
 1 

RELATIVE MANEUVERING FOR MULTIPLE SPACECRAFT VIA 
DIFFERENTIAL DRAG USING LQR AND CONSTRAINED LEAST 

SQUARES 

Camilo Riano-Rios,* Riccardo Bevilacqua,† and Warren E. Dixon‡ 

In this paper, a set of spacecraft consisting of multiple chasers and a single 

target is considered for rendezvous and along-orbit formation maneuvers. 

Each spacecraft can change its experienced drag acceleration by extend-

ing/retracting drag surfaces. First, the relative states of the linearized rela-

tive dynamics of each chaser-target pair are driven to zero using a Linear 

Quadratic Regulator (LQR). Then, a Constrained Least Squares (CLS) 

Problem is formulated to find the best achievable set of individual inputs 

to control all chasers under mutual constraints and actuator saturations. 

Tests using a multiple spacecraft simulation framework that includes 𝐽2 

perturbation and the NRLMSISE-00 atmospheric density model, are con-

ducted to validate the robustness of the proposed algorithm along with a 

method that uses the along-orbit formation as an intermediate stage to re-

duce the risk of potential collisions. 

INTRODUCTION 

As interest in exploiting natural forces for orbital maneuvering increases due its potential for 

propellant cost savings, so is the use of fleets with several spacecraft for missions in Low Earth 

Orbit (LEO). The introduction of differential atmospheric drag for formation keeping control dates 

back to 1989. Using the Clohessy-Wiltshire (CW) linear model for the relative motion between two 

spacecraft, an algorithm was designed to control the in-plane motion by transforming the dynamics 

to a double integrator and a harmonic oscillator and taking advantage of closed form solutions that 

are valid when the relative drag is constant and, as consequence, the available inputs are assumed 

to be either a minimum, maximum or zero.1,2 

Aerodynamic drag and lift were exploited to control in-plane and out-of-plane motion between 

two spacecraft.3 In this work, a transformation of the CW linear model and closed form solutions 

were used to develop two control algorithms, one for the in-plane motion using only drag and the 

other for the out-of-plane motion using only lift. Based on the required drag and lift, an algorithm 

computed the orientation of a flat drag plate attached to each spacecraft. The Schweighart and 

Sedwick (SS)4 linearized model for relative motion that includes the influence of the 𝐽2 perturbation 
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has also been used to develop a control logic for rendezvous maneuvers between two spacecraft. 

The algorithm was based on closed form solutions and discrete inputs.5  

A Lyapunov-based control strategy was implemented to achieve spacecraft rendezvous using 

differential drag.6 The in-plane unstable SS dynamic model was initially stabilized using an LQR 

and then a Lyapunov-based controller was designed using the new stable dynamics, restricting the 

control command to discrete values. An adaptive capability to change controller parameters de-

pending on the critical value of atmospheric drag was also implemented. In Reference 7, the space-

craft’s attitude was used to change the experienced drag instead of using dedicated actuators for 

drag surfaces7. An LQR controller was designed to drive the system to a desired relative free motion 

using a state space representation of the error. The control command was then used to compute two 

angles that define a vector normal to the drag surface attached to the body and produce commands 

for an attitude determination and control system which was assumed available.  

Research has also been conducted to include multiple spacecraft relative maneuvering. A cen-

tralized heuristic control logic was used to give priority to a specific chaser on a spacecraft fleet, 

then the target set its control command to meet the prioritized chaser’s control requirements, (Ref-

erence 5). Only chasers that require the same sign for their inputs can meet their control command 

simultaneously. Others should remain with zero input until a new priority is established. In Refer-

ence 8, the formulation of an optimization problem was presented to find the minimum time re-

quired to achieve rendezvous with any number of spacecraft by using an augmented state space 

representation. Simulations with 2, 5 and 12 spacecraft were conducted using linearized dynamics.8  

An adaptive sliding mode method was used to control the relative dynamics using differential 

drag.9 The methodology was simulated for formation keeping as well as reconfiguration cases using 

two spacecraft. A heuristic algorithm for multiple spacecraft was developed and applied to an 

along-orbit formation keeping case with 4 spacecraft. In this algorithm, each chaser changes its 

drag acceleration to meet its control command, then the target changes its drag acceleration each 

orbit to sequentially meet the differential drag requirement of each chaser.  

In this paper, we consider a fleet of several chasers maneuvering with respect to a single target 

to perform rendezvous and along-orbit formation maneuvers. Limitations in the control input, the 

coupling of the target’s experienced drag with each chaser’s relative drag acceleration computation, 

and possible priorities among chasers make this a constrained problem.  We present a control frame-

work that takes advantage of the spacecraft’s capability to precisely control its experienced drag 

acceleration. First, an LQR is designed using the SS relative dynamics to drive all states to zero. 

Then, a Constrained Least Squares problem is formulated to compute the best set of achievable 

inputs for the fleet keeping all chasers under control as much as possible during the entire maneu-

ver. Due to the presence of multiple chasers maneuvering in a relatively small area, a collision 

reduction algorithm is also presented.  

