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This paper proposes a novel technique to perform propellant-free chaser–target spacecraft
relative maneuvers while simultaneously stabilizing the chaser’s attitude with respect to
the local vertical local horizontal coordinate system centered at its body center of mass.
The control forces required for relative maneuvers at low Earth orbits can be generated by
varying the relative aerodynamic drag via maneuverable sails placed in the back-end of
the spacecraft. At the same time, aerodynamic torques resulting from the displacement of
the centers of pressure of the sails can stabilize the orientation of the spacecraft. In this
work, the target vehicle is assumed to maneuver an identical sail in a cooperative fashion
and will be centered and attitude-stabilized in its local vertical local horizontal coordinate
system. The proposed approach is based on the idea of virtual thrusters, emulating the
sail’s center of pressure offset in the controller. Several test cases are presented for various
existing spacecraft, demonstrating successful propellant-less roto-translational control of
the chaser spacecraft.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Several agencies and universities currently use nano-
satellites for a variety of space missions. Some examples
include: the CanX-2 Mission: a satellite with a mass of
3.5 kg and about the size of a carton of milk [1]; the OCSD
mission: a 1.5-unit CubeSat spacecraft with dimensions of
approximately 10 by 10 by 16 cm and a mass of approxi-
mately 3 kg [2]; the EDSN: each satellite is a1.5 unit
CubeSat with dimensions of about 10 by 10 by 16 cen-
timeters and a mass of about 2 kg [3]; the CPOD: each of
the satellites has dimensions of 10 by 10 by 33 cm and a
ll rights reserved.
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mass of about 5 kg [4]. Other future missions will be
accomplished with the following two satellites: the Atmo-
cube, a 1-unit nanosatellite with a mass of 1 kg and
dimensions of 10 by 10 by 10 cm [5] and the PADDLES
satellite, which is currently under design at the University
of Florida and is envisioned to be a 3U CubeSat with a
deployable drag sail in the back-end.

In most nanosatellites, the mass and volume available
for the propulsion system are very limited. Using differ-
ential drag at LEO, mainly for relative maneuvers, repre-
sents an alternative to classical propulsion systems.

This technique requires attitude or geometry changes to
control the amount of atmospheric drag a satellite encounters
in order to change its orbital velocity. This can be accom-
plished by varying the relative drag area available to the
atmosphere between satellites of the same plane, generating
the relative control accelerations. Alternatives to modifying
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Nomenclature

a!drag ¼drag acceleration vector [m/s2]
A ¼matrix of the unstable system
AD ¼matrix of the stable system
B ¼command matrix
BCRF ¼body-chaser reference frame
BTRF ¼body-target reference frame
cD ¼coefficient of drag
CPOD ¼CubeSat Proximity Operations

Demonstration
DCMT ¼rotation matrix between LTRF and EFRF
DCMA ¼rotation matrix between LCRF and EFRF
DCME ¼rotation matrix between LCRF and BCRF
DCMC ¼rotation matrix between BCRF and EFRF
DCM ¼rotation matrix between BTRF and EFRF
DCMBTRF

LTRF ¼rotation matrix between LTRF and BTRF
DCMLTRF

LCRF ¼rotation matrix between LCRF and LTRF
eϑ ¼error state vector of attitude control [deg]
_eϑ ¼derivative of error state vector of attitude

control [deg/s]
eρ ¼error state vector of position control [m]
_eρ ¼derivative of error state vector of position

control [m/s]
EFRF ¼Earth’s fixed reference frame
EDSN ¼Edison demonstration of SmallSat networks
f xLTRF ; _xLTRF
� �

¼nonlinear orbital differential dynamics
function

f ðδϑ U Þ ¼nonlinear attitude differential dynamics
function

F
!

DRAG�LCRF ¼drag force expressed in LCRF [N]
F
!

DRAG�BCRF ¼drag force expressed in BCRF [N]
FD ¼drag force [N]
δω ¼relative angular rate [rad/s]
δω

U ¼relative angular acceleration [rad/s2]
δϑ

U ¼relative Euler rates of the real system [rad/s]
δϑ

U
d ¼relative Euler rates of the linearized system

[rad/s]
δϑ

U U ¼relative Euler acceleration of the real system
[rad/s2]

δϑ
U U

d ¼relative Euler acceleration of the linearized
system [rad/s2]

r!rel ¼relative position of the BCRF in LTRF of the
real system [m]

_r!rel ¼relative velocity of the BCRF in LTRF of the
real system [m/s]

€r!rel ¼relative acceleration of the BCRF in LTRF of
the real system [m/s2]

xD ¼relative state position vector of the
linearized system

_xD ¼derivative of the relative state position vec-
tor of the linearized system

x ¼relative state position vector of the
real system

_x ¼derivative of the relative state position vec-
tor of the real system

H ¼map matrix of virtual thrusters’ distribution
K2 ¼gain matrix of attitude linear model
K1 ¼gain matrix of attitude linear model
J ¼ inertia tensor [kg m2]
L ¼rotation matrix of position model
LCRF ¼LVLH-chaser reference frame
LEO ¼ low Earth orbit
LVLH ¼ local vertical local horizontal
LTRF ¼LVLH-target reference frame
LQR ¼ linear quadratic regulator
mchaser ¼mass of the spacecraft [kg]
Mxz ¼torque vector [N m]
OCSD ¼optical communications and sensor

demonstration
P ¼gain matrix of the Lyapunov function
PADDLES ¼propellant-less atmospheric differential

drag LEO satellite
QLQR ¼weight matrix of the LQR (state vector

weight)
RLQR ¼weight matrix of the LQR (control vector

weight)
S ¼total area of the spacecraft [m2]
SSail ¼sail surface area [m2]
Smin ¼satellite surface area [m2]
ρ ¼air density [kg/m3]
UFL ¼University of Florida
u ¼signal command virtual thrusters and posi-

tion control
û ¼command virtual thrusters
uD ¼desired position control command
uϑ ¼desired attitude control command
uDRAG ¼modulus of drag acceleration [m/s2]
v!sat ¼velocity of the spacecraft [m/s]
v!rel ¼relative velocity between the spacecraft and

the rotating atmosphere [m/s]
v!atm ¼velocity of the rotating atmosphere [m/s]
v ¼variable of command
V ¼Lyapunov function
_V ¼derivative of the Lyapunov function
w ¼nonlinear attitude function
X ϑ
� �

¼kinematics matrix relating angular velocity
and Euler angles

Xgg ¼X-coordinate of the center of pressure [m]
Xg ¼vector of the virtual thrusters X-

coordinates [m]
Zgg ¼Z-coordinate of the center of pressure [m]
Zg ¼vector of the virtual thrusters Z-

coordinates [m]
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area profiles include reorientation of solar panels or deploy-
ment of a specifically designed drag sail (see Fig. 1).

