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 SPACECRAFT MANEUVERING VIA ATMOSPHERIC 
DIFFERENTIAL DRAG USING AN ADAPTIVE LYAPUNOV 

CONTROLLER 

D. Pérez,* and R. Bevilacqua† 

An atmospheric differential drag based adaptive Lyapunov controller, originally 

proposed by the authors in previous work for spacecraft rendezvous, is here 

generalized allowing for the tracking of reference trajectories or dynamics. Dif-

ferential drag is based on the ability to vary a satellite’s cross wind surface area, 

and it represents a propellant-free alternative to thrusters to control relative mo-

tion of low Earth orbiting spacecraft. The interest in autonomous propellant-less 

maneuvering comes from the desire of reducing costs of performing formation 

maneuvering. Formation maneuvering opens up a wide variety of new applica-

tions for spacecraft, such as on-orbit maintenance missions and refueling. The 

control technique is successfully tested using Systems Tool Kit simulations for 

re-phase, fly-around, and rendezvous maneuvers, proving the feasibility of the 

proposed approach for a real flight.  

INTRODUCTION 

An adaptive Lyapunov control technique, originally proposed in previous work 
1, 2

 for a ren-

dezvous maneuver using differential drag, is further developed and generalized allowing for the 

tracking of reference trajectories or dynamics. The control algorithm is tested using Systems Tool 

Kit (STK) simulations for re-phase (regulating), fly-around (trajectory tracking) and rendezvous 

maneuvers (tracking a reference model). The interest in autonomous propellant-less maneuvering 

comes from the desire for reducing costs of performing formation maneuvering. Formation ma-

neuvering opens up a wide array of new applications for spacecraft, such as on orbit maintenance 

missions and refueling. Successful autonomous propellant-less maneuvering of low Earth orbit 

(LEO) spacecraft on the orbital plane can be achieved using differential drag.   

The idea of using differential drag for controlling the relative motion of spacecraft was first in-

troduced by C.L. Leonard 
3
. The ORBCOMM constellation of LEO satellites was the first one to 

use differential drag for formation keeping 
4
; while, the JC2Sat project developed by the Canadi-

an and Japanese Space Agencies 
5, 6

 was an envisioned application of these ideas.  

Control of spacecraft formation maneuvers is an increasingly important topic given the poten-

tial for its application for autonomous guidance of satellite swarms, refueling, autonomous as-
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sembly of structures in space and on-orbit maintenance missions. The latter has been specifically 

targeted by NASA through its Satellite Servicing Capabilities Office 
7
. 

The variation in the drag can be induced, for example, by deploying or retracting a surface 

(see Figure 1), hence effectively modifying the spacecraft’s ballistic coefficient. The reference 

frame commonly employed for spacecraft relative motion representation is the Local Vertical 

Local Horizontal (LVLH) reference frame, where x points from Earth to the reference spacecraft 

(virtual or real), y points along the track (direction of motion), and z completes the right-handed 

frame (see Figure 1). The differential acceleration generated by deploying/retracting a surface is 

approximated to the y component only
1
, limiting controllability to the x-y plane. 

 

Figure 1. Drag surface deployment concept to generate differential drag 

The magnitude of the differential drag acceleration fluctuates during the maneuver as the 

spacecraft encounters regions of the thermosphere (85 km above the Earth) with different atmos-

pheric densities. In the thermosphere, atmospheric density can change significantly due to solar 

activity. These variations are difficult to model and measure accurately on board; hence, robust 

control strategies must be designed to increase the reliability of spacecraft maneuvering using 

differential drag.  

The problem of designing a control system for in plane maneuvering using differential drag 

becomes the problem of designing a real-time control law to command the deployment or retrac-

tion of the surfaces attached to the target and chaser spacecraft, with the intent of forcing the 

spacecraft to follow a desired trajectory, a linear reference model, or simply regulate to a final 

desired state. A stable linear reference model is introduced; this model tracks the desired rendez-

vous trajectory. The Lyapunov controller can then be used to either directly track the desired tra-

jectory or track the dynamics of the linear reference model.  In previous work, 
8
 a Lyapunov con-

troller was developed for addressing this problem. In essence, a Lyapunov function of the track-

ing error is selected, and the control signal is chosen so that the tracking error converges to zero 

(i.e. the first order time derivative of the Lyapunov function is negative). Thus, the nonlinear dy-

namics of the system are forced to follow a desired trajectory. This significantly simplifies the 

control problem, since the desired trajectory can be designed using controlled linear dynamics 

approximating the reality of spacecraft relative motion. The possibility of tracking different tra-
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jectories or a reference dynamic allows this controller to be used for many different relative ma-

neuvers using differential drag, provided that they are constrained to the orbital plane.  