The upcoming sections of the paper are organized as follows: First we describe the spacecraft 

relative dynamics, followed by a section describing the multiple spacecraft rendezvous algorithm, 

and then the problem is extended to the multiple spacecraft along-orbit formation algorithm. Sec-

tions that report simulation results and the collision risk reduction algorithm are also presented. 

Finally, a conclusion section presents the major outcomes of this work.  

MODEL OF SPACECRAFT RELATIVE MOTION DYNAMICS  

Consider a fleet of multiple spacecraft where one is arbitrarily chosen as the target, and all other 

spacecraft are required to maneuver with respect to it. All spacecraft are assumed to have the capa-
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bility to change their experienced drag acceleration by expanding/retracting controllable drag sur-

faces. They are also assumed to be on circular orbits and their relative distances are small if com-

pared with the target’s orbit radius.    

Equations for Relative Spacecraft Dynamics 

A linearized model of a generic spacecraft moving with respect to a target on a circular orbit, 

including the 𝐽2 perturbation, was introduced by Schweighart and Sedwick (SS), and shown in 

equation (1).*  

∆�̈� = 2(𝜔𝑐)∆�̇� + (5𝑐2 − 2)𝜔2∆𝑥 + 𝑢𝑥 

∆�̈� = −2(𝜔𝑐)∆�̇� + 𝑢𝑦 

∆�̈� = −𝑞2∆𝑧 + 2𝑙𝑞𝑐𝑜𝑠(𝑞𝑡 + ∅) + 𝑢𝑧 

(1) 

 

 

Figure 1. Local-Vertical/Local-Horizontal coordinate system 

 

In Equation (1), the inputs [𝑢𝑥 𝑢𝑦 𝑢𝑧] represent the components of the relative acceleration between 

the two spacecraft when a control action is applied, and the angular velocity of the target’s circular 

orbit with respect to the inertial reference frame 𝜔 is constant as well as the value of 𝑐  given below. 

𝑐 =  √1 +
3𝜔𝐽2𝑅𝑒

2

8𝑟𝑟𝑒𝑓
2

(1 + 3𝑐𝑜𝑠2𝑖𝑟𝑒𝑓) 
(2) 

 

Also in Equation (1), the Local-Vertical/Local-Horizontal (LVLH) reference frame is used, and its 

attached coordinate system is shown in Figure 1. In Figure 1, the 𝑥 axis points from the center of 

the earth towards the origin of the system (target’s center of mass), the 𝑧 axis is aligned with the 

orbit angular momentum vector and the 𝑦 axis completes a right-hand Cartesian coordinate system.    

                                                      

* See table of notation. 
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Differential Drag 

To control the experienced drag acceleration, each spacecraft has four drag surfaces each offset 

by 90 degrees with a fixed inclination of 20 degrees with respect to the rear face of the spacecraft. 

Since each surface can be expanded/retracted to change the cross-sectional area exposed to the 

incoming air flow, intermediate values are possible. 

The drag surfaces’ configuration is a simplified model of the Drag De-orbit Device (D3) de-

signed at University of Florida ADvanced Autonomous MUltiple Spacecraft (ADAMUS) 

Lab.10,11,12,13 The acceleration due to atmospheric drag experienced by a spacecraft’s surface (𝑎𝑑,𝑗) 

can be expressed as follows. 

𝑎𝑑,𝑗 = −(
𝜌𝑆𝐶𝐷

2𝑚
𝑉⊥,𝑗

2 ) �̂�⊥,𝑗 (3) 

For our purposes, the drag surfaces will always be homogeneously deployed to achieve a desired 

drag acceleration, then the only non-zero component of 𝑎𝑑,𝑗 is opposite to the direction of the 

spacecraft’s velocity vector (�̂�), as shown in equation (4). Note that the drag acceleration experi-

enced by the target (𝑢𝑡) and the 𝑖𝑡ℎ chaser (𝑢𝑐,𝑖) are along the 𝑦 direction of the LVLH coordinate 

system. Thus, the relative drag of a chaser with respect to the target is also along this direction and 

is given by equation (5), making 𝑢𝑦 = ∆𝑢𝑖 the only non-zero input to the SS equations (1). The 

dynamics along the 𝑧 direction and in-plane are decoupled, which makes only the in-plane (𝑥-𝑦) 

motion controllable by means of atmospheric drag. 

𝑢 = ∑−(
𝜌𝑆𝐶𝐷

2𝑚
𝑉⊥,𝑗

2 cos (20°)) �̂�

4

𝑗=1

 
(4) 

 

∆𝑢𝑖 = 𝑢𝑡 − 𝑢𝑐,𝑖 (5) 

A summary of the modeling assumptions considered for the purpose of this study are listed 

below.  

1. All spacecraft in the fleet are attitude stabilized by other means.  

2. All spacecraft in the fleet have the same drag coefficient 𝐶𝐷 and mass 𝑚. 

3. Only the in-plane motion is considered for relative maneuvering, then the state vector for a 

Chaser/Target pair is [∆𝑥 ∆�̇� ∆𝑦 ∆�̇�]𝑇. 