Several works have investigated the differential drag
method to show its feasibility. An optimal control approach
to the problem of the differential drag-based positional
control for the rendezvous maneuver was proposed by
Lamberto Dell’Elce and Gaëtan Kerschen [6]. Shuford [7]
showed that a mechanism of separation and formation of a
CubeSat constellation based on the differential drag is
possible by varying cross-sectional areas through rotation



Fig. 1. 3-Unit CubeSat with the drag sail. This concept represents the
PADDLES spacecraft developed at the University of Florida. The axes
shown represent the LHLV reference frame centered at the center of mass
of the spacecraft. The PADDLES will be required to fly ram-aligned, i.e.
with the sail normal to the y axis.
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of the spacecraft. Kumar et al. [8] investigated the feasibility
of using differential drag as a means of nano-satellite
formation control and showed that they could maintain
the formation separation with reasonable accuracy. Palmer-
ini [9] investigated the role of differential drag as an
advantageous propulsion-free strategy to achieve desired
orbital configurations of satellite clusters. In this paper, the
differential drag was obtained by re-orientation of the
spacecraft combined with deployment/retraction of a con-
trol surface. Bevilacqua and Romano [10] proposed a new
two-phase control logic for the relative orbit stabilization
and the subsequent rendezvous of multiple spacecraft by
exploiting differential atmospheric drag. Each spacecraft
was assumed to include a rotating drag plate capable of
varying the atmospheric drag. The maneuver is conducted
in two successive phases: (1) stabilization phase: each
chaser spacecraft is driven to an equilibrium periodic orbit
around the target, and (2) rendezvous phase: each chaser
spacecraft converges to the target. Pérez and Bevilacqua
[11] developed a differential drag-based full state feedback
control for spacecraft rendezvous maneuvers with three
possible commands to ensure the time derivative of the
selected Lyapunov function is negative semi-definite. The
same authors [12] further developed the Lyapunov-based
control technique into an adaptive control strategy. This
strategy provided to adapt the Lyapunov function at each
time-step, in relationship to the magnitude of the evaluated
drag acceleration. The adaptive strategy takes into account
the effects of the variable atmospheric density and any non-
linearities.

The literature discussed used differential drag to control
only the relative position between two satellites in the orbital
plane, while leaving magnetic instruments and reaction
wheels with the task of attitude control. In many works,
attitude stabilization is not even considered and the maneu-
vers are executed only when satellite and atmosphere have a
favorable relative orientation, i.e., when the drag force is
sufficient. This occurs when the upcoming wind is perpendi-
cular (or very close to) to the designated drag surface.

Attitude control using atmospheric-based actuation,
while maintaining position control, is the natural evolu-
tion of this research. In this work, the differential drag
concept is expanded and for the first time in literature, it is
proven to be an effective means of attitude stabilization.
The most important starting point for the development of
the method here proposed was given by Curti et al. [13].
Their work presented a Lyapunov-based thruster on/off
activation strategy to control the spacecraft roto-
translational motion. This approach resulted in spacecraft
tracking of the desired linear reference models in both
position and orientation.

The concepts of Ref. [13] led to the idea of virtual
thrusters this paper introduces. A spacecraft equipped
with a drag sail (Fig. 1) can be conceptualized as a vehicle
with virtual thrusters mounted in the back-end. These
thrusters are activated using a strategy similar to the one
in Ref. [13] to perform roto-translational motion control.

By asymmetrically activating the thrusters, control
torques are generated. These commands are then trans-
lated into displacements for the drag sail center of pres-
sure. In addition these commands dictate when to open or
close the sail. In particular, the barycenter of the active
virtual thrusters is computed. This point is used as the
desired location for the center of pressure of the drag sail.
In addition, it is assumed that the net force from the active
thrusters is equivalent to the drag force. By using this
emulation strategy, a Lyapunov-based controller with on/
off actuators can be used, simultaneously controlling both
positional and rotational motion.

The deployment/retraction of the sail, as well as its
center of pressure offset motion, may have an effect on the
spacecraft dynamics. Due to conservation of linear and
angular momentum, the spacecraft dynamics is dependent
on the types of mechanisms utilized. In this work it is
assumed that the sail mechanical system is much lighter
than the spacecraft and such effects are neglected. In
addition, this work does not focus on the potential
mechanical solutions to obtain sail deployment and retrac-
tion, nor does it propose a practical solution to the physical
implementation of displacing the center of pressure.

The contribution to the state of the art of this research
consists mainly in the idea of utilizing drag to control both
the relative motion and orientation of the satellite. To the
authors’ knowledge this is the first proposal of using this
combined approach. In addition, the virtual thruster strategy
is a clever way to utilize already present drag aerodynamic
torques, while enabling Lyapunov-based on-off control of the
drag sail and its center of pressure location. In order to
demonstrate the feasibility of the proposed approach, the
following spacecraft are imagined to have a drag sail in order
to execute propellant-less rendezvous and rephasing: CanX-
2, OCSD, EDSN, CPOD, and Atmocube. In addition, the
PADDLES satellite is used to analyze the spacecraft charac-
teristics’ effects on the control performances.

This paper is organized as follows: first, it introduces the
concept of virtual thrusters and the idea of the displacement
of the center of pressure by calculation of the barycenter.
The following section is about the atmospheric drag and its
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mathematical expression. Following, is a section on space
vehicle mechanics, illustrating all the reference frames and
the analytical expressions of roto-translational dynamics.
The virtual thrusters’ distribution and the idea of the map
matrix as a mean of attitude control follows. The next
section introduces the control command strategy based on
the linear reference models and the Lyapunov-based
approach. Finally, a numerical simulations section is pre-
sented for a set of real satellites that are imagined to be
maneuvered with a sail placed in their back-end. This
section also investigates the behavior of two satellites which
have to reach the rendezvous condition with different
characteristics (gains, surface area of the sail). The last
section discusses the conclusions of this work.
2. The concept of differential drag-based attitude and
position control

This section introduces the concept for LEO propellant-
less spacecraft planar maneuvers using atmospheric dif-
ferential drag, for both in-plane position (i.e. X and Y in the
LVLH frame) and ram attitude (i.e. z and x-body axes)
(Fig. 2).
Fig. 2. Chaser, target, and the drag sail concept.