In later work the Lyapunov controller was improved by introducing an adaptation to reduce 

control effort and maneuver duration for a rendezvous maneuver 
1, 2

. An analytical expression for 

the differential drag acceleration critical value that ensures stability in the sense of Lyapunov for 

the system was found, and partial derivatives of this critical value in terms of Q (Lyapunov equa-

tion matrix), and Ad (reference linear dynamics matrix) were also developed in 
1, 2

, only for the 

regulation case. Furthermore, an adaptation that chooses in real time an appropriate positive defi-

nite matrix P in a quadratic Lyapunov function, by modifying the Q and Ad matrices based on the 

partial derivatives was developed. Nonetheless, the adaptation could only be utilized when the 

controller was used for regulation, since the partial derivatives were developed for that case only 

and consequently, the spacecraft could only go from an initial state to a final state without follow-

ing any desired path; thus, restricting the application of the controller.  

In this paper, the adaptive Lyapunov controller presented in 
1, 2

 is generalized to force the 

spacecraft to follow trajectories and linear reference dynamics, provided that they are physically 

realizable, i.e. they evolve in time scales comparable to those typical of differential drag.  

As a simplification, the control law is based on the assumption that the control is either posi-

tive maximum, negative maximum, or zero, as previously done in 
1, 28

and
9
, neglecting the time 

required by the surfaces to be deployed or retracted. This simplification is valid since the time 

required to deploy or retract the surfaces (in the order of seconds, or minutes at the most) is neg-

ligible with respect to the maneuvers durations (in the order of days). 

The foremost contributions of this work are: 

1) Analytical expressions for the partial derivatives of the critical value of the differential 

drag acceleration in terms of Q (Lyapunov equation matrix), and Ad  (reference linear dy-

namics matrix) for the general case in which the spacecraft are tracking a linear reference 

model, which can also be used for tracking a guidance trajectory or a desired final state 

(regulation). 

2) Simulations that validate the adaptive Lyapunov controller for three different maneuvers; 

Fly-around, Re-Phase, and Rendezvous, via Systems Tool Kit (STK) numerical simula-

tions. 

3) Assessment of the performances of the designed adaptive Lyapunov control strategy for 

the three different maneuvers in terms of the duration of the rendezvous maneuver and 

the number of deployments/retractions (control effort), in comparison with the non-

adaptive Lyapunov control strategy previously presented by the authors 
8
. 

4) Overall, this paper provides a valuable generalization of the work presented in 
8
which al-

lows for propellant less autonomous relative maneuvers within the orbital plane. 

The paper is organized as follows. Section II presents the concept of atmospheric differential 

drag. Section III presents the spacecraft relative motion linear and nonlinear dynamics employed 

in the following developments. Section IV is dedicated to the Lyapunov control law, as well as 

the general analytical derivatives of the differential drag critical value with respect to the inde-

pendent variable matrices. Section V presents the results of the simulations of the three different 

maneuvers performed in STK, and Section VI draws the conclusions. 



 4

II. DIFFERENTIAL DRAG 

The drag acceleration experienced by a spacecraft at LEO is a function of the atmospheric 

density, atmospheric winds, velocity of the spacecraft relative to the medium, and the geometry, 

attitude, drag coefficient and mass of the spacecraft.  The interdependence of these parameters 

(e.g. the drag coefficient is affected by the temperature of the medium which also determines the 

density of the medium) and the lack of knowledge in some of their dynamics make the modeling 

of the drag force a challenging and still largely unsolved problem. This results in large uncertain-

ties regarding the control forces available for maneuvers using drag forces. Consequently the con-

trol systems used for drag maneuvers must be able to cope with these uncertainties.   

The aerodynamic acceleration experienced by a spacecraft is typically decomposed into the 

lift (lift forces are negligible at LEO) and drag forces, the latter usually expressed as: 

 
21

2
d sa BCvρ=  (1) 

where ρ is the atmospheric density, and vs is the velocity of the spacecraft relative to the at-

mospheric particles.  The ballistic coefficient BC is given by:  

 DC A
BC

m
=  (2) 

where CD is the drag coefficient of the spacecraft, A is the cross-wind surface area of the 

spacecraft, and m is the mass of the spacecraft.  