4. Target is in circular orbit  

5. The relative distances are small compared to the target’s orbit radius. This allows to use the 

linear time invariant set of SS equations (1). To guarantee this assumption, we make use of 

orbital elements to establish bounds for the possible initial conditions of any chaser:  

𝑖𝑡ℎ Chaser’s Semi-major axis = Target’s Semi-major axis +/- 0.5 km 

𝑖𝑡ℎ Chaser’s Eccentricity = Target’s Eccentricity + 5 × 10−5 

𝑖𝑡ℎ Chaser’s Inclination = Target’s Inclination  

𝑖𝑡ℎ Chaser’s RAAN = Target’s RAAN  

𝑖𝑡ℎ Chaser’s Argument of perigee = Target’s Argument of perigee  

𝑖𝑡ℎ True anomaly = Target’s True anomaly +/- 0.03 degrees.   
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MULTIPLE SPACECRAFT RENDEZVOUS CONTROL ALGORITHM 

In this section, we consider a fleet with 𝑁 chasers and a single target to perform rendezvous 

using an LQR. The Constrained Least Squares (CLS) approach is then presented to include con-

straints associated with actuation limitations, the presence of multiple chasers maneuvering simul-

taneously, and priority among chasers.  

Single Chaser/Target Case  

For the two-spacecraft case we consider the in-plane relative dynamics between the 𝑖𝑡ℎ chaser 

and the target derived from Equation (1) as follows.  

�̇�𝑖 = 𝐴𝑖𝑋𝑖 + 𝐵𝑖  ∆𝑢𝑖  →  [

∆�̇�𝑖

∆�̈�𝑖

∆�̇�𝑖

∆�̈�𝑖

] = [

0 1 0 0
𝑏 0 0 𝑎
0 0 0 1
0 −𝑎 0 0

] [

∆𝑥𝑖

∆�̇�𝑖

∆𝑦𝑖

∆�̇�𝑖

] + [

0
0
0
1

] ∆𝑢𝑖 

𝑎 = 2(𝜔𝑐)     𝑏 = (5𝑐2 − 2)𝜔2 

(6) 

The eigenvalues of the system are: [0  0   √𝑏 − 𝑎2  (−√𝑏 − 𝑎2)]𝑇 where (𝑏 − 𝑎2) is a negative 

constant. Therefore, all eigenvalues of the system are on the imaginary axis. By inspecting the 

Jordan normal form of the state transition matrix 𝐴𝑖 it turns out that the system is unstable. The 

controllability of the system can also be determined by evaluating the controllability matrix, which 

is full rank, then the system is controllable.  

Let us first consider the rendezvous problem where the desired final state vector is [0  0  0  0]𝑇. 

Therefore, a regulator is sufficient to meet this condition. The LQR is an interesting approach for 

this problem because it provides an optimal feedback control law that considers the desired perfor-

mance for each state and the available control input. It is also considered a robust regulator.14 The 

feedback control law provided by the LQR has the form in Equation (7), and is obtained by mini-

mizing the cost function shown in Equation (8). 

 ∆𝑢𝑖 = −𝐾𝐿𝑄𝑅𝑋𝑖  (7) 

𝐽 = ∫ (𝑋𝑖
𝑇𝑄𝑋𝑖 + Δ𝑢𝑖

𝑇𝑅Δ𝑢𝑖)𝑑𝑡
∞

0

 

 

(8) 

 

where 𝑄 = 𝑄𝑇 ≥ 0 ∈  ℝ4×4  and  𝑅 > 0 is a scalar.  The weights 𝑄 and 𝑅 are used to establish the 

desired performance for each state and available control effort respectively, then a trade-off be-

tween them exists in 𝐽. To determine values for 𝑄 and 𝑅 several simulations were conducted with 

different initial conditions using spacecraft characteristics similar to those in Reference 5 and con-

stant atmospheric density (Table 1), as result we set 𝑅 = 1.8 × 1016 and 𝑄 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(180,
1,   1.8,   1).  The high value of 𝑅 penalizes the control effort term. This is desirable considering 

the amplitude limitations of relative drag acceleration. Values on the main diagonal of 𝑄 were se-

lected to prioritize the reduction of position error along the 𝑥 direction, which in our simulations 

was the state that required more control effort to be stabilized.  

The matrix 𝐾𝐿𝑄𝑅  can be obtained by solving the Algebraic Riccati Equation (ARE) for 𝑃 and 

using the constant gain matrix definition, Equation (9).  
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𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 

𝐾𝐿𝑄𝑅 = 𝑅−1𝐵𝑇𝑃 
(9) 

Table 1. Spacecraft characteristics and atmospheric density 

Mass, [kg] 10 

𝑆, [𝑚2] 1 

𝐶𝐷 2.2 

Altitude ℎ, [𝑘𝑚] 350 

𝜌350 𝑘𝑚, [𝑘𝑔/𝑚3] 6.98 × 10−12 

𝑖𝑟𝑒𝑓 = 𝑖𝑠𝑠, [𝑑𝑒𝑔] 51.595 

 

The LQR was capable of reducing the relative state errors even when the input is saturated, 

remaining stable and keeping the system under conditions where the SS linearized equations are 

still valid. The saturation function used is shown in equation (10). Note that ∆𝑢𝑖,𝑚𝑖𝑛 and ∆𝑢𝑖,𝑚𝑎𝑥 

values vary in time depending on the atmospheric density experienced by the 𝑖𝑡ℎ chaser and the 

target. Results from tests to validate stability under saturation are presented in the simulations sec-

tion.  