Fig. 3. Displacement of center of pressure (LEFT): in this example the sail (circle
the spacecraft. Virtual Thrusters Concept (RIGHT): in this example, the 8 thrust
spacecraft.
The proposed approach is based on imagining 8 virtual
thrusters (Fig. 3) generating an overall force only along the
negative y body axis of the chaser such that the overall
magnitude equals the actual drag force. The thrusters are
activated with the goal of performing position control,
while maintaining a satisfactory alignment of the chaser’s
y body axis with its velocity vector, in order to maximize
the sail’s drag. A non-symmetric activation of the virtual
thrusters implies a displacement of the sail’s center of
pressure with respect to its geometric center, thus gen-
erating a control torque. The command position for the
sail’s center of pressure is computed as the barycenter of
the active virtual thrusters. For example, only one active
thruster implies the center of pressure to be located at the
thruster’s position, two thrusters imply the center of
pressure to be located at the mid-point along the line
described by the thrusters’ locations, and so on.

The target vehicle is assumed to maneuver an identical
sail in a cooperative fashion, while centered and attitude-
stabilized in its LVLH reference frame.

In order to preserve the chaser’s attitude, the control
law is divided into two logical loops; one for the position
and one for the attitude. The attitude loop stabilizes the
chaser’s orientation continuously when its sail is opened
through impulsive movements of the sail’s center of
pressure. The position loop tracks the desired maneuver.
The attitude loop has higher priority (i.e., it can force
opening of the sail regardless of the other states) if the
attitude error exceeds the chosen tolerance.

The above enables attitude stabilization, resulting in
the correct orientation of the sail with respect to the
velocity vector. In order to simulate the behavior of a
potential real drag sail mechanical system, both the open-
ing/closing of the sail and its displacement of the center of
pressure from the center of mass are simulated with
realistic dynamic response. In particular, the simulated
time responses are obtained as the responses from first
order dynamical systems excited by step functions.

The factors affecting the behavior of the system include the
following: atmospheric density, orientation of the spacecraft,
in the image) is shifted to the left with respect to the geometric center of
ers are all active, resulting in the sail being centered with respect to the
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orbital characteristics, dynamics of the mechanical system,
chosen Lyapunov function, characteristics of the spacecraft
system, and relative initial conditions. The simulations section
discusses the limits of the proposed concept.
Fig. 4. Reference frames: BCRF, BTRF, LCRF, LTRF, EFRF.
3. Atmospheric drag in LEO

The acceleration due to drag on a satellite is given by:

a!drag ¼ �1
2
ρ
cDS
m

v2rel
v!rel

v!relj
�� ð1Þ

where cD indicates the coefficient of drag, dependent on
the spacecraft material and its aerodynamic shape [14], m
is the satellite’s mass, S is the cross-sectional area ortho-
gonal to the velocity direction, and ρ is the atmospheric
density. v!rel is the velocity of the satellite relative to the
atmosphere.

For identical satellites flying in the same formation and
in the same plane, all of these parameters will be approxi-
mately equal, except for the atmospheric density, and drag
surface, if not oriented the same way. It is primarily the
density fluctuations in the Earth’s atmosphere that cause
acceleration differences between satellites flying in
formation.

The density of the upper atmosphere is subjected to
variations caused by three main factors: (1) heterogeneous
molecules, (2) radiation from the Sun, and (3) Earth’s
geomagnetic activity.

The relative velocity v!rel, the velocity relative to the
atmosphere, depends on the accuracy of the a-priori
estimate and the results of any orbit determination pro-
cesses. Because it is generally a large squared quantity, it
becomes a very important factor in the calculation of the
acceleration. However, it has received surprisingly little
analysis in the literature. A common assumption [14] is
that the lower atmosphere rotates with the Earth, so that a
vector summation for the velocity values can be per-
formed. The upper atmosphere winds can be several
hundreds m/s which can have a large effect on the drag
acceleration. However, they are particularly unknown, un-
modeled, and unpredicted.

v!rel ¼ v!satþ v!atm ð2Þ

The satellite surface can be simple (spherical shape or
constant area orthogonal to the velocity vector), or complex
(all others). The simple case is not very common within the
context of the entire satellite catalog, but it provides
opportunities to investigate the variability of the other
parameters. The cross sectional area changes constantly
(unless there is precise attitude control or the satellite is a
sphere). This variable can change by a factor of 10 or more
depending on the specific satellite configuration [14]. Global
atmospheric models are often used for modeling solar
pressure accelerations, but seldom if ever, for atmospheric
drag. The most scientifically accurate approach is to input
the attitude (quaternions, direction cosines, etc.) into the
orbit determination solution and simply account for the
actual or predicted attitude, which gives the frontal area
exposed in the relative velocity direction. However, very
few programs are able to accomplish this.
Given the above discussion, it is common to use a
combined parameter which incorporates mass, area, and
coefficient of drag, called the ballistic coefficient (BC),
which is defined as

BC ¼ cDS=m ð3Þ

The ballistic coefficient will vary, sometimes by a large
factor.

Among the examined parameters, assuming the mass
of the spacecraft and the drag coefficient are fixed, the
only variable parameter is S. Modifications of the cross
sectional area of the sail are then assumed to be the only
drivers for the differential drag.
4. Space vehicle mechanics

The coordinate systems in Fig. 4 are used for the
derivation of the roto-translational mechanics equations
for space vehicle relative motion [15].
4.1. Translational mechanics

The equations for the translational motion of each
spacecraft are as follows:

€r!þμ
r!
r3

¼ f
! ð4Þ

where f
!

is the net drag acceleration and the perturbing
forces per unit mass and μ is the gravitational parameter.
The relative position between chaser and target is given in
LTRF by the following differential equation, already
assumed to be confined to the orbital plane:

€r!rel ¼ f rrel; _rrel
� �

þ 1
m
FDRAG�LTRF ð5Þ

where: FDRAG� LTRF is the drag force acting on the chaser

expressed in LTRF and f rrel; _rrel
� �

is the non linear function

including the perturbing differential forces. It is assumed
that the drag force in LCRF is always directed opposite to
the velocity vector so that the force has only one non-zero
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element, i.e.:

