β modifies the cross-
sectional area S and consequently the magnitude of the exerted acceleration aD. Due to the period-
icity of S (β), for the purposes of this work, β can be restricted to the range β ∈ [0◦ , 90◦], which
allows to remove the absolute value bars from Eq. (2). Then, Equation (2) can be reformulated as

S = S0 cos (β − ψ) (3)
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where S0 =
√
S2
A + S2

B and ψ = atan2
(
SB
S0
, SAS0

)
. It can be seen that S has a maximum at

β = ψ > 0, and a minimum at β = 90◦. Hence, for the purposes of this work, the range of β can
be restricted even more: β ∈ [ψ , 90◦].

ADDRESSING THE PROBLEM WITH ORBITAL ELEMENTS

This section presents an approach to drive two satellites that are initially in circular orbits, in the
same orbital plane but separated in phase, i.e. with different arguments of latitude, towards a close-
proximity configuration. This configuration is attained by matching the mean semi-major axes ā of
the satellites and the mean argument of latitude θ̄. Notice that for initially circular orbits (very low
eccentricities), neither the Earth’s oblateness nor drag effects increase the mean eccentricities, i.e.
the orbits remain circular∗ . Hence, matching ā and θ̄ brings the two satellites into a close-proximity
configuration.

Dynamic Model

Let ā, ē, ī, ω̄, and M̄ respectively denote the secular (or mean) components of the semi-major
axis, eccentricity, inclination, argument of perigee, and mean anomaly. Under the influence of drag
and the first term of the gravitational geopotential due to zonal harmonics (J2), the time-variation of
the mean argument of perigee ω̄ and the mean mean anomaly M̄ are respectively given by Mishne17

as:

˙̄ω =
3

4
J2 n̄

(
Req
p̄

)2 (
5 cos2 ī− 1

) ˙̄M = n̄+
3

4
J2 n̄

(
Req
p̄

)2√
1− ē2

(
3 cos2 ī− 1

)
(4)

where p̄ and n̄ denote the parameter (semilatus rectum) of the orbits and the mean motion respec-
tively, and Req represents the mean equatorial radius of the Earth.

The argument of latitude θ is defined as θ , ω+ f , where f denotes the true anomaly. Assuming
circular orbits, the variation of the mean argument of latitude can be modeled as

˙̄θ = ˙̄M + ˙̄ω =

√
µ

ā3
+

3

4
J2

√
µ

ā3

(
Req
ā

)2 (
8 cos2 ī− 2

)
(5)

On the other hand, the rate of change of the mean semi-major axis can be formulated using the Gauss
variational equations (GVE) and the premise that the effects on the mean elements due to distur-
bances other than J2, can be approximated by the effects of the same disturbances on the respective
osculating elements†. Using the GVE resolved in tangential and normal axes [21, Page 489], the
time-variation of the semi-major axis a is formulated as

ȧ =
2 a2 v

µ
Γt (6)

where v , ‖v‖ , and Γt represents the disturbance acceleration components along the inertial
velocity vector. Since the perturbation due to J2 has no effect on ā, Γt accounts for accelerations
due to drag only. Hence,

Γt = −1

2
ρ v2CD

m
S0 cos (β − ψ) (7)

∗In fact, drag reduces the eccentricity of orbits. [1, Page 671]
†This approximation has been proposed and assessed in a few papers17–20 showing its validity.
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Recalling that for circular orbits v =
√
µ/a, ˙̄a is approximated by

˙̄a = −2
√
µ ā ρCB0 cos (β − ψ) (8)

where CB0 = CD S0/ (2m). Equations (5) and (8) constitute the dynamic model that will be used
throughout this section. Recall that under J2 and drag influence, the mean inclination ī remains
constant, and thus it actually represents a parameter. It is important to mention that the reduced
state

[
θ̄ , ā

]> represents only the in-plane motion.

Considering two satellites of equal geometry and size, Chaser and Target, the differential elements
are defined as:

∆θ̄ , θ̄C − θ̄T (9)

∆ā , āC − āT (10)

In Eqs. (9) and (10), as well as for the remainder of the paper, the sub-indices (·)C or (·)T refer to
the parameter or variable (·) associated to the Chaser or Target respectively. The lack of sub-index
in certain expressions indicates that the expression is valid for either spacecraft indistinctly.

From Eqs. (5) and (8), the evolution of ∆θ̄ and ∆ā are given by

∆ ˙̄θ =
√
µ

 1

ā
3
2
T

 1(
1 + ∆ā

āT

) 3
2

− 1

+
3

4
J2 R

2
eq

(
8 cos2 ī− 2

) 1

ā
7
2
T

 1(
1 + ∆ā

āT

) 7
2

− 1


 (11)

∆˙̄a = −2
√
µ

(
ρC
√
āT

√
1 +

∆ā

āT
u (βC)− ρT

√
āTu (βT )

)
(12)

where
u (βC) , CB0 cos (βC − ψ) u (βT ) , CB0 cos (βT − ψ) (13)

For brevity, in the forthcoming developments, u (βC) and u (βT ) will be denoted by uC and uT ,
respectively.