Using Eq. (1), the magnitude of the relative acceleration caused by the differential aerodynam-

ic drag for the spacecraft system (target and chaser) is given as: 

 
21

2
D l srea vBCρ= ∆  (3) 

where ∆BC is the difference in ballistic coefficients between the target and chaser.  

In the thermosphere, the solar activity creates large variations of temperature, which drive var-

iations of the atmospheric density. These variations produce significant changes in the available 

magnitude of drag acceleration for a given ballistic coefficient.  

III. LINEAR REFERENCE AND NONLINEAR MODELS 

The effect of the J2 perturbation and other nonlinearities is more significant in maneuvers with 

longer times of execution, such as those performed using differential drag. For this reason the use 

of a linear model that partially accounts for averaged effects of these nonlinearities is desired, like 

the one described in the following section. The model described in the following section is used 

for the derivation of the Lyapunov controller. 

Linear Reference Model  

A linearized model which represents the relative motion of spacecraft under the influence of 

the J2 was developed by Schweighart and Sedwick 
10

. Adding the control acceleration vector (u) 

to the Schweighart and Sedwick equations, the following system of linear differential equations in 

the LVLH frame is obtained.  
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where n is the mean motion of the target, J2 is the second zonal harmonic, R is the Earth mean 

radius, rt is the target’s orbit radius and it is the target’s inclination.  Noteworthy, the control ac-

tion is only along the y direction, as depicted in Figure 1. 

Since the dynamics of the Schweighart and Sedwick model are unstable, a Linear Quadratic 

Regulator (LQR) feedback controller is used to stabilize them and obtain the necessary linear 

model for Lyapunov developments. The resulting reference model is described by: 

     dd d d dd t= = =ɺx A x + B , A A - B  uK, Kxu  (5) 

where K is a constant matrix found by solving the LQR problem for the Schweighart and Sed-

wick model, thus ensuring Ad to be Hurwitz, and xt is the desired guidance. For solving the LQR 

problem an identity matrix was used as the QLQR matrix and RLQR value was changed depending 

on the maneuver, since this value greatly determines the behavior of the stable linear reference 

model. Furthermore, the state vector xd is the desired reference dynamics, and control action is 

along the y direction only.  This stable linear reference system can be regulated or forced to track 

a desired guidance trajectory.  

Nonlinear Model  

The dynamics of spacecraft relative motion are nonlinear due to effects, such as the J2 pertur-

bation and the nonlinear variations on the atmospheric density at LEO. The adaptive Lyapunov-

based control intends to cope with these unmodeled effects by minimizing the differential drag 

critical value (minimum differential drag to have Lyapunov stable behavior) at all times, thus in-

creasing the control margin. The nonlinear dynamics, including the J2 perturbation, are defined 

as: 

 ( ) [ ], , 0

Drel
T

Drel

a

x y x y u

a




= + = = 
−

ɺ ɺ ɺx f x Bu x  (6) 

where aDrel acts along the y direction only, f(x) is an approximation of the full nonlinear rela-

tive motion dynamics, truncated to J2.  

IV. ADAPTIVE LYAPUNOV CONTROL 

Lyapunov Control Law   

In previous work 
8
 Lyapunov principles originally used in 

11
 were used to develop a criterion 

for the activation of the actuators of the surfaces which generate the differential drag. More spe-

cifically, the control signal is chosen such that the Lyapunov function (Eq. (7)) of the tracking 

error is positive, and the derivative of the Lyapunov function (Eq. (8)) is negative, thus ensuring 

that the tracking error converges to zero (as it was suggested in  
3
). The Lyapunov controller can 
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be used to force the nonlinear model (i.e. the dynamics of the Target and Chaser Spacecraft) to 

directly track a desired constant final state, a desired guidance trajectory or the dynamics of a lin-

ear reference model as shown in earlier work 
2
. 