FDRAG�LCRF ¼mU

0
�1
0

2
64

3
75uDRAG ð6Þ

where uDRAG is the norm of the drag acceleration so that

FDRAG�LTRF ¼DCMLTRF
LCRF UFDRAG� LCRF ¼DCMT U DCMAð ÞT UFDRAG� LCRF

ð7Þ
The in-plane state vector of relative position and

velocity between chaser and target is defined as

x¼ x; y; _x; _y½ �
Thus, Eq. (5) becomes

_x¼ f x; _x
� �

þLB a!drag ð8Þ

_x¼

_x
_y
€x
€y

2
66664

3
77775¼

_x
_y

f rrel; _rrel
� �

2
6664

3
7775þ

0 0
0 0

0 0
0 0

0 0
0 0

DCMLTRF
LCRF

2
66664

3
77775

0
0
0
1

2
6664

3
7775uUuDRAG

ð9Þ
and

L¼

0 0
0 0

0 0
0 0

0 0
0 0

DCMLTRF
LCRF

2
66664

3
77775 B¼

0
0
0
1

2
6664

3
7775 u¼ 1

0

�
ð10Þ

where u¼ 1 when the sail of the spacecraft is open and
u¼ 0 when the sail is closed.

4.2. Rotational mechanics

The spacecraft attitude dynamics is represented by [16]

M¼ J _ωþðδωþωLVLHÞ � JðδωþωLVLHÞ ð11Þ
That can be expressed as

δω
U ¼ J�1M� J�1½ðδωþωLVLHÞ � JðδωþωLVLHÞ� ð12Þ

where J is the inertia matrix of the chaser,δω¼ω�ωLVLH is
the relative angular velocity of the chaser with respect to the
LCRF, expressed in the chaser frame, whose respective angular
velocities are ω and ωLVLH , and M is the torque acting on the
chaser. It is also assumed thatωLVLH is a constant vector in the
inertial reference frame (i.e., the orbit is circular or with very
small residual eccentricity), while natural drifts of the orbital
plane are neglected. The kinematics equation in terms of
relative Euler Angles (between BCRF and LCRF) is

δω ¼ XðδϑÞUδϑ U ð13Þ
Substituting Eq. (13) into Eq. (12), leads to

d
XðδϑÞUδϑ U Þ

dt ¼ J�1M� J�1 ðXðδϑÞUδϑ U þωLVLHÞ � JðXðδϑÞUδϑ U þωLVLH

h
0
@

ð14Þ
That becomes:

XðδϑÞUδϑ U U þX δϑ
U ÞUδϑ U ¼ J�1M� J�1½ðXðδϑÞUδϑ U�
þωLVLHÞ � JðXðδϑÞUδϑ U þωLVLHÞ�δϑ
U U ¼ X δϑ

� ��1
U J�1M

�X δϑ
� ��1

U J�1½ðXðδϑÞUδϑ U þωLVLHÞ � JðXðδϑÞUδϑ U

þωLVLHÞ��X δϑ
� ��1

X δϑ
U Þ

� �
Uδϑ

U�
ð15Þ

Eq. (15) can be compacted in the form:

δϑ
U U ¼ X δϑ

� ��1
U J�1Mþ f ðδϑ U

; δϑÞ ð16Þ

Since torques only around the x-axis and z-axis of the
body frame can be generated, Eq. (16) can be written as

δϑ
U U

xz ¼ G δϑ
� �

xz
UMxzþ f ðδϑ U

xz; δϑxzÞ ð17Þ

where

G δϑ
� �

xz
¼ X δϑ

� ��1
U J�1

����
xz

In the previous equations, the subscript xz indicates
reduced vectors (only the x and z components are retained)
and reduced matrices (only the rows and columns corre-
sponding to x and z are retained). The Euler’s angles errors
between BCRF and LCRF are obtained considering the direction
cosine matrices DCMA and DCMC. The direction cosine matrix
of the Euler’s angles error is found as follows:

DCME ¼DCMB UDCM
T
A ð18Þ

From DCME the Euler angles between BCRF and LCRF
can be extracted, using the rotation sequence XYZ. For
example, the direction of the drag force acting on the
chaser can be found as

F
!

DRAG�BCRF ¼DCME U F
!

DRAG� LCRF ð19Þ

5. Virtual thrusters distribution matrix structure

In this work, an 8 virtual thrusters distribution is
considered and the required torque M is produced by the
combined firing of the virtual thrusters (see Fig. 3). The
virtual thrusters can generate an overall force only along
the negative y direction such that the total magnitude
equals the net drag force. Let û¼ ua U u1;u2;…;u8½ �T ¼ ua Uu
be the vector of the thrusters, where:

ui ¼
0 ith thruster off
1 ith thruster on

�
i¼ 1;2…;8 ð20Þ

with: ua being the positive value of the available thrust of
the thrusters. It is important to stress that ua is a virtual
magnitude, so it acts as placeholder and is assigned the
appropriate value at each time step, such that ‖û‖¼ FDRAG
at all times. The vector u¼ u1;u2;…;u8½ �T is the binary
vector called the active thrusters’ configuration at the time
t. This vector will be allowed to have negative components
later on, when discussing the spacecraft relative motion
control, to represent a second vehicle’s activation of the
virtual thrusters.

Let the augmented torque vector be

M¼HuUua ð21Þ
where H is the 4�8 thrusters’ distribution matrix related
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to the geometrical structure of the virtual thrusters place-
ment on the spacecraft. The vector in Eq. (21) has a 0 first
component added to the classical 3-component torque
vector, for convenience of use in the following derivations.

To define H the scheme of Figs. 3 and 5 is considered.
dx and dz are the moment arms of the thrusters with

respect to the center of the mass. The thrusters are
numbered from 1 to 8.

The H matrix is defined as

H¼

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
dz dz 0 �dz �dz �dz 0 dz
0 dx dx dx 0 �dx �dx �dx

2
6664

3
7775 ð22Þ

A reference frame centered in the center of the mass of
the spacecraft can be defined, assuming homogeneous
mass distribution for simplicity, so that the coordinates
of each virtual thruster in the body frame can be written as

N 1 2 3 4 5 6 7 8
X 0 �dx �dx �dx 0 �dx dx dx

Z dz dz 0 �dz �dz �dz 0 dz
ð23Þ

6. Lyapunov-based control command strategies based on
linear reference models

This section introduces the command strategy based on
the tracking of the dynamics of a reference linear model.
There are two different approaches for position and
attitude control which result in similar control laws and
are outlined in the following section.