Notice that, for given densities ρC and ρT , the nonlinear equations (8) and (5) depend solely on
ā, but not on θ̄. Hence, the dynamic equations (11) and (12) can be linearized about ∆ā/āT = 0.
Generally speaking, in multiple-satellite missions that involve coordinated relative motion, the mean
semi-major axes should be similar; otherwise there are high natural drift rates that can rapidly
dismantle any desired configuration. Hence, the linearization assumes that |āC−āT |āT

� 1. Yet,
notice that the linear system is still valid for large differences in the argument of latitude, and hence
possibly large distances. The linearization of the right hand side (RHS) of Eq. (11) yields

∆ ˙̄θ = −P0 ∆ā (14)

where

P0 ,
√
µ

[
3

2

1

ā
5/2
T

+
21

8

J2R
2
eq

(
8 cos2 ī− 2

)
ā

9/2
T

]
(15)

On the other hand, to avoid terms containing products of the input and the state, the term
√

1 + ∆ā
āT
u (βC)

in Eq. (12) is approximated by√
1 +

∆ā

āT
u (βC) ' u (βC)− u (βC)

1

2

∆ā

āT
' u (βC) (16)
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(i.e. it is only the zeroth order term of the corresponding Taylor series), leading to

∆˙̄a = −2
√
µ
√
āT (ρC uC − ρT uT ) (17)

Defining w ,
[
∆θ̄,∆ā

]>, the obtained linear system can be written as follows

ẇ =

[
0 −P0

0 0

]
w +

[
0

b

]
(−ρC uC + ρT uT ) (18)

where b , 2
√
µ āT .

Assuming that over a maneuver, āT does not vary significantly (i.e.
(āT (t0)− āT (tf )) /āT (t0)� 1 where t0 and tf denote the initial and final time of the maneuver
respectively), āT can be substituted by āT (t0) and the dynamical system (18) may be considered
linear time-invariant (LTI). Numerical simulations will validate the use of the obtained linearized
model. The input of this system is given by the term−ρC uC + ρT uT . Notice that the uncertainties
in the densities ρC and ρT , and possibly in the drag coefficients CD, constitute uncertainties in the
input.

Controller Derivation

Assuming no constraints on the input, an infinite-horizon LQR approach will be initially imple-
mented. Since the range of u , −ρC uC + ρT uT is limited, a saturation function will be proposed
in the sequel, and it will be shown that convergence is still achieved. Recall that, in an infinite
horizon LQR, if w denotes the state vector, the input is given by [22, Chapter 3.3]

uLQR = −R−1 B>Pw (19)

where P is the matrix that solves the algebraic Riccati Equation. For the problem in question, the
matrices are given by

A =

[
0 −P0

0 0

]
B =

[
0

b

]
R > 0 O ,

[
0 0

0 0

]
(20)

and

Q ,

[
q1 0

0 q2

]
, with q1 > 0 and q2 > 0 P ,

[
Π1 Π2

Π2 Π3

]
, positve definite (21)

For the discussed problem, P is sought such that the matrix

A∗ , A−BR−1 B>P (22)

be Hurwitz, i.e. all the eigenvalues of A∗ must have negative real part. Hence, the expressions for
the entries of the matrix P are determined as

Π1 =

√
q1

√
2P0
√
q1R+ q2 b

P0

√
b

Π2 = −
√
q1R

b
Π3 =

√
R
√

2P0
√
q1R+ q2 b

b3/2
(23)

and the gain K is

K = R−1 B>P =

[
−
√

q1
R

√
2P0
b

√
q1
R + q2

b

]
(24)
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With K already computed, then the desired input to the system is

udes = −K
[
∆θ̄ , ∆ā

]> (25)

Now, assuming that

(−ρC + ρT ζ)CB0 ≤ udes ≤ (−ρC ζ + ρT )CB0 (26)

where ζ , cos (π/2− ψ), one should find βC and βT (the pitch angles of the Chaser and Target,
respectively), such that

− ρCuC + ρTuT = udes (27)

If the constraints (26) are not satisfied, there are no βC ∈ R and βT ∈ R that satisfy Eq. (27).
This case will be addressed in the sequel.

Effects of the Uncertainties in the Implementation

In order to find βC and βT that solve Eq. (27), a model for the atmospheric density must be
selected∗, from which the densities for the Chaser and Target are respectively assumed to be ρCmodel ,
ρTmodel . Similarly, one should also consider a nominal value for the drag coefficient C∗D, which
leads to a nominal value C∗B0 = S0C

∗
D/ (2m), yielding assumed u∗C = C∗B0 cos (βC − ψ) and

u∗T = C∗B0 cos (βT − ψ). Hence, if

(−ρCmodel + ρTmodel ζ)C∗B0 ≤ udes ≤ (−ρCmodel ζ + ρTmodel)C
∗
B0 (28)

βC and βT are actually found from the equation

C∗B0 (−ρCmodel cos (βC − ψ) + ρTmodel cos (βT − ψ)) = udes (29)

However, considering that the models are uncertain, the real densities affecting the spacecraft are
given by ρC = ρCmodel + δρC and ρT = ρTmodel + δρT , where δρC and δρT denote the differences
between the real and modeled density, for Chaser and Target respectively. Correspondingly, the
real value of CB0 is given by CB0 = C∗B0 + δCB0, where δCB0 = S0δCD/ (2m). This leads to
uC = u∗C + δuC and uT = u∗T + δuT , where δuC/T = δCB0 cos

(
βC/T − ψ

)
.