∆𝑢𝑖 = {

Δ𝑢𝑖,𝑚𝑎𝑥   ,   ∆𝑢𝑖 > ∆𝑢𝑖,𝑚𝑎𝑥

Δ𝑢𝑦,𝑖        , ∆𝑢𝑖,𝑚𝑖𝑛 <  ∆𝑢𝑖 < ∆𝑢𝑖,𝑚𝑎𝑥

Δ𝑢𝑖,𝑚𝑖𝑛   ,  ∆𝑢𝑖 < ∆𝑢𝑖,𝑚𝑖𝑛

 
(10) 

Multiple Chasers and One Target Case 

When multiple chasers are maneuvering with respect to a single target, it is necessary to consider 

the resulting impact on the achievable levels of relative drag. Since the drag acceleration experi-

enced by the target spacecraft is involved in the calculation of relative drag for every chaser/target 

subsystem, the system becomes constrained. A case could exist where the target cannot meet the 

relative drag required by all chasers at a specific time instant. In this situation, the development of 

an algorithm to determine the set of inputs to apply becomes necessary.  

Our goal is the development of a strategy capable of managing any number of chasers without 

human intervention while considering mutual constraints and actuation limitations. To address this 

problem, heuristic algorithms are usually implemented to make the target switch among chasers 

and meet their control input requirements during specific periods of the entire maneuver. The 

switching laws heavily depend on the application and some examples can be found in References 

5 and 9. The main problem with these switching algorithms is that some chasers can drift away 

from the target while it is giving priority to others in the fleet, this is undesirable especially when 

there are several chasers.  

One of the main advantages of the D3 device is that each drag surface can achieve intermediate 

positions. This feature allows us to achieve a required relative drag through several deployment 

combinations between the involved spacecraft which makes the multiple spacecraft problem less 

restrictive than cases where only discrete inputs are considered. The first idea that may arise is to 

deploy the drag surfaces on the target spacecraft halfway so that all chasers can achieve positive 

and negative relative drag values. This approach may be too restrictive because the input saturation 
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limits become smaller for all spacecraft during the entire maneuver. Given the constraints already 

existing in the system, a less restrictive algorithm to find a good set of individual inputs is desirable.  

For the multiple spacecraft problem each single chaser/target pair corresponds to a set of SS 

equations (1) that must be driven to the desired state by using the LQR control law. The relative 

drag acceleration is the input to the system that is computed using the LQR. Let 𝑈𝑑 =
[∆𝑢1, ∆𝑢2, ∆𝑢3 …∆𝑢𝑁]𝑇 be a vector that contains the desired control inputs in a fleet of 𝑁 chasers 

and one target, and 𝑈𝑖𝑛𝑑 = [𝑢𝑡, 𝑢𝑐,1, 𝑢𝑐,2, … , 𝑢𝑐,𝑁]𝑇  the vector that contains the individual input 

(drag acceleration) of all spacecraft, including the target (𝑢𝑡). We can also express a linear system 

that represents the relationship between these vectors (Equation (11)).  

𝐶𝑈𝑖𝑛𝑑 = 𝑈𝑑, 

[
 
 
 
 
1 −1 0 0 0 0
1 0 −1 0 0 0
1 0 0 −1 0 0
1 0 0 0 ⋱ 0
1 0 0 0 0 −1]

 
 
 
 

[
 
 
 
 
 

𝑢𝑡

𝑢𝑐,1

𝑢𝑐,2

𝑢𝑐,3

⋮
𝑢𝑐,𝑁]

 
 
 
 
 

=

[
 
 
 
 
∆𝑢1

∆𝑢2

∆𝑢3

⋮
∆𝑢𝑁]

 
 
 
 

 
(11) 

The ideal case would be that the left-hand-side is equal to 𝑈𝑑, but sometimes this is not because 

of the constraints associated with the multiple spacecraft problem and input saturations. Therefore, 

a reasonable approach is to minimize the error between both sides of Equation (11) when subject 

to constraints. A technique that allows us to formulate the problem in that way is the CLS approach, 

which in our case is formulated as follows.  

 min
𝑈𝑖𝑛𝑑

  
1

2
‖𝐶𝑈𝑖𝑛𝑑 − 𝑈𝑑‖2

2     𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  {

𝟏.  𝑢𝑡 − 𝑢𝑐,𝑝 = 𝑈𝑑(𝑝)

𝟐.     𝑢𝑚𝑖𝑛,𝑡 ≥ 𝑢𝑡 ≥ 0

𝟑.       𝑢𝑚𝑖𝑛,𝑖 ≥ 𝑢𝑐,𝑖 ≥ 0   𝑖 = 1,⋯ ,𝑁

  (12) 

In Equation (12), 𝑈𝑑(𝑝) is the desired relative drag between the 𝑝𝑡ℎ chaser and the target, repre-

sented as the 𝑝𝑡ℎ position of vector 𝑈𝑑. The constraints in Equation (12) represent the following 

attributes.  