6.1. Tracking error equation for position

A linearized model which represents the relative
motion of spacecraft under the influence of the J2 pertur-
bation was developed by Schweighart and Sedwick (Ref.
[17]). Adding the control acceleration vector uD, where D
stands for desired, to the Schweighart and Sedwick
z

Fig. 5. Selection of the center of pressure. In this example thrusters 2 and
4 are active, which are highlighted in grey color. The resulting center of
pressure is the black circle, which in this case overlaps with the location
of thruster 3. The axes form a coordinate system in the body
reference frame.
equations, the following system of linear equations in the
LTRF is obtained.

_xD ¼ AxDþBuD ð24Þ
where A and B are the following matrices and xD is the
relative position state vector:

A¼
02�2 I2�2

b 0
0 0

0 a

�a 0

�������
������� B¼

0
0
0
1

2
66664

3
77775xD ¼

xD
yD
_xD
_yD

2
66664

3
77775 ð25Þ

a¼ 2cn and b¼ 5c2�2
� �

n2

c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3J2R

8r2T
1þ3 cos ð2iref Þ
	 
s

where n is the mean motion of the target, J2 is the second
zonal harmonic, R is the Earth mean radius, rT is the
target’s orbit radius, and iref is the target’s inclination. It is
important to note that the control action is only along the
y direction.

Since the dynamics of Eq. (25) is unstable, a Linear
Quadratic Regulator (LQR) feedback controller is used
obtaining a stable linear model for the Lyapunov control
strategy.

uD ¼ �KxD AD ¼ A�BK _xD ¼ ADxD ð26Þ
where K is the control gain matrix found by solving the
LQR problem, thus ensuring AD to be Hurwitz and xD is the
solution of the linear model.

Defining the error variable eρ ¼ x�xD between Eq. (8)
and the evolution of Eq. (26), leads to

_x� _xD ¼ f x; _x
� �

þLBuUuDRAG�ADxD

_eρ ¼ f x; _x
� �

þLBuUuDRAGþADx�ADx�ADxD

_eρ ¼ ADeρþ f x; _x
� �

þLBuUuDRAG�ADx ð27Þ

6.2. Attitude reference model tracking error equation

Let δϑd be the solution of the following equation [13]:

δϑ
U U

dþK1δϑ
U
dþK2δϑd ¼ uϑ ð28Þ

where K1 and K2 are two 2-by-2 positive definite matrices.
δϑd represents the desired relative orientation of the BCRF
with respect to the LCRF.

The input vector uϑ is the variable of command (a
virtual torque).

Subtracting the linear system, Eq. (28), from the non-
linear system of Eq. (17) leads to

δϑ
U U

xz�δϑ
U U

d ¼ f ðδϑ U
xzÞþK1δϑ

U
dþK2δϑd�uϑþG ϑ

� �
xz UMx

ð29Þ
And defining eϑxz ¼ δϑxz�δϑd

eU Uϑxz ¼ f δϑ
U
xzÞþK1δϑ

U
dþK2δϑdþK1δϑ

U
xzþK2δϑxz

�
�K1δϑ

U
xz�K2δϑxz�uϑþG ϑ

� �
xz UMxz



3
775
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eU UϑxzþK1δϑ
U
xzþK2δϑxz�K1δϑ

U
d�K2δϑd

¼ f δϑ
U
xzÞþK1δϑ

U
xzþK2δϑxz�uϑþG ϑ

� �
xz UMxz

�

eU UϑxzþK1
_eϑxzþK2eϑxz ¼ f δϑ

U
xzÞþK1δϑ

U
xzþK2δϑxz

�
�uϑþG ϑ

� �
xz UMxz ð30Þ

And, introducing

vϑ ¼ f δϑ
U
xzÞþK1δϑ

U
xzþK2δϑxz

�
ð31Þ

leads to

eU UϑxzþK1
_eϑxzþK2eϑxz ¼ vϑ�uϑþG ϑ

� �
xz UMxz ð32Þ

Defining the error-state vectors:

eϑ ¼ eϑx eϑz _eϑx _eϑz
h i

_eϑ ¼ _eϑx _eϑz €eϑx €eϑz
h i

ð33Þ

and in matrix form:

_eϑ
h i

¼
02�2 I2�2

�K2 �K1

" #
eϑ
	 
þ 02�2 02�2

02�2 G ϑ
� �

xz

" # 0
0

Mxz�G ϑ
� ��1

xz vϑ�uϑð Þ

2
664

ð34Þ
Considering the H matrix, Mxz can be expressed as

0
0

Mxz

2
64

3
75¼HuUua ð35Þ

And defining:

w¼
0
0

G ϑ
� ��1

xz vϑ�uϑð Þ

2
664

3
775 ð36Þ

So that

_eϑ
h i

¼
02�2 I2�2

�K2 �K1

" #
eϑ
	 
þ 02�2 02�2

02�2 J�1
xz

" #
HuUua�w½ �

ð37Þ

_eϑ
h i

¼ A½ � eϑ
	 
þ B½ � HuUua�w½ � ð38Þ
6.3. Lyapunov position control strategy

The following Lyapunov function is selected

V ¼ eTPe ð39Þ
With P ¼ PT 40. Differentiating Eq. (39) along the

trajectories in Eq. (27) leads to

_V ¼ _eρPeρþeρ
TP _eρ ð40Þ

_V ¼ eρ
TPAeρþeρ

T ATPeρþ2eρ
TP f x; _x

� �
þLBuUuDRAG�ADx

� �
ð41Þ
For a symmetric positive definite matrix Q, the matrix P
is found as unique solution of the Lyapunov Equation.

PAþATP ¼ �Q ð42Þ

Substituting Eq. (42) into Eq. (41) leads to

_V ¼ �eTρQeρþ2eTρP f x; _x
� �

þLBuUuDRAG�ADx
� �

ð43Þ

Which is rearranged into

_V ¼ �eTρQeρþ2eTρP f 0 x; _x
� �

þLBuUuDRAG

� �
ð44Þ

with f0 including the term �ADx. Since the first term is
always negative definite, in order to be able to prove
stability via Lyapunov analysis, the controller needs to be
derived to ensure the second terms is at least negative
semi-definite.