Hence, the true input of the system is given by

utrue = − (ρCmodel + δρC) (u∗C + δuC) + (ρTmodel + δρT ) (u∗T + δuT )

= udes + η (30)

where
η , −ρCmodelδuC + ρTmodelδuT − δρCu

∗
C + δρTu

∗
T − δρCδuC + δρT δuT (31)

To assess the effects on the maneuvers caused by the errors in the density models and CB0, consider
the positive definite function V = w>P w†. Its time derivative is then given by

V̇ = 2w>P [Aw + B (− (ρCmodel + δρC) (u∗C + δuC) + (ρTmodel + δρT ) (u∗T + δuT ))] (32)

∗The same rationale can be applied if density estimation is considered. Nevertheless, nowadays real-time density
estimation is not a trivial task.
†Notice that for the forthcoming analysis, the state vector as well as any other quantity involved can be considered as

normalized by corresponding units; i.e. distances by km, angles by rad, and time by seconds.
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Introducing Eqs. (25), (29) and (31), yields

V̇ =2w>P [Aw + B (udes + η)] = w>
[
P (A−BK) + (A−BK)>P

]
w + 2w>PBη

=−w>
(
Q + PBR−1B>P

)
w + 2w>PBη (33)

which can be upper bounded by

V̇ ≤ Υ (‖w‖) , −‖w‖2 λmin + 2 ‖w‖ ‖PB‖ η̄ (34)

where
η̄ , δCMB0ρMmodel + 2C∗B0δ

M
ρ + 2δCMB0 δ

M
ρ ≥ |η| (35)

with δCMB0 ≥ |δCB0|, δMρ ≥ |δρC/T |, ρMmodel ≥ ρC/Tmodel
along the entire trajectory. Moreover,

λmin > 0 denotes the smallest eigenvalue of the symmetric matrix Ξ , Q + PBR−1B>P.

Considering the errors in the atmospheric density models and in the ballistic coefficients, V̇ will
be always bounded from above by Υ (‖w‖), which is a parabola in ‖w‖. Its roots are located at
‖w‖ = 0 and ‖w‖ = 2‖PB‖

λmin
η̄ > 0. Hence, as long as ‖w‖ > 2‖PB‖

λmin
η̄, V̇ will be negative, as

required for convergence [23, Chapter 4]. Since V is positive definite, due to continuity and as long
as V̇ < 0, eventually ‖w‖ becomes 2‖PB‖

λmin
η̄ and the decreasing rate of V cannot be guaranteed.

Hence, there is interest in reducing the ratio ‖P B‖ /λmin, which is a function of Q andR, to reduce
the range in which V̇ < 0 cannot be guaranteed.

The matrix Ξ = Q + PBR−1B>P is given by

Ξ =

[
Ξ1 Ξ2

Ξ2 Ξ3

]
(36)

where

Ξ1 = 2 q1 Ξ2 = −
√
q1

b

√
2P0

√
q1R+ q2b Ξ3 = 2 q2 +

2P0
√
q1R

b
(37)

from which its eigenvalues are computed as:

λmax,min =
q2 b+ P0

√
q1R+ q1 b±

√
q2
2 b

2 + 2 q2 b P0

√
q1R− q1 q2 b2 + q1 RP 2

0 + q2
1 b

2

b
(38)

Hence,

‖P B‖
λmin

=

√
q̃1 + q̃2 + 2P0

b

√
q̃1

(q̃1 + q̃2) + P0
b

√
q̃1 −

√(
q̃2

1 + q̃2
2

)
+
(
P0
b

)2
q̃1 + 2 P0

b

√
q̃1 q̃2 − q̃1 q̃2

(39)

where q̃1 , q1/R and q̃2 , q2/R. Notice that the RHS of Eq. (39) does not depend on q1, q2 or
R explicitly, but on q̃1 and q̃2. Moreover, ‖P B‖ /λmin is a positive function of q̃1 and q̃2, which
can be selected to reduce ‖P B‖ /λmin as much as desired, while keeping in mind that this affects
the required control efforts and might generate saturation in the system. Yet, the next section shows
that if the system is saturated, it will eventually reach a non-saturated configuration where Eq. (28)
is satisfied, and thus convergence up to ‖w‖ = 2‖PB‖

λmin
η̄ > 0 can be achieved.
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Saturation

According to the proposed controller, the desired input of the system is given by Eq. (25). On
the other hand, the required attitude angles βC and βT are computed according to Eq. (29). As
previously mentioned, in order to find βC ∈ R and βT ∈ R, the inequality (28) must hold. However,
for certain values of ∆θ̄ and ∆ā the inequality (28) might be not satisfied, and thus there are no
valid βC and βT satisfying Eqs. (25) and (29). This occurs because the cross-sectional areas of
the satellites are limited, whereas the input of a linear controller of the form of Eq. (25) can,
theoretically, attain any value.

To address this problem, this work proposes to implement a saturation function. Whenever the
inequality (28) is not satisfied, the system implements attitudes βC and βT such that the maximum
or minimum feasible differential drag acceleration is obtained.

βC =
π

2
and βT = ψ, if

(
−k1∆θ̄ − k2ā

)
≥ CB0 (−ρCmodelζ + ρTmodel ) (40)

βC = ψ and βT =
π

2
, if

(
−k1∆θ̄ − k2ā

)
≤ CB0 (−ρCmodel + ρTmodelζ) (41)

C∗B0 (−ρCmodel cos (βC − ψ) + ρTmodel cos (βT − ψ)) = −K
[
∆θ̄ , ∆ā

]>
, otherwise (42)

where k1 and k2 respectively denote the first and second components of the gain matrix K, given
by Eq. (24).

The goal of this section is showing that the dynamical system given by Eqs. (14) and (17) still
converges to the origin, if it is driven by the control law stated by Eqs. (40-42). This will be done
by depicting the phase portrait of the system and analysing the resulting trajectories. Since the
atmospheric density certainly depends on the altitude of the satellites, it is necessary to assume a
density field model that captures the main density behavior due to changes in the semi-major axes of
the satellites. For the forthcoming analysis, the exponential atmospheric model CIRA-72 published
in [1, Page 564] will be used, as it captures the aforementioned behavior and allows to keep the
math tractable. In this model, the atmospheric density is computed as

ρ(h) = ρHe
−h−h0

H (43)

where ρH , h0, and H denote model parameters that are tabulated in the aforementioned reference,
for various intervals of altitude h. Notice that this model, and other similar static models, do not
consider variations of the density due to the local hour of the satellite. They are built averaging
density measurements for given altitudes. As DD maneuvers require large numbers of orbits to be
completed, the oscillations due to local time tend to average out. Hence, for the purposes of this
section, the main effects of the maneuvers can still be captured utilizing the aforementioned model.