1. Priority to the 𝑝𝑡ℎ chaser which allows this chaser to behave as in the single chaser/target     

case,  

2. Saturation for the target,  

3. Saturation for chasers.  

The saturation bounds can be time varying to account for changes in the atmospheric density. For 

a real operation case, estimates for these bounds can be obtained by performing a simulation prior 

to the actual maneuver using the NRLMSISE-00 density model with predictions of F10.7 and Ap 

indices, which are available online.  

      The CLS approach provides the 𝑈𝑖𝑛𝑑 that makes the error as small as possible when using the 

Least Squares algorithm. For simulation purposes, the CLS is evaluated each time step using the 

lsqlin command in MATLAB which has shown to be computationally light. It has an average com-

putation time for a six spacecraft case of 0.0039 seconds using an Intel Xeon W3530 CPU at 

2.8𝐺𝐻𝑧 × 4. Note also that it is independent of the control technique used to determine the desired 
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values of relative drag (𝑈𝑑). This feature makes the simulation suitable for controller performance 

comparison purposes.   

MULTIPLE SPACECRAFT ALONG-ORBIT FORMATION ALGORITHM 

In this section we consider an along-orbit formation where the chasers are required to be along 

the target’s orbit with specific separations (∆𝑑). To achieve this type of formation we use the same 

LQR + CLS approach with slight changes in the relative states used for the SS equations.  

Change of Reference Frame 

For the rendezvous problem the LVLH reference frame was used to compute the relative states 

of each chaser with respect to the target. This reference frame allowed us to use the LQR to regulate 

the chasers to the target’s position. Let us consider for the along-orbit formation a reference frame 

that has an offset with respect to the LVLH but still moves with the target.  

A desired distance with respect to the target (∆𝑑𝑖) along its orbit is given to the 𝑖𝑡ℎ chaser in the 

fleet. This distance needs to be consistent with the assumption of small inter-spacecraft distances 

for the SS equations to remain valid. Note that for the along-orbit formation case the distance ∆𝑑𝑖 

can be expressed as an offset in true anomaly (∆𝜃𝑖) from the target’s orbital elements representation 

as shown in Equation (13). 

In Equation (13), 𝑎𝑡 is the target’s semi-major axis, then the orbital elements for the origin of the 

new reference frame are simply the same as for the target but adding the offset ∆𝜃𝑖 to the true 

anomaly. The 𝑖𝑡ℎ coordinate system is defined by the 𝑥𝑖 axis pointing from the center of the earth 

towards the origin of the system (desired position for 𝑖𝑡ℎ chaser), the 𝑦𝑖 axis pointing along the 

orbital track with the 𝑧𝑖 axis completing a right-hand Cartesian coordinate system as shown in 

Figure 2. 

 

Figure 2. New coordinate systems 

Each set of SS equations represent relative states with respect to the desired position and the goal 

remains the same as in the rendezvous case. Therefore, the LQR+CLS approach remains valid for 

along-orbit formation.  

 

∆𝜃𝑖 =
∆𝑑𝑖

𝑎𝑡
 [𝑟𝑎𝑑] 

 

(13) 
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SIMULATION RESULTS 

 This section presents the simulation framework used for testing the LQR+CLS algorithm and 

results for two sample cases: rendezvous maneuver of a fleet with six spacecraft (five chasers and 

one target), and along-orbit formation maneuver of a fleet with seven spacecraft (six chasers and 

one target). 

To validate the approaches presented in previous sections, a MATLAB-based simulation was 

developed to demonstrate the LQR and the CLS algorithms while integrating the nonlinear dynam-

ics for each spacecraft. The nonlinear dynamic equations including the 𝐽2 perturbation, expressed 

in the Earth-Centered Inertial (ECI) reference frame are 

 �̈� = −
𝜇

𝑟3 𝑥 +
3

2
(
𝐽2𝜇𝑅𝑒

2

𝑟4 ) (
𝑥

𝑟
(
5𝑧2

𝑟2 − 1)) + 𝑈𝑥  

         �̈� = −
𝜇

𝑟3 𝑦 +
3

2
(
𝐽2𝜇𝑅𝑒

2

𝑟4 )(
𝑦

𝑟
(
5𝑧2

𝑟2 − 1)) + 𝑈𝑦  

       �̈� = −
𝜇

𝑟3 𝑧 +
3

2
(
𝐽2𝜇𝑅𝑒

2

𝑟4 ) (
𝑧

𝑟
(
5𝑧2

𝑟2 − 3)) + 𝑈𝑧 

(14) 

where [𝑈𝑥  , 𝑈𝑦, 𝑈𝑧], are the components of the drag acceleration experienced by each spacecraft. 

Note that when expressed in the Earth-Centered Inertial (ECI) reference frame the drag acceleration 

has components on the three axes.  The set of equations in (14) is integrated for each spacecraft 

using the variable step ODE45 algorithm.  

 

Figure 3. LQR+CLS Implementation 

At each time step the relative states required for Equation (6) are obtained by making the trans-

formation to LVLH (or reference frames at desired locations) of each chaser spacecraft.15 The LQR 

control inputs are computed using Equation (7) and then used as desired relative drag acceleration 

in the CLS algorithm (Figure 3). Finally, the resulting individual accelerations are transformed to 

ECI and applied in Equation (14). The CLS algorithm in Equation (12) dynamically changes the 

limit values of saturations in constraints 2 and 3 due to the variable atmospheric density.  
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The NRLMSISE-00 atmospheric density model is implemented in the simulation through the 

built-in MATLAB command atmosnrlmsise00. This model takes into consideration spacecraft po-

sition (Latitude, Longitude, Altitude), date, time, solar flux index (F10.7) and geomagnetic index 

(Ap). F10.7 and Ap are available online.  