 , 0dV = ≻
Te Pe, e = x - x P  (7) 

 ( ) ˆ ˆ ˆ2 ( ) 2( )Drel D

T

l

T

re

TV u ua ua β δ= + − = − + −ɺ T

d d d de (A P + PA )e e P f x A x + B + -B e Qe  (8) 

where û is the command sent to the surface actuators, matrices Ad and B represent the linear 

dynamics, matrix Q is chosen such that a Lyapunov equation is satisfied (Ad
T
P+PAd=-Q), e is the 

tracking error vector, x and xd are defined as the actual spacecraft relative state vector and the ref-

erence state vector respectively, aDrel is the magnitude of the differential drag acceleration, and 

f(x) accounts for all nonlinearities. The resulting control law presented in 
8
 can be expressed as: 

 ˆ ( )u sign= − T
e PB  (9) 

Critical value for the differential drag  

An analytical expression for the critical value of the differential drag acceleration (Eq. (10)) 

that ensures stability in the sense of Lyapunov for the system was developed in prior work 
1
. This 

was accomplished for the simplified case of regulation (no linear dynamics to track), by substitut-

ing δ=e
T
Pf(x) in Eq. (10). In the general case here addressed, the critical value expression is the 

following 

 
( )( )

Dcrita
δ − +

= =
T

d d

T T

e P A x f x Bu

e PB e PB
 (10) 

General partial derivatives  

In this work, the partial derivatives of the critical value in terms of matrices Ad and Q are gen-

eralized to the case in which the Lyapunov controller tracks a desired guidance or the dynamics 

of the reference model (δ includes all the terms shown in Eq. (10)). Thus, allowing the adaptive 

Lyapunov controller to track a desired guidance, the dynamics of the reference model, in addition 

to performing regulation.  

For the development of the general matrix derivatives the following matrices were defined 

 
4 4

1 ,   
n n

T

rs rs nxn rs rs

r s r s

= ⊗ = ⊗∑∑ ∑∑E E E EU U  (11) 

Where the matrix Ers is an elementary matrix with a one at position r,s and zeros elsewhere. 

Moreover, Inxm is and n-by-m identity matrix. The matrix derivatives as defined in 
12 

are described 

by: 
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Where the vectors Yv and Xv are the vectorized (vec) versions of the matrices Y and X. Also, 

the following matrix derivative transformations defined in 
12

 are used 
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Starting from Eq. (10), the general critical value is expressed as: 
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where matrix P is a function of matrices Ad and Q via the following Lyapunov equation 

 
T= d d-Q A P + PA  (15) 

which as shown in 
12

 can be rewritten as: 
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where ⊗  represent the Kronecker product defined in 
12

 for the same n-by-n Y and X matrices 

as: 
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Also in 
1, 2

, the partial derivatives of P in terms of Ad and Q were found; these derivatives are 

used in the following developments and can be expressed as: 
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The first step in generalizing the method was to find the partial derivative of the general criti-

cal value shown in Eq. (10) in terms of Ad. First, the partial derivative of ψ in terms of Ad is found 

using the matrix derivative product rule found in 
12

 yielding 

 4 4
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I16x16 x

d

d

A
U x

A
 (20) 

using again the matrix product rule, the partial derivative of η in terms of P is found to be 
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Subsequently, using the matrix chain rule defined in 
12

, the partial derivative of η in terms of 

Ad is found to be 

 
1 1

4 43 1
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d d
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Finally, using the matrix product rule and Eqs. (19), (20), (21), and (22), the general partial 

derivative of the critical value in terms of Ad is found to be 
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The second step for generalizing the methods is to find the partial derivative of the general 

critical value shown in Eq. (10) in terms of Q. First, using Eqs. (19), (21), and the matrix chain 

rule, the partial derivative of η in terms of Q is found  
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The partial derivative of ψ in terms of Q is a zero matrix since ψ is not a function of Q. Final-

ly, using Eq. (24) and the matrix chain rule, the general partial derivative of the critical value in 

terms of Q is found to be 

( )( )( ) ( )( )1 1 1
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(25) 

 

Adaptive Lyapunov Control Strategy 

The same adaptation designed and presented by the authors in 
1
,
2
 is used here. By calculating 

the general partial derivatives defined in Equations (23) and (25), the entries of the matrices Q 

and Ad, to which aDcrit is the most sensitive are identified (those entries which have the largest 

partial derivative). Once these entries are identified, the one with the highest partial derivative is 

selected, and slightly modified by a small value (δA =10
-6

 for Ad and δQ =10
-6

 for Q). The sign of 

this modification is chosen such that it reduces the derivative of aDcrit, thus inducing a downward 

trend in the behavior of the critical value for the magnitude of the differential acceleration. By 

reducing this critical value, the overall robustness of the controller is improved since the control 

margin, that is the difference between the actual value of the differential drag acceleration and the 

critical value, is increased. The adaptive variations in the Q and Ad are expressed as: 