Since the orbits are assumed circular (assuming circular Earth with radius Req), Eq. (43) can be
restated as

ρ (ā) = ρHe
− ā−(h0+Req)

H (44)

where the constant h0 represents the lowest altitude of the interval of interest. Since the mean
semi-major axes of the satellites are expected to be sufficiently close, from Eq. (44), ρCmodel can be
modeled as

ρCmodel ' ρTmodel +
∂ρ

∂ā

∣∣∣∣
āT

∆ā = ρTmodel

(
1− ∆ā

H

)
(45)
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where H is selected for the proper range of altitudes.∗

To proceed, the region in which Eq. (42) has solutions βC ∈ R and βT ∈ R is firstly determined.
From the inequality (28) and introducing Eq. (45), this region is obtained as

SU ∆θ̄ +MU ≥ ∆ā ≥ML + SL ∆θ̄ (46)

where

SU ,
−k1

k2 +
CB0

H
ρTmodel

> 0 SL ,
−k1

k2 +
CB0

H
ζ ρTmodel

> 0 MU ,
(1− ζ)CB0

k2

ρTmodel

+
CB0

H

> 0 ML , − CB0 (1− ζ)
k2

ρTmodel

+
CB0

H
ζ
< 0

(47)

Notice that, for a given ρTmodel , ∆ā is bounded by an upper line LU and a lower line LL, of positive
slopes. Figure 2 shows these lines (dash-dot) for typical values of the parameters of the inequality
(46), namely: CD = 2.2, CB0 = 0.0134 m2/kg, SA = 0.06 m2 and SB = 0.01 m2, m = 5
kg, k1 = −1.8303 10−10 1/km and k2 = 1.8536 10−10 1/km2, H = 58.5150 km,1 and ρTmodel =
2.5634 10−12 kg/m3 , corresponding to an altitude of 421.87 km.1 For the following explanation,
the zone in between LU and LL will be referred to as non-saturated zone.

Moreover, Fig. 2 also illustrates the solid line O that satisfies ∆˙̄a = 0. This line is obtained
by solving k1 ∆θ̄ + k2 ∆ā = 0. The slope of this line is −k1/k2 > 0, and it passes through the
origin. Above(below) O, ∆˙̄a < (>)0. Furthermore, notice that above (below) the line ∆ā = 0,
∆ ˙̄θ < (>)0.

According to Eq. (17), there are two necessary conditions that must hold in order to be able
to generate differential drag for control purposes. These conditions are formulated as −ρCmodel +
ρTmodel ζ < 0 and −ρCmodel ζ + ρTmodel > 0. If one of these conditions does not hold, ∆˙̄a could not be
generated in both directions, positive and negative. Considering Eq. (45), these conditions entail the
following requirements: 1 > ζ + ∆ā/H and 1 > ζ (1−∆ā/H). As it was previously mentioned,
the expected values of ∆ā are sufficiently small to avoid high natural drift rates, from which for the
purposes of this work they can be assumed as |∆ā| ≤ 10 km. Moreover, for 3U or longer cubesats,
ζ = cos (π/2− ψ) ≤ 0.32. Hence, 1 > ζ + ∆ā/H and 1 > ζ (1−∆ā/H) do not appear difficult
to satisfy. If these conditions were not satisfied, the non-saturated zone would not exist, nor the line
O could be defined.

Figure 2 also depicts the phase portrait of the system (18) driven by (40-42). At each point
w =

[
∆θ̄ , ∆ā

]>, the slope of the flow direction is computed as d ∆ā
d ∆θ̄

= ∆˙̄a/∆ ˙̄θ. In the non-
saturated zone, the slope of the flow direction is given by

d ∆ā

d ∆θ̄
=

2
√
µaT

P0

(
k1

∆θ̄

∆ā
+ k2

)
(48)

whereas out of this region, the slopes are given by

d ∆ā

d ∆θ̄
= −

2
√
µaT

P0 ∆ā
(CB0 (−ρCmodel + ρTmodelζ))

= −
2
√
µaT CB0 ρTmodel

(
ζ −

(
1− ∆ā

H

))
P0∆ā

, if w is above LU (49)

∗Any density variations due to solar activity would result in time-varying coefficients for the model (44). Yet, the
same relation (45) would be obtained, provided that the semi-major axes of the satellites are sufficiently close.

10



and

d ∆ā

d ∆θ̄
= −

2
√
µaT

P0 ∆ā
(CB0 (−ρCmodelζ + ρTmodel))

= −
2
√
µaT CB0 ρTmodel

(
−ζ
(
1− ∆ā

H

)
+ 1
)

P0 ∆ā
, if w is below LL (50)

∆θ̄ [rad]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

∆
ā
[k
m
]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O

Region I

Region IV

Region II

Region III

LL

LU

Figure 2. Phase Portrait of the System, depicted with Eqs. (48-50).