 

Figure 4. LQR under saturation, simulation result example 

 

 

Figure 5. LQR under saturation (1000 Simulations) 
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LQR Performance under Actuator Saturation 

To evaluate performance of the designed LQR regulator, one thousand simulations were con-

ducted including 𝐽2 perturbations and the NRLMSISE-00 atmospheric density model. Figure 4 

shows an example of the saturated relative drag acceleration applied by the LQR to achieve ren-

dezvous state. Note that saturation is time varying due to changes in atmospheric density. Results 

for all simulations are presented in Figure 5 showing that in all cases the regulator was able to 

complete the rendezvous maneuver.  

Multiple Spacecraft Rendezvous Maneuver Simulation 

A fleet of six spacecraft is considered for a rendezvous maneuver. This number of spacecraft 

has been selected to show the system’s performance under constraints imposed by multiple chasers 

and will also help to illustrate the collision reduction algorithm later. As mentioned in previous 

sections, all spacecraft are assumed to have the same physical properties and five of them are ma-

neuvering with respect to one that is considered the target. The initial conditions (orbital elements) 

for the target are presented in Table 2, and are similar to those of the International Space Station 

(ISS). Because the simulation case is not considering priority for any of the chasers, the first con-

straint in Equation (12) is not used.  

Initial conditions for the five chasers are randomly generated and shown in Table 3 following 

the restrictions on the orbital elements presented in the model of relative dynamics section to ensure 

small inter-spacecraft initial distances. 

Table 2. Orbital elements of the target 

𝑎𝐼𝑆𝑆 6713889.83 m 

𝑒𝐼𝑆𝑆 0 

𝑖𝐼𝑆𝑆 51.94116 𝑑𝑒𝑔 

Ω𝐼𝑆𝑆 206.35768 𝑑𝑒𝑔 

𝜔𝐼𝑆𝑆 101.07112 𝑑𝑒𝑔 

𝜃𝐼𝑆𝑆 108.08480 𝑑𝑒𝑔 

 

Table 3. Orbital elements of all chasers, rendezvous case 

 

 

 

 

 

 

 

Parameter Chaser 1 Chaser 2 Chaser 3 Chaser 4 Chaser 5 

𝑎  [𝑚] 6714182.03  6714349.32  6714238.95 6714147.57  6714045.31 

𝑒 (× 10−5) 2.1088 3.2787 4.6700 3.7157 0.85593 

𝑖  [𝑑𝑒𝑔] 51.94116  51.94116  51.94116  51.94116  51.94116  

Ω  [𝑑𝑒𝑔] 206.35768  206.35768  206.35768  206.35768 206.35768  

Ω  [𝑑𝑒𝑔] 101.07112  101.07112  101.07112  101.07112  101.07112  

𝜃  [𝑑𝑒𝑔] 108.1114  108.0541  108.0942 108.0770  108.0999  
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Figure 6. Simulation results for the rendezvous case with six spacecraft 

Simulation results for the rendezvous case are shown in Figure 6. Note that all relative drag 

accelerations experience time varying saturation due to the changes in atmospheric density (top-

left). The individually experienced drag accelerations (bottom-left) are also saturated and negative 

as expected from Equation (4). The action of the CLS approach can be observed in the drag accel-

eration acting on the target spacecraft, which is changing in time to help minimize the error between 

the desired relative inputs and the achievable ones. For simulation purposes we consider that a 

chaser achieves rendezvous when it enters and remains inside a 10 meter circle around the origin. 

Therefore, the LQR+CLS approach has shown its capability to stabilize all chasers in 30.3 hours 

under nonlinearities, perturbations, and mutual constraints.  

Multiple Spacecraft Along-Orbit Maneuver Simulation  

To illustrate how the proposed approach addresses the along-orbit formation problem, we con-

sider again a fleet of six spacecraft with one of them randomly selected as the target. The simulation 

framework has been programmed in such a way that the user can straightforwardly change the 

number of chasers and the desired inter-spacecraft separation. The simulator then automatically 

changes the dimension of all sub-routines and propagates the dynamics. For this simulation, the 

orbital elements in Table 2 are used for the target’s initial conditions and those for the chasers are 

randomly generated (Table 4). The inter-spacecraft distance is set to 2 km with three chasers behind 

and the other three ahead of the target’s position.  