 ( ) ,     ( )
ij ijDcrit Dcrit

A A Q Q

ij ij

dA dQa a
sign sign

dt A dt Q
κ δ κ δ

   ∂ ∂
= − = −   

∂ ∂      
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where κA and κQ are defined by 
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The adaptation is implemented such that the modified Q and Ad matrices still satisfy their re-

quirements of positive definiteness and symmetry for Q and for Ad being Hurwitz. Evidently, the 

adaptations of the Q and Ad matrices also affect the surface activation strategy since they cause 

variations in P which is used for the surface activation strategy (see Eq. (9)). In other words, the 

adaptations of the matrices Q and Ad result in an adaptation of the quadratic Lyapunov function 

shown in Eq. (7). The adaptations are applied at the same time that the drag surface activation 

strategy is applied, that is every 10 minutes. 

V. NUMERICAL SIMULATIONS RESULTS 

For all the simulations, the guidance and control algorithms have been programmed in 

MATLAB. These algorithms interact with STK via STK Connect. STK’s High-Precision Orbit 

Propagator (HPOP) has been used for modeling the mechanics of the maneuver, including J2 per-

turbations, solar pressure radiation and variable atmospheric drag using the empirical 

NRLMSISE-00 model. For all of the simulations the adaptive Lyapunov controller using the gen-

eralized partial derivatives was compared to the Lyapunov controller presented in 
2
.  

Both adaptive and non-adaptive Lyapunov controllers can be implemented in the following 

configurations: 

1) The controller is used to force the nonlinear system to directly track the analytically gen-

erated guidance trajectory  

2) The controller forces the nonlinear system to track the trajectory of the reference model 

which is tracking the analytically generated guidance trajectory.  

3) The controller forces the nonlinear system to go to a desired final state (regulation) 

The initial orbital elements of the target (center of the LVLH frame) and other parameters for 

the numerical simulations are shown in Table 1. The target and chaser spacecraft are assumed to 

be identical, therefore drag coefficient and frontal areas for all surface configurations are the 

same. The initial relative position and velocity of the chaser in the LVLH frame are shown in Ta-

ble 2 (the same initial state was used in previous work in 
1
, 

2
 and 

8
). For all simulations the initial 

Q matrix was the identity matrix times 10
2
. 
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Table 1.  Spacecraft Parameters 

Parameter Value 

Second zonal harmonic J2 1.08E-03(from 
13

) 

Radius of the Earth R (km) 6378.1363 

Gravitational parameter µ (km
3
/sec

2
) 398600.4418 

Target’s inclination (deg) 98 

Target’s semi-major axis (km) 6778 

Target’s right ascension of the ascending node (deg) 262 

Target’s argument of perigee (deg) 30 

Target’s true anomaly (deg) 25 

Target’s eccentricity 0 

vs (km/sec) 7.68 

m(kg) 10 

Smin surface retracted (m
2
) 0.5 

Smax surface deployed (m
2
) 2.5 

CDmin 1.5 

CD0 2 

CDmax 2.5 

Table 2. Initial conditions in the LVLH frame 

Parameter Rendezvous Fly-Around  Re-Phase 

x (km) -1 0 0 

y (km) -2 -4.25 -1.9 

xɺ (km/sec) 4.8E-007 0 0 

yɺ (km/sec) 1.70E-04 0 0 

 

 Re-Phase Maneuver 

In this maneuver, both target and chaser spacecraft start at the same orbit but with a difference 

in their polar angles (true anomaly) at a given time, the maneuver consists in changing the value 

of this difference. In the LVLH plane the spacecraft start with zero relative position in the x direc-

tion (radial) but with a difference in the y direction (along track), thus the objective of the maneu-

ver is to change this difference in the y direction while maintaining zero relative position in the x 

direction . For the simulation in STK, the initial difference in the y was -1.9km and the desired 

final difference was 3km (Figure 2).  Both the Lyapunov and adaptive Lyapunov controller have 

been used in simulations for the re-phase maneuver (Figure 3, Figure 4). The controllers are used 

to regulate (third configuration) the error between the simulated relative positions and velocities 

and the desired final relative positions and velocities. For this maneuver the RLQR value used to 

obtain the initial Ad was 10
18

. 
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Figure 2. Re-Phase trajectory in the x–y plane: (left) complete maneuver and (right) final stages of 

the maneuver 
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Figure 3. Re-Phase control signals: (top) non-adaptive Lyapunov controller and (bottom) adap-

tive Lyapunov controller 
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Figure 4. Re-Phase error over the entire maneuver: (left top) x error, (left bottom) y error, and 

(right) normalized error. 