The line defined as ∆ā = 0 along with the line O determine four regions of the phase portrait,
each of which has distinctive flow direction. These regions are named I, II, III, and IV. In region I,
the flow has ∆˙̄a > 0 and ∆ ˙̄θ < 0. In region II, the flow evolves such that ∆˙̄a < 0 and ∆ ˙̄θ < 0. In
region III, the flow is characterized by ∆˙̄a < 0 and ∆ ˙̄θ > 0. Finally, in region IV, the flow moves
with ∆˙̄a > 0 and ∆ ˙̄θ > 0. Each of these regions has a sub-region within the non-saturated zone,
denoted by (·)N , and a sub-region that is outside the non-saturated zone, which is denoted by (·)S .
Hence, for instance, region I outside(inside) the non-saturated zone will be referred to as IS(N ).

As time elapses, considering the slow decay of āT and consequent variations of ρTmodel and P0,
the slopes outside the non-saturated zone become steeper. To see that, using Eqs. (15,44,49,50),
one can compute that:

sgn
[
∂

∂āT

(
d ∆ā

d ∆θ̄

)]
=

{
−1 sgn (∆ā) , if w is above LU

+1 sgn (∆ā) , if w is below LL
(51)

Hence, since ˙̄aT < 0, the slopes increase their magnitudes.

Due to the flow directions of regions IS and IIIS , the trajectories will eventually reach the non-
saturated zone. In region IVS , as long as

d ∆ā

d ∆θ̄
> SL (52)

the trajectories will reach either the region IVN or the region IS , in which case they also end up at
the non-saturated zone. Inequality (52), entails

∆ā >
ζ − 1

P0 SL
2
√
µaT CB0 ρTmodel

+ ζ
H

(53)
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and with the same typical values that Fig. 2 was built, inequality (52) is satisfied as long as ∆ā >
−22.03 km.

In region IIS , as long as
d ∆ā

d ∆θ̄
> SU (54)

the trajectories will flow towards the region IIN or IIIS in which case they will eventually reach the
non-saturated zone as well. Condition (54) implies

∆ā <
1− ζ

P0 SU
2
√
µaT CB0 ρTmodel

+ 1
H

(55)

With the same values used to build Fig. 2, inequality (54) is satisfied as long as ∆ā < 16.06 km.
For practical purposes and due to aforesaid reasons, the value of |∆ā| is expected to be significantly
smaller than ∼16 km.

Since the phase portrait shows that the trajectories always move towards and eventually enter the
non-saturated zone, they cannot leave once they reached it. Therefore, once the trajectories are
within the non-saturated zone, the LQR controller drives the system towards the origin, with no
saturation. A sample trajectory, generated with the parameters used to build Fig. 2, is also shown
(thicker solid lines) to illustrates the aforementioned concepts.

Computation of βC and βT

Using Eqs. (40-42), the angles βC and βT are determined. If the system is within the non-
saturated zone, then βC and βT must satisfy Eq. (42), which constitutes a single equation with
two unknowns. In order to minimize the orbital decay, it is sought that the cross-sectional areas
are always as small as possible. Therefore, one of the angles may be arbitrarily set to yield the
minimum possible cross-sectional area, and the other one determined to solve Eq. (42). Hence, the
following algorithm is proposed to determine βC and βT .

βC = 90◦ and βT = 90◦, if āC = āT and θ̄C = θ̄T

βC = 90◦ and βT = arccos

[
−K[∆θ̄ , ā]

>
+ρCmodelCB0ζ

CB0ρTmodel

]
+ ψ, if −Kw ≥ 0

βT = 90◦ and βC = arccos

[
K[∆θ̄ , ā]

>
+ρTmodelCB0ζ

CB0ρCmodel

]
+ ψ, otherwise

(56)

MIN-MAX CONTROL FOR SHORT RANGE DIFFERENTIAL DRAG BASED MANEU-
VERS WITH INPUT UNCERTAINTIES

In this section a second methodology for DD coplanar relative maneuvering is presented. The
methodology is intended for close proximity initial conditions, for instance once the system has
reached the bound given in Eq. (34). In this approach the relative motion is described using cartesian
coordinates in a Local Vertical-Local Horizontal (LVLH) frame, attached to the Target. In this
frame, x points from the Earth’s center to the Target spacecraft, y points in the direction of the
Target’s velocity vector and z completes the right handed frame. The use of Cartesian coordinates
enables a more precise description of the relative state for short distances. Moreover, estimation of
the relative state is more accurate, since differential GPS can provide direct measurements of the
relative state in the Cartesian frame [24, Page 7]. The relative motion of the spacecraft is controlled
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using a min-max controller16 which takes into account uncertainties in the input, provided that
they are bounded by a known value. In this case the controller provides asymptotic stability under
bounded uncertainties in the drag force.

Spacecraft Linearized Relative Dynamics

The relative motion is represented using the dynamical model developed by Schweighart and
Sedwick.10 This relative motion model considers that the satellites are affected by the mean effects
of J2, and that the Target satellite is in a circular orbit or that there is a circular reference orbit. For
motion restricted to the xy plane, this model is written as:

υ̇ = Amυ + Bmwtrue, Am =


0 0 1 0
0 0 0 1
b 0 0 a
0 0 −a 0

 , υ =


x
y
ẋ
ẏ

 (57)

where the product Bmwtrue denotes the relative acceleration of the Chaser with respect to the
Target, resolved in the LVLH frame, and a and b are given by:

a = 2nc, b = (5c2 − 2)n2, c =

√
1 +

3J2R2
eq

8ā2
ref

(1 + 3cos(2̄iref )) (58)

with n, āref and īref being the mean mean motion, mean semi-major axis and mean inclination
of a circular reference orbit, respectively. In this work the reference orbit is set to match the orbit
of the Target. During the maneuver, the drag acceleration results in orbital decay for the Target
and Chaser. Yet, the variations in the semi-major axes due to the decay are significantly small,
which justify considering the matrix Am as a constant and determined by the initial conditions∗.
Numerical simulations will illustrate the small changes in the entries of Am.