2eTρP f 0 x; _x
� �

þLBuUuDRAG

� �
o0 ð45Þ

The term f 0 x; _x
� �

cannot be influenced by the control
variable, thus the control strategy is chosen as

2eTρPLBuUuDRAGo0 ð46Þ

With regards to the term f 0 x; _x
� �

in Eq. (45), it is
assumed that the magnitude of differential drag is always
(or for the most of the maneuver) sufficient to render Eq.
(45) negative. This boundary problem in the Lyapunov
approach was previously studied in Ref. [13] for the
general problem of spacecraft control via on-off thrusters
(Eqs. (40) and (44) from [13]), and more specifically in Ref.
[12] for the case of differential drag (Eq. (19) and following
discussions in [12]). The work here presented makes use of
the results presented in Refs. [12,13] to choose reasonable
reference dynamics and orbit altitudes for the numerical
simulations, such that the available drag forces can coun-
teract the nonlinear terms during the maneuvers.

In addition, an adaptive methodology as the one presented
in Ref. [12] may be considered and derived, so that poorly
chosen initial reference dynamics can be adjusted during the
maneuver to ensure that the condition of Eq. (45) is respected.

The above suggestions for further developments are con-
sidered beyond the scope of this work, and may lead to new
differential drag based roto-translational adaptive control.

Now, defining

v¼ 2eTρPLB ð47Þ

The control signals are obtained as three possible values
per thruster. Fig. 6 depicts the resulting three sail scenarios.

ui ¼ �sign við Þ

X8
i ¼ 1

ui40-target opens sail ðCASE1Þ

X8
i ¼ 1

ui ¼ 0-target and chaser have closed sail ðCASE2Þ

X8
i ¼ 1

uio0-chaser opens sail CASE 3ð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð48Þ



-1 

0 1 

TF CF CM

e  (Position and attitude) 

Position control Attitude control 

( )u sign v= − Attitude error outside 
tolerance 

Or 

1u = −

Chaser opens sail Target opens sail Both sails closed 

Fig. 7. Full control scheme.

Fig. 6. Target opens its sail (LEFT); Target and chaser have closed sail (CENTER); Chaser opens its sail (RIGHT).
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6.4. Lyapunov attitude control strategy

To study the stability of Eq. (38) under virtual thrusters
actuation, the Lyapunov approach is used, by selecting as a
candidate function:

V ¼ eTPe ð49Þ

With P ¼ PT 40. Differentiating Eq. (49) along the
trajectories in Eq. (38), leads to

_V ¼ _eϑPeþeTϑP _eϑ ð50Þ

_V ¼ eTϑPAeϑþeTϑ ATPeϑþ2eTϑPB HuUua�wð Þ ð51Þ

For a specific symmetric positive definite matrix Q, the
matrix P is found as unique solution of the Lyapunov
equation:

PAþATP ¼ �Q ð52Þ

Substituting Eq. (52) in Eq. (51) leads to

_V ¼ �eTϑQeϑþ2eTϑPB HuUua�wð Þ ð53Þ

Since the first term is always negative definite, in order
to be able to prove stability via Lyapunov analysis, the
controller needs to be derived to ensure the second terms
is at least negative semi-definite.

2eTϑPB HuUua�wð Þo0 ð54Þ

With the same approach and same considerations of
the translational case, the control strategy is defined as

2eTϑPBHuUuao0 ð55Þ

That means

v¼ 2eTϑPBH ð56Þ

ui ¼ �signðviÞ ð57Þ

Because the drag force acts only along the negative y
direction, this strategy needs to be changed into

ui ¼
vi� vij j
2vi

ð58Þ

When one or more thrusters are active, the control
system determines their barycenter. A set of coordinates is
associated to each thruster (see Fig. 5).

u ¼ ½u1;u2…;u8�
Xg ¼ ½X1;X2…;X8�
Zg ¼ ½Z1; Z2…; Z8�

8><
>: ð59Þ

And the new center of pressure is calculated as the
barycenter of the thrusters that are active at any given
time, as follows:

Xgg ¼
P

Xi Uui

n
ð60Þ

Zgg ¼
P

Zi Uui

n
ð61Þ

where n is the number of active virtual thrusters, which
can range from 1 to 8.

The control system moves the sail to the new center of
pressure and a moment around either or both controlled
axes can be exerted.

Fig. 7 illustrates the full control strategy. FT, FC, and MC

represent drag forces on the target, chaser, and aerody-
namic torque on the chaser, respectively. The strategy is
divided into two logical loops: the position control loop
selects the command u. The attitude control loop has the
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authority to override the position loop, selecting the
opening of the chaser’s sail if the angular error exceeds
the threshold.

7. Numerical simulations

In this section, results of the simulations are shown.
First, the behavior of the chosen satellites for the same
maneuvers is examined, and then the role of the factors
that can influence the system response (i.e., mass, surface
area of the sail, and gain parameters) is studied. In order to
solve the LQR problem (K¼LQR(A,B,QLQR,RLQR)) as Eq. (26),
two parameters are needed to be chosen: the scalar RLQR
and the matrix QLQR.

The simulations were performed in Simulink, using two
6DOF blocks to simulate the dynamics of each spacecraft,
taking into account up to J4 with the Zonal Harmonic Gravity
Model, and using the variable density model NRLMSISE-00
Atmosphere Model to compute the drag. The NRLMSISE-00
Atmosphere Model in Simulink was used with default values
for local apparent solar time, input flux and magnetic index.
The first subsection presents the graphical and numerical
results of a Rendezvous maneuver. The following subsection
focuses on the rephasing maneuver, considering chaser and
target initially placed on the same orbit. The last subsection
analyzes the influence of the main parameters that affect the
dynamical behavior of the system in a maneuver: the surface
area of the sail and the gain RLQR.

7.1. Rendezvous maneuver

Chosen gains for the position control are RLQR¼1017

and QLQR¼ I4�4. The rendezvous maneuver is assumed to
be finalized when the distance between the spacecraft is
below 10 m. The initial conditions are the same for all the
simulations. All the parameters are contained in Table 1.
Graphs for CanX-2 are shown in Fig. 8, while Table 6
summarizes the results for the same maneuver executed
by the other spacecraft.

The attitude error, the lift forces, and the gravitational
perturbations can generate a displacement of the two
spacecraft along the z-axis of the LTRF. Given its very low
entity, it is neglected here.

Table 2 shows the initial relative condition of the two
spacecraft in the LTRF system and Table 3 the main space-
craft parameters.