Table 4. Orbital elements of all chasers, formation case 

Parameter Chaser 1 Chaser 2 Chaser 3 Chaser 4 Chaser 5 

𝑎  [𝑚] 6713421.66 6713486.96 6713706.93 6713828.57 6714185.03 

𝑒 (× 10−5) 1.3846 4.1173 3.6016 1.9078 0.9344 

𝑖  [𝑑𝑒𝑔] 51.94116 51.94116 51.94116 51.94116 51.94116 

𝛺  [𝑑𝑒𝑔] 206.35768 206.35768 206.35768 206.35768 206.35768 
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𝛺  [𝑑𝑒𝑔] 101.07112 101.07112 101.07112 101.07112 101.07112 

𝜃  [𝑑𝑒𝑔] 108.0598 108.0942 108.0541 108.0999 108.0828 

 

 

Figure 7. Simulation results for the along-orbit formation case with six spacecraft 

Figure 7 shows the simulation results for the along-orbit formation example. As in the rendez-

vous case, relative and individual drag accelerations are saturated due to the variations in atmos-

pheric density. Relative drag accelerations do not converge to zero because each chaser needs to 

keep making corrections to remain in the same relative position with respect to the target. If zero 

input is given once stabilized, chasers would start drifting apart from the target in accordance with 

the SS equations. Using the same criteria of a 10 meter circle around the desired final positions, the 

LQR+CLS approach is capable of stabilizing all chasers in a formation configuration in 34.9 hours.  

COLLISION RISK REDUCTION  

The presence of multiple spacecraft maneuvering at relatively small distances increase the risk 

of possible collisions. In this section, some observations about collisions along with a preliminary 

approach to reduce the collision risk between spacecraft in the fleet are presented.  
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Figure 8. Collision locations for one thousand simulation runs, five chasers 

 

As can be observed from Figure 6 and Figure 7, the LQR+CLS approach tends to make chasers 

follow similar paths. Moreover, due to the LQR features, all chasers tend to be in proximity to the 

target during a significant period of the total maneuver time. This makes collisions between chasers 

more likely to occur near to the target, especially in rendezvous maneuvers. To evaluate collisions, 

each spacecraft is assumed to be a circle of 10 meters diameter, this assumption was made to ac-

count for possible errors between the simulations and reality. One thousand simulations with ran-

dom initial conditions for five chasers rendezvous maneuvers were performed to better observe this 

behavior. Figure 8 shows that from the total number of collisions, 97.1% were inside a circle of 

400 meters radius around the target. 

Due to the high uncertainty in the atmospheric density, the presence of nonlinearities, perturba-

tions and the amplitude limitations of atmospheric drag, collision avoidance by means of relative 

drag becomes a difficult problem. Path prediction for each chaser with high degree of accuracy 

would be required to identify possible collisions with enough time of anticipation in order to avoid 

them. Considering this fact and our observations, we propose the use of along-orbit formation as 

the first stage of a multiple spacecraft rendezvous maneuver. This would introduce shape changes 

on chasers’ paths reducing collision risk due to path similarities. A second stage to complete the 

rendezvous maneuver that consists in driving the modified reference frames to the target’s position, 

is also presented along with simulation results to evaluate its performance.  
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Figure 9. Rendezvous maneuver with collision risk reduction, five chasers example 

 

 

Figure 10. Last stage of the rendezvous maneuver with collision risk reduction 

Along-orbit Formation for collision reduction 

Given the results shown in Figure 8, our approach is intended to reduce collisions near the target 

during rendezvous maneuvers, these collisions can be reduced by first stabilizing the chasers along 

the target’s orbit and then driving all the modified reference frames to the actual LVLH position at 

the same rate. To illustrate this idea, Figure 9 shows results for a rendezvous maneuver with five 
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randomly initialized chasers and inter-spacecraft distance of 500 meters. The last stage of the ma-

neuver (Figure 10) shows the path that each chaser follows when the reference frames are driven 

to the target’s position. Although the paths are similar (left), each chaser arrives to the rendezvous 

state at a different time (right). The complete rendezvous maneuver time was 45.1 hours and colli-

sions were reduced from five to zero.  

Note that the desired along-orbit positions were selected in such a way that half of all chasers 

are ahead and the other half are behind the target. An extra offset of 250 meters was added to the 

desired positions ahead of the target to ensure that each chaser achieves the rendezvous at different 

time. One thousand simulations for rendezvous maneuvers with five chasers were performed to 

evaluate the collision reduction algorithm, each iteration simulates cases with and without collision 

reduction for the same set of initial conditions, resulting in the number of collisions reported in 

Table 5. Although the maneuvering time increases by including this algorithm, the total number of 

collisions was reduced by 95.21%. 

 

Figure 11. Results after 1000 simulation runs with collision reduction algorithm, 5 Chasers   

Figure 11 shows the locations relative to the target’s position where collisions occurred, and the 

corresponding time is represented by colors. An interesting result is that all the remaining collisions 

occur before the chasers are stabilized along the target’s orbit. Therefore, once chasers are along 

the same orbit, the algorithm is able to drive all chasers to rendezvous without collision risk.  

Table 5. Total number of collisions after 1000 simulation runs  

Without collision reduction algorithm  3257 collisions 

With collision reduction algorithm 156 collisions 

Reduction  95.21% 

CONCLUSION 

A novel strategy for multiple spacecraft relative maneuvering using differential drag has been 

tested for rendezvous and along-orbit missions with up to five chasers. Results of numerical simu-

lations using nonlinear dynamics with perturbations and the NRLMSISE-00 atmospheric density 
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model have shown the LQR+CLS algorithm’s robustness with respect to unmodeled dynamics and 

constraints among spacecraft in the fleet. The simulation illustrates the capability to simultaneously 

manage any number of chasers considering input saturations and priority for a specific chaser if 

required.  