If the satellites are close enough, such that the inertial velocity vectors of Chaser and Target are
practically parallel, the differential acceleration caused by drag is given by Bmwtrue with Bm =
[0 0 0 1]>, and

wtrue = −ρC ‖vC‖2 uC + ρT ‖vT ‖2 uT (59)

Considering uncertainties in the atmospheric density and drag coefficient (as it was done in the
previous section in Eq. (30)), Eq. (59) is reformulated as

wtrue = −(ρCmodel + δρC ) ‖vC‖2 (u∗C + δuC)+

+ (ρTmodel + δρT ) ‖vT ‖2 (u∗T + δuT ) (60)

= w∗ + ηw (61)

where w∗ contains the known part of the differential drag acceleration, given by

w∗ = −ρCmodel ‖vC‖
2 u∗C(βC) + ρTmodel ‖vT ‖

2 u∗T (βT ) (62)

and ηw includes the uncertain terms

ηw =− ‖vC‖2 (ρCmodelδuC + δρCu
∗
C + δuCδρC)+

+ ‖vT ‖2 (ρTmodelδuT + δρTu
∗
T + δuT δρT ) (63)

∗This practice was also adopted in former publications.5, 9, 11
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The dynamical model is then stated as:

υ̇ = Amυ + Bm(w∗ + ηw) (64)

If the uncertainties in the density and the drag coefficient are bounded, then there is a bound for ηw
such that ‖ηw‖ ≤ η̄w. To find such a bound, Eq. (63) is rewritten as

ηw = ηw1 + ηw2 + ηw3 (65)

where
ηw1 , −‖vC‖2 ρCmodel δuC + ‖vT ‖2 ρTmodel δuT (66)

ηw2 , −‖vC‖2 δρC u∗C + ‖vT ‖2 δρT u∗T (67)

and
ηw3 , −‖vC‖2 δuC δρC + ‖vT ‖2 δuT δρT (68)

Defining ξC/T ,
∥∥vC/T∥∥2

ρC/Tmodel
, ξmax , max [ξC , ξT ], and ξmin , min [ξC , ξT ], ηw1 can be

bounded as
|ηw1| ≤ (ξmax − ξminζ) δCMB0 (69)

where δCMB0 ≥ |δCB0|. To find a bound on ηw2, one can consider that as the satellites are expected to
be sufficiently close, the density modeling errors are expected to have the same signs. For instance,
if there is an increment in the density due to a diurnal variation (both satellite in the illuminated side
of Earth), then the sign of the error will be positive for both; the same can be considered if the errors
are due to solar storms. Hence, it will be assumed that sign (δρC) = sign (δρT ). Hence,

|ηw2| ≤ C∗B0

∣∣δMρ ∣∣ ‖vmax‖2 (70)

where ‖vmax‖ , max [‖vC‖ , ‖vT ‖] and δMρ ≥ |δρC/T |. Using the same aforesaid argument

|ηw3| ≤ δCMB0 ‖vmax‖2 δMρ (71)

Finally, since ηw ≤ |ηw1|+ |ηw2|+ |ηw3|, η̄w is set to be:

η̄w = (ξmax − ξminζ) δCMB0 + C∗B0

∣∣δMρ ∣∣ ‖vmax‖2 + δCMB0 ‖vmax‖2 δMρ (72)

Min-Max Controller

Gutman16 presented a min-max control law that provides asymptotic stability for a linear system
with uncertainties in the input. This control law can be formulated as:

uMM = −KPυ − ū
α

‖α‖
, α = B>mPLυ, η̄ ≤ ū (73)

where KP is a gain that stabilizes the corresponding linear system (such as the one in Eq. (64))
without uncertainties in the input, and matrix PL is the solution of the following Lyapunov equation

PLĀ + Ā
>

PL = −QL, Ā = Am −BmKP (74)

where QL is a positive definite matrix.
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In this work, at the initial state, KP is determined such that Ā is Hurwitz using the pole placement
technique.

To implement the min-max control law, the one should assume bounds on the uncertainties of
the density and drag coefficient, which allow calculating η̄w. Then ū is selected to match η̄w, thus
satisfying the requirement in Eq. (73), and producing the following control law.

wdes = −KPυ − η̄w
α

‖α‖
(75)

Analogously to the previous section, to compute βC and βT , w∗ is equated to wdes, from which one
should solve for βC and βT .

− ρCmodel ‖vC‖
2 u∗C + ρTmodel ‖vT ‖

2 u∗T = −KPυ − η̄w
α

‖α‖
(76)

Similarly to previous section (Eq. (56)), to reduce orbital decay, the β of one of the spacecraft is set
to 90◦ and then Equation (76) is solved for the remaining β. This can be formulated as:

βC = 90◦ and βT = 90◦, if wdes = 0

βT = 90◦ and βC = arccos

[
CDSBρTmodel‖vT ‖

2+2mwdes

CDρCmodel‖vC‖
2S0

]
+ ψ, if wdes < 0

βC = 90◦ and βT = arccos

[
CDSBρCmodel‖vC‖

2+2mwdes

CDρTmodel‖vT ‖
2S0

]
+ ψ, otherwise

(77)

The closed loop stable dynamics is then obtained by introducing Eq. (75) into Eq. (64), yielding

υ̇ = Āυ + Bm(ηw − η̄w
α

‖α‖
) (78)

To study the stability of the system in Eq. ((78)), a quadratic Lyapunov function and its time
derivative are formulated as follows:

Vm = υ>PLυ

V̇m = −υ>QLυ + 2αηw − 2|α|η̄w
(79)

By definition Vm is positive since PL is positive definite. Furthermore since QL is positive definite
and |α|η̄w > αηw then V̇m is negative definite (recall ηw ≤ η̄). Consequently, the origin is a stable
point.