The desired state in terms of Euler Angles is the
alignment of the BCRF with the LCRF such that the errors
must approach zero, and a tolerance of 15 deg is chosen.

Discrete (step) signals used to command the displace-
ment of the center of pressure are also shown in Fig. 8,
Table 1
Satellite and orbit parameters.

CD 2.6
μ km3/s2 398,600
J2 1.08e�3
Radius of the Earth km 6378.14
Semi-major-axis km 6778.10
Argumentum of perigee deg 90
along with discrete (step) signals for target and chaser
sails’ opening. The number of openings is calculated in
order to evaluate the cost of the maneuver for the chosen
parameters; in fact, increasing the number of openings
implies greater energy consumption and orbital decay
(Table 5).

The dynamical behavior chosen for the hypothetical
mechanical system representing the sail is based on
preliminary data available from the PADDLES sail subsys-
tem currently developed at UFL. When the spacecraft
orientation is out of tolerance, a step signal (e.g. Fig. 8) is
generated and fed to a first order dynamical system, whose
time evolution represents the dynamics of offsetting the
center of pressure. In other words, the time response
represents the rate at which the surface is moved in the
back of the satellite. The step signal lasts a minimum of 1 s
and is held until the angular error comes back under the
prefixed limits, while the dynamical system has a time
constant of 1 s. A similar approach is used for the simula-
tions of the opening or closing of the sail, where the step
input (e.g. Fig. 8) is instead not allowed to last less than 5 s.
The first order dynamical system associated with it has a
slower time response (the time constant is 5 s).

The lower bounds on the step inputs durations impose
upper limits on the frequency of actuation. Any command
to change the center of pressure with frequency higher
than 1 Hz is ignored by the control system, while this
limitation is 0.2 Hz for the opening/closing commands.

The details about altitude loss are provided in Table 4
and they can be evaluated in relationship with the number
of openings of the target’s and chaser’s sails, shown in
Table 5.

The most important results for the other spacecraft
considered here are displayed in Table 6.

OCSD and EDSN have the same sail dimensions and
surface area, but differing mass. This results in different
behavior for attitude stabilization and position control. The
EDSN needs less time to complete the same maneuver
because of the different mass and moments of inertia.

CanX-2 and OCSD have comparable masses but differ-
ent dimensions, affecting the moments of inertia of the
system. Since CPOD has the highest mass, a bigger surface
area enables it to maneuver in only 1.20 days with the
fewest numbers of openings.

Atmocube is the lightest spacecraft, with a high ratio
between drag sail surface area and its dimensions. This
allows it to complete the maneuver in the shortest time,
with the smallest orbital decay.

While a general analysis of all parameters affecting the
performances may be unlimited, each mission and space-
craft should be analyzed and tuned individually. However,
Orbit inclination deg 80
Right ascension deg 270
eTarget 0
eChaser 10�4

True anomaly target deg 45
True anomaly chaser deg 45.017



Table 2
LVLH-initial and expected final conditions.

Initial condition Expected final conditions

Initial xLVLH km 1.00 Final xLVLH km 0.00
Initial yLVLH km 2.00 Final yLVLH km 0.00
Initial vxLVLH km/s 5.43e�4 Final vxLVLH km/s 0.00
Initial vyLVLH km/s �1.43e�3 Final vyLVLH km/s 0.00

Table 3
CanX-2 satellite parameters.

Satellite CanX-2 Total mass chaser kg 4.5

Dimension cm 8�8�21 SSail m2 1.0
Total mass target kg 4.5 Smin m2 0.064

Fig. 8. CanX-2 x–y trajectory (TOP LEFT); Relative Euler’s angles (TOP RIGHT); Center of pressure discrete displacement in X (CENTER LEFT) and Y (CENTER
RIGHT) directions; D) CanX-2 Chaser (BOTTOM LEFT) and Target (BOTTOM RIGHT) open/close signals.
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the simulations presented herein serve as proof of concept
for the proposed control methodology, performing suc-
cessfully in all chosen cases.
7.2. Rephasing

In the Rephasing maneuver, the target and chaser start
in the same orbit but differ in true anomaly. The maneuver
consists of changing their relative true anomaly. Table 7
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shows the initial conditions of both spacecraft and Table 8
presents the initial and expected condition of the chaser
spacecraft in LTRF. As done in the previous subsection,
CanX-2 plots are presented in Fig. 9 and Table 10 sum-
marizes the results for the other spacecraft.

Some difficulties are observed in the attitude control to
keep the Euler angles’ errors within the threshold. This
may be overcome by tuning new control gains, for exam-
ple. This simulation is shown to critically demonstrate a
Table 7
Satellite and orbit parameters.

CD 2.6
μ km3/s2 398,600
rearth km 6378.14
J2 1.08e�3
Radius of the Earth km 6378.14
Semi-major-axis km 6778.10
Argumentum of perigee deg 90

Table 8
LVLH-initial and expected final conditions.

Initial condition

Initial xLVLH km �3.47e�003
Initial yLVLH km 7.09eþ000
Initial vxLVLH km/s 7.55e�007
Initial vyLVLH km/s �2.75e�007

Table 6
Rendezvous numerical simulations comparison.

Satellite name CanX-2 OCSD

Mass kg 4.5 4
Surface sail m2 1 1
Dimensions cm 8�8�21 10�10�
Gain position R 1017 1017

maneuvering time days 1.44 1.56
No. openings chaser 89 105
Loss of altitude chaser % 1.23 1.56
Loss of altitude chaser km 5.24 6.64

Table 5
CanX-2 relationship between number of openings and loss of altitude.

Chaser Target

Number of openings 89 86
Loss of altitude % 1.23 1.16
Loss of altitude km 5.24 4.93

Table 4
CanX-2 altitude parameters.

Initial altitude target km 410.39
Initial altitude chaser km 411.39
Loss of altitude target km 4.93
Loss of altitude chaser km 5.24
Total maneuvering time Days 1.44
case where the proposed technique encounters its limita-
tions. Many factors come into play (mass, sail surface area,
required tolerance on attitude alignment, etc.) and it is
expected for some maneuvers to not be feasible. Roughly
speaking, some simulations may simply show that the
tolerance on attitude alignment cannot be met, given the
chosen combination of spacecraft, sail, and control gains.

Table 9 shows the details about the cost of the man-
euver in terms of number of openings of the sail and
altitude loss for all the analyzed spacecraft.