The definition of modified reference frames was presented as a first approach to reduce the risk 

of potential collisions during the maneuver, especially when a rendezvous mission is required. Re-

sults from one thousand simulation tests of rendezvous maneuvers with five chasers have shown 

an important reduction in the total number of collisions. Nevertheless, the presence of collisions is 

still a concern. To address this problem we are currently working on an algorithm to determine the 

slot for each chaser along the target’s orbit in such a way that the collision risk is also reduced at 

that stage.  

The ADAMUS’ D3 design capable of individually deploying very long drag surfaces can also 

be used to change aerodynamic and gravity gradient torques for attitude control. The simulation 

framework presented in this paper provides the opportunity to integrate future attitude control al-

gorithms, and test their performance under the multiple spacecraft constraints. 16 

NOTATION  

Ap Geomagnetic index 

𝑎 Constant coefficient in the state transition matrix 

𝑎𝑑,𝑗 Magnitude of drag acceleration for the 𝑗𝑡ℎ spacecraft’s drag surface  

𝐴𝑖 , 𝐵𝑖  State space representation matrices for the 𝑖𝑡ℎ chaser-target pair 

𝑏 Constant coefficient in the state transition matrix 

𝐶 Matrix used to relate 𝑈𝑖𝑛𝑑 and 𝑈𝑑 in the CLS approach 

𝑐 Coefficient in Schweighart-Sedwick equations 

𝐶𝐷 Drag coefficient 

F10.7 Solar flux index 

𝑖𝑟𝑒𝑓  Reference local-vertical/local-horizontal orbit inclination 

𝐽 Cost function in the LQR formulation  

𝐽2 
Second-order harmonic of Earth’s gravitational potential field (Earth Flattening) 

(108,263 × 10−8) 

𝐾𝐿𝑄𝑅  Constant gain matrix obtained from LQR formulation  

𝑙 Coefficient in the Schweighart-Sedwick equations (out-of-plane motion) 

𝑚 Spacecraft’s mass 

𝜇 Earth’s gravitational parameter 
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𝑁 Number of chasers in the fleet  

�̂�⊥,𝑗 Unit vector normal to the 𝑗𝑡ℎ  drag surface  

𝑃 Matrix result from solution of the Algebraic Riccati Equation 

𝑞 Coefficient in the Schweighart-Sedwick equations (out-of-plane motion) 

𝑄, 𝑅 Weight matrices in the LQR formulation 

𝑅𝑒 Earth’s mean radius (6378.1363) 

𝑟 Orbit radius of the spacecraft in the nonlinear dynamic equations. (√𝑥2 + 𝑦2 + 𝑧2) 

𝑟𝑟𝑒𝑓  Reference local-vertical/local-horizontal orbit radius 

𝑆 Drag surface’s area  

𝑡 Time 

𝑈𝑥  , 𝑈𝑦 , 𝑈𝑧  ECI components of the control input in nonlinear dynamic equations  

𝑈𝑑 Vector that contains all desired control inputs in the CLS formulation  

𝑈𝑖𝑛𝑑 Vector that contains all individual drag accelerations in the CLS formulation  

𝑢𝑥, 𝑢𝑦 , 𝑢𝑧 LVLH components of the control input in Schweighart-Sedwick equations 

𝑢𝑚𝑖𝑛,𝑡 Lower bound for the drag acceleration experienced by the target  

𝑢𝑚𝑖𝑛,𝑖 Lower bound for the drag acceleration experienced by the 𝑖𝑡ℎ chaser  

𝑢𝑡 Drag acceleration experienced by the target 

𝑢𝑐,𝑖 Drag acceleration experienced by the 𝑖𝑡ℎ chaser 

∆𝑢𝑖 Relative drag acceleration between the target and the 𝑖𝑡ℎ chaser 

∆𝑢𝑖,𝑚𝑎𝑥  , ∆𝑢𝑖,𝑚𝑖𝑛  Upper and lower bounds for ∆𝑢𝑖 

�̂� Spacecraft velocity unit vector with respect to Earth’s atmosphere 

𝑉⊥,𝑗 
Component of spacecraft’s velocity relative to Earth’s atmosphere that is perpendic-

ular to the 𝑗𝑡ℎ drag surface 

𝑋𝑖 State vector for the 𝑖𝑡ℎ chaser-target pair 

𝑥, 𝑦, 𝑧 Position coordinates of a spacecraft with respect to the ECI reference frame  

�̇�, �̇�, �̇� Velocity components of a spacecraft with respect to the ECI reference frame  

Δ𝑥, Δ𝑦, Δ𝑧 Relative position components of a Chaser with respect to the target  
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∆�̇�, ∆�̇�, ∆�̇� Relative velocity components of a Chaser with respect to the target  

∆𝑑𝑖  Desired along-orbit separation between the 𝑖𝑡ℎ chaser and the target 

∆𝜃𝑖 Desired difference in true anomaly between the 𝑖𝑡ℎ chaser and the target  

𝜙 Phase of the forcing term in out-of-plane motion in Schweighart-Sedwick equations  

𝜌 Atmospheric density 

𝜔 Target’s circular-orbit angular velocity  
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