NUMERICAL SIMULATIONS

This section illustrates the rendezvous-oriented maneuvers performed with the control laws pro-
posed in Eqs. (40)-(42) and (75). The maneuvers are studied using two MATLAB simulations: a
long-range re-phasing maneuver and a subsequent short range rendezvous maneuver.

The following parameters were common for both simulations, while the parameters that were
specifically assumed for each simulations are detailed in the corresponding subsections.

The parameters of the satellites were set as SA = 0.06m2, SB = 0.01m2, m = 5 kg. Moreover,
the real drag coefficient was defined as CD = 2.39, while the nominal one was C∗D = 2.2.15, 25
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Hence, the assumed ballistic coefficient was C∗B0 = 0.0134 m2/kg, while the real one was CB0 =
0.0146 m2/kg. The uncertainty in the ballistic coefficient was bounded by δCMB0 = 0.0013 m2/kg.

The used density model ρmodel was the International Standard Atmosphere (ISA)-76,1 and it is
utilized for computing βC and βT , according to (56) and (77), for the first and second simulations
of the maneuver respectively. Moreover, the real density utilized for propagating the orbits was
arbitrarily implemented as ρ = ρC/Tmodel

+ δρC/T . The quantities δρC/T basically represent periodic
oscillations of positive sign, which will be described in detail for each simulation. Modeling the
real density as oscillations on top of ρC/Tmodel

generates a density behavior that roughly resembles
oscillations due to diurnal-nocturnal density variations. Moreover, the fact that they are arbitrarily
set positive produces a density field, which if it were averaged along one revolution, it would be still
different from the model ρC/Tmodel

.

Long Range Re-Phasing Maneuver

This maneuver was performed with the control law described by Eqs. (40)-(42) . For this simu-
lation, δρC/T was assumed as

δρC/T = 0.1 ρC/Tmodel
| sin

(
θ̄C/T

)
| (80)

The amplitude of δρC/T was arbitrarily chosen based on Bruinsma’s work26 comparing DTM2013
estimated densities with accelerometer derived densities from the CHAMP mission over a period of
nine years. Moreover, δMρ was defined as δMρ = 5 ·10−13 kg/m3, which satisfies δMρ > 0.1 ρC/Tmodel
for the entire maneuver.

Recalling Eq. (35) and taking a value of ρMmodel as ρMmodel , 4.46 · 10−3kg/km3, which is larger
than ρCmodel and ρTmodel along the orbit, η̄ is computed as η̄ = 1.98 · 10−11 km−1. q̃1 and q̃2 are set
as q̃1 = q̃2 , 290 · 10−19 resulting in ‖PB‖ /λmin = 2.627 · 108, and entailing V̇ < 0 as long
as ‖w‖ > 0.01 (the quantities involved were established using km, rad, kg, and sec). Recall that
this formulation is oriented to drive the satellites from significantly different positions in the orbital
plane, towards a close-proximity configuration. Hence, having V̇ < 0 as long as ‖w‖ > 0.01 is
sufficient for the purpose of this maneuver.

The first simulation, performed according to Eqs. (40)-(42) is a long- range re-phasing. The initial
conditions were set as āC (t0) = 6800 km, āT (t0) = 6800.01 km, θ̄C (t0) = 0 and θ̄T (t0) = 50
deg, and ēC (t0) = ēT (t0) = 0. The inclination of both orbits was set as īC = īT = 1.7 deg. In
order to evaluate the difference in the right ascension of the ascending nodes Ω̄C and Ω̄T caused by
the Earth’s oblateness (J2), the initial conditions for these variables were set as Ω̄C = Ω̄T = 0 deg.

With the aforementioned parameters and initial conditions, a simulation was performed integrat-
ing the arguments of latitude according to Eqs. (5) and the semi-major axes according to (8) (i.e.
the non-linear equations). Moreover, in order to assess the validity of the adopted dynamical model,
another simulation was run utilizing cartesian elements. To that end, the following dynamical equa-
tions were integrated for each satellite

r̈ = −µ r

‖r‖3
− 1

2 ‖r‖5
µJ2R

2
eq

6

0
0
z

+

(
3− 15 z2

‖r‖2

)
r

− CB0 ρ ‖v‖ v (81)

Since the initial conditions are set in terms of mean orbital elements, the dynamic equations
formulated in cartesian elements, and the controller formulated in terms of mean orbital elements,
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a conversion from mean (osculating) orbital elements to osculating (mean) orbital elements should
be implemented. To that end, the First Order Approximation of the Brouwer theory27 was utilized.
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āC (Orb. Elem.)
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Figure 3. Re-phasing Maneuver: ∆θ̄, ∆ā, β, and V .
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Figure 4. Re-phasing Maneuver: ā, ∆Ω, udes, and Inter-satellite Distance.

Figure 3 shows the evolution of the variables ∆θ̄ and ∆ā, as obtained from the simulation per-
formed integrating the mean orbital elements, and the simulation performed integrating the cartesian
coordinates. Moreover, the angles βC and βT are also depicted as determined from both simula-
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tions; the one in terms of mean orbital elements as well as the one in terms of cartesian coordinates.
Finally, the convergence of the function V is also illustrated. As expected, since ‖w‖ > 0.01,
V̇ < 0.