Table 10 shows the summary for all the simulations
performed using the other spacecraft.
7.3. Influence of the parameters: PADDLES satellite

The PADDLES case is now examined. Its characteristics
are initially chosen as in Table 11. In this section the
influence of two key parameters that can change the
behavior of the system is analyzed: the gain R and the
surface area of the sail SSail. The same rendezvous man-
euver for all the previous simulations is used (Table 1) and
the initial conditions in LTRF are shown in Table 2.

For this maneuver, the results show how the surface
area of the sail and gain-position can influence the
dynamics of the satellites and the maneuvering time.
Orbit inclination deg 80
Right ascension deg 270
eTarget 10�4

eChaser 10�4

True anomalytarget deg 20
True anomalyChaser deg 20.06

Expected final conditions

Final xLVLH km �6.61e�003
Final yLVLH km �9.46eþ000
Final vxLVLH km/s �1.07e�006
Final vyLVLH km/s 0.00

EDSN CPOD Atmocube

2.5 6 1.5
1 1.5 0.5

16 10�10�16 10�10�33 10�10�10
1017 1017 1017

0.92 1.20 0.40
120 74 109
1.43 1.07 0.69
6.11 4.57 2.94



Fig. 9. CanX-2 x–y trajectory (TOP LEFT); Relative Euler angles (TOP RIGHT); open/close signal target (BOTTOM LEFT) and Chaser (BOTTOM RIGHT).

Table 9
CanX-2 number of openings and loss of altitude.

Chaser Target

Number of openings 128 88
Loss of altitude % 1.53 1.47
Loss of altitude km 6.77 6.51

Table 10
Summary table.

Satellite name CanX-2 OCSD EDSN CPOD Atmocube

Mass kg 4.5 4 2.5 6 1.5
Surface sail m2 1 1 1 1.5 0.5
Dimensions cm 8�8�21 10�10�16 10�10�16 10�10�33 10�10�10
Gain position 1017 1017 1017 1017 1017

Maneuvering time hs 52.51 52.46 35.49 10.71 32.39
Maneuvering time days 2.19 2.19 1.48 0.45 1.35
No. openings chaser 128 206 216 54 242
Loss of altitude chaser % 1.53 1.76 1.95 0.12 1.45
Loss of altitude chaser km 6.77 7.78 8.61 0.55 6.42

Table 11
PADDLES satellite parameters.

Satellite PADDLES Total mass chaser kg 3

Dimension cm 10�10�30 SSail m2 0.5
Total mass target kg 3 Smin m2 0.01
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Fig. 10 shows the dynamical behavior in the x-y plane of
the spacecraft for different surface areas of the sail; a greater
area generally leads to a smaller maneuver time and to better
stabilize the attitude of the chaser spacecraft (see Fig. 11).

Table 12 shows that setting the gain parameter R¼1017

for the PADDLES satellite results in the best configuration
when Ssail¼1 m2. However, there is no linear relationship
between sail’s area and time of convergence.

Increasing the area of the sail doesn’t always lead to
smaller times of convergence. In fact, the drag influences
the relative dynamics of both spacecraft, not only the
behavior of one.



Table 12
Relationship among control gain, sail surface area, length of maneuver,
and number of sail openings.

R 1017 1017 1017

Ssail m2 0.5 0.75 1
Maneuvering time days 1.98 1.25 0.78
No. openings chaser 106 71 36

M. Pastorelli et al. / Acta Astronautica 114 (2015) 6–21 19
While a very low drag force would be detrimental to
retain control authority, too high of a force would work
against reaching the established rendezvous condition
(below 10 m); creating a limiting cycle response issue. In
such cases other parameters would need recalibration, as,
for example the maximum frequency of actuation.

Fig. 12 shows the gain R’s influence on the time of
convergence of the maneuver. Increasing the position gain
R from 1016 to 5∙1017, doubles the maneuvering time. This
is a negative impact, which is compensated by better
stabilization of the orientation of the chaser, as shown in
Fig. 13. A higher gain R leads to a larger number of
openings of the chaser’s sail, thus increasing the attitude
control time and reducing the Euler angles’ error.

In Table 13 the influence of the gain parameter is
summarized.

8. Conclusion

The literature of the past three decades focused on the
idea of spacecraft drag-based propellant-less translational
maneuvers. The present work demonstrates that the roto-
translational dynamics can be controlled, provided that a
spacecraft can control its drag magnitude and point of
Fig. 10. x–y Trajectory for different Sail’s areas.

Fig. 11. Angular errors for
application. The idea of a deployable and retractable drag
sail, capable of offsetting its center of pressure, appears as
a viable solution for generation of orbital control forces
and ram-alignment control torques. The proposed app-
roach translates these forces and torques into eight virtual
thrusters in the back-end of a spacecraft, thus enabling the
use of classical Lyapunov-based control, and subsequent
mapping of the on-off virtual thrusters commands into
open-close commands and center of pressure offset com-
mands to the sail.

The virtual thrusters approach priorities attitude control
over position control, since attitude dynamics responses are
much faster. This choice is supported by numerical simula-
tions, were the position accuracy in executing rendezvous and
rephasing maneuvers remains unaltered, while the attitude
control can be largely affected by changing the spacecraft sail
different Sail’s areas.

Fig. 12. x–y Trajectory for different gain-positions with Ssail¼1 m2.



Table 13
Relationship among control gain, sail surface area, length of maneuver,
and number of sail openings.

R 1016 1017 1018

Ssail m2 1 1 1
Maneuvering time days 1.06 0.78 1.64
No. openings chaser 75 36 140

Fig. 13. Angular errors for different gain-positions with Ssail¼1 m2.
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surface area and the control gains. Numerical simulations
need to be performed to correctly tune the controller gains to
obtain satisfactory attitude control every time a new ratio
between surface area of the sail and mass of the spacecraft is
introduced.

Six existing or planned nanosatellite missions are used
to validate the methodology by simulating rendezvous and
rephasing maneuvers and implementing the dynamics of a
realistic mechanism for the drag sail operations.

The numerical simulations show that the proposed
approach is an effective method for all the suggested
maneuvers and analyzed spacecraft. This novel strategy
particularly controls the chaser’s orientation for all the
maneuvers, enabling the continuous use of differential
drag forces for relative maneuvering.

Future work is suggested towards the derivation of an
adaptive version of the Lyapunov-based controller, so that
unrealistic initial linear reference dynamics can be adj-
usted during the maneuver.
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