Figure 4 shows the decay of the mean semi-major axes, and the desired control udes = −Kw.
Despite the long duration of the maneuver, since most of the time the satellites acquire angles β
close to 90 deg, the orbital decay is not so significant. Finally, the resulting difference in the right
ascension of the ascending nodes ∆Ω̄ and the distance between the two satellites is also depicted.

Figures 3 and 4 illustrate that, using the proposed controller, long-range re-phasing maneuvers
can be accomplished with DD, even in presence of uncertainties in the model of atmospheric density
and drag coefficient.

Short Range Rendezvous Maneuver

A simulation using the control law proposed in Eq. (75) was performed with the following initial
conditions of the Chaser satellite with respect to the Target, resolved in the corresponding LVLH
frame υ0 = [−0.078 km − 28.589 km − 0.161 · 10−4 km/s 0.396 · 10−4 km/s]. The initial
inertial position and velocity for the Target were set as [−225.874 2577.431 − 6271.345]> km
and [3.026 −6.475 −2.770]> km/s respectively. These conditions were set according to the final
conditions of the long-range re-phasing simulation. The dynamics of the Target were numerically
integrated including two body forces, J2 perturbation and the drag force with uncertainties (Eq.
(81)), while the dynamics of the Chaser relative to the Target were modeled using the Schweighart
and Sedwick model with uncertainties in the input (relative drag acceleration) (Eq. (64)), steered by
the min-max control (Eq. (75)). The dynamics were simulated for 15 days.

The eigenvalues of the matrix Ā were set to be: [−3 · 10−6 − 3 · 10−7 − 3 · 10−7 + 1.130 ·
103 · j − 3 · 10−7 + 1.130 · 103 · j], which are the Eigenvalues of matrix Am shifted by negative
real numbers (the real parts of the set poles). It is important to note that saturation was not taken
into account for the development of the min-max control. To address this issue the poles of matrix
Ā were chosen such that KPυ0 (where υ0 is the initial condition) would not result in saturation.
Furthermore, the value of η̄w will also provide some insight on the maximum area required for
applying the min-max control without saturating the system.

In this simulation, the error in the density was modeled as

δρC/T = 0.1 ρC/Tmodel
| sin

(
n̄C/T t

)
| (82)

where n̄C/T =
√
µ/ā3

C/T . This value is bounded by 0.1ρC/Tmodel, which is used to calculate η̄w at
each time step, using the current values of ρC/T in Eq. (82).

Figure 5 (top three plots) shows the norms of the relative position (inter-spacecraft separation,
first plot) and velocity (second plot), and the Lyapunov function (defined in Eq. (79), third plot), for
applying the control law defined in Eq. (75), with and without the min-max. In the case without the
min-max term, this control law reduces to the term KPυ, which is a linear state feedback control.
The Lyapunov function for both cases is always decreasing; however, it decreases at a much faster
rate for the case with the min-max term. It should be noticed that for the case without the min-max
term, the fact that V̇m is negative definite cannot be guaranteed. The inter-spacecraft separation
approaches zero faster in the case without the min-max control, but then it overshoots significantly
(∼60 km). On the contrary, the inter-spacecraft separation for the case with the min-max term
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approaches zero at a slower rate. It still slightly overshoots but comes back towards the origin and
remains in its vicinity. The resulting trajectory in the x-y plane for the case with the min-max term
is shown in Figure 5 (Bottom plot).

Figure 5. [Top three]Comparison between the simulations with and without the min-
max control for the short range maneuver. [Bottom] Trajectory in the x-y plane for
the short range maneuver using the min-max control

The angles for both spacecraft for this simulation are shown in Figure 6 [Top], calculated using
Eq. (77). This figure shows that the β angles for both spacecraft remain close to 90o during the
whole maneuver. This indicates that the areas required by the min-max control remain close to the
min value SB . Consequently, at least during this maneuver the controller never saturates the system
and the drag force remains low, which is desired to reduce the orbital decay caused by the maneuver.

Finally, Figure 6 [Bottom] shows the mean semi-major axis for the Target during the short range
maneuver. This figure indicates that the orbital decay for the maneuver is very small (∼1.9 km),
and consequently the values a, and b, and matrix Am, change very little (∼-0.042% and ∼-0.084
% for a and b, respectively). This supports that the assumption of the constant Am is valid for this
type of maneuvers.

CONCLUSIONS

This work presented a methodology to perform DD relative maneuvering of coplanar spacecraft,
towards rendezvous, under bounded uncertainties in the drag acceleration. The required differential
drag accelerations were obtained by varying the pitch angles of the satellites.

One approach enables to consider long-range maneuvers, assuming that both satellite are initially
in circular orbits. The developed dynamical system, based on mean semi-major axes and mean ar-
guments of latitude, allows for the implementation of an LQR controller with a saturation function.
In presence of bounded uncertainties, convergence of the trajectories can be proved up to a certain
norm of the state vector, for which an analytical expression was provided in terms of the uncertain-
ties. The saturated configuration was examined by plotting the phase portrait of the system, which
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Figure 6. [Top]Actuation for both spacecraft during the short range maneuver using
the min-max control. [Bottom]Decay of the āT .

showed that the system will eventually reach the non-saturated configuration, and hence converge.

A second approach, implements a min-max controller on a linearized system that models the
in-plane dynamics. The implemented controller provides asymptotic stability, provided that the
uncertainties in the drag acceleration are bounded. The formulation allows to utilize this approach
for shorter relative distances.

In general, the bounds on the uncertainties must be carefully determined by the control design-
ers in a manner that they reflect their knowledge of error in the relevant parameters, without being
excessively conservative. Highly conservative uncertainties would result in high actuation require-
ments which would increase the orbital decay and may result in saturation of the controllers.
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