Fly-Around Maneuver 

In this maneuver both spacecraft start at the same orbit but with a difference in their polar an-

gles (true anomaly) at a given time. The objective of the maneuver is to follow a desired path in 

the LVLH plane which leads to a stable relative orbit of the chaser spacecraft around the target 

spacecraft (Figure 5). The guidance methodology developed by one of the authors in 
14

 has been 

selected for the fly-around maneuver. Both the Lyapunov and adaptive Lyapunov controller (with 

the generalized partial derivatives) have been used in simulations for the fly-around maneuver 

(Figure 6 and Figure 7). For this maneuver, regulation is no longer used since the desired final 

state is not a constant final relative position and velocity, but a stable relative orbit of the chaser 

around the target. Hence, the controllers force the nonlinear dynamics to follow the desired fly-

around guidance and not just converge to a final state (first configuration). Moreover, the simula-

tions are stopped 2.5 orbital periods after the guidance reaches the final stable orbit. For this ma-

neuver the RLQR value was10
18

. 
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Figure 5. Fly-Around trajectory in the x–y plane: (left) complete maneuver and (right) final stages of 

the maneuver 
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Figure 6. Fly-Around control signals: (top) non-adaptive Lyapunov controller and (bottom) adap-

tive Lyapunov controller 
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Figure 7. Fly-Around error over the entire maneuver: (left top) x error, and (left bottom) y error, 

(right) normalized error. 

Rendezvous Maneuver 

In this maneuver the spacecraft have a difference in both x and y directions. The objective of 

the maneuver is to drive both relative position and velocity to zero. This maneuver is particularly 

difficult to perform using differential drag since it requires reducing an initial difference in the x 

direction as well as in the y direction, and, as it was shown by the authors in 
1
, 

2
 and 

8
, this re-

quires introducing large errors in the y direction.  A guidance methodology (presented by one of 

the authors in 
14

) for rendezvous maneuvers using differential drag has been selected. In this sim-

ulation the controller forces the nonlinear system to track the trajectory of the reference model 

which is tracking the analytically generated guidance trajectory (second configuration). This con-

figuration is quite useful since the behavior of the linear reference model when tracking the guid-

ance is available a priori and, provided that the model is reasonable (i.e., not too demanding to 

track), it gives an insight into what the nonlinear system is expected to do.  In order to illustrate 

the importance of the nature of the linear stable reference model, two cases for this maneuver 

were simulated. In Case 1 the RLQR value used to obtain the initial Ad was selected to give a less 

realistic (too demanding) linear reference model for the rendezvous (RLQR=1.6*10
18

), while  in 

Case 2 this value was selected to obtain a better (more achievable) linear reference model 

(RLQR=1.5*10
17

). 
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Figure 8. Rendezvous trajectory Case 1 in the x–y plane: (left) complete maneuver, and (right) 

final stages of the maneuver 
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Figure 9. Rendezvous Case 1 control signals: (top) non-adaptive Lyapunov controller and (bot-

tom) adaptive Lyapunov controller 
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Figure 10. Rendezvous Case 1 error over the entire maneuver: (left top) x error, (left bottom) y 

error, and (right) normalized error. 

  

Figure 11. Rendezvous trajectory Case 2 in the x–y plane: (left) complete maneuver and (right) 

final stages of the maneuver 

The tracking errors plots (Figure 4, Figure 7, Figure 10 and Figure 13) show that the adaptive 

controller allows for more accurate tracking of the trajectories, i.e. smoother controlled trajecto-

ries and shorter maneuvers. This behavior is also apparent in the plots from the fly-around ma-

neuver since they show that the adaptive controller is able to get much closer to the desired final 

stable orbit than the non-adaptive one (Figure 5 right). The results also indicate that the selection 

of a reasonable initial linear reference model allows both Lyapunov controllers to force the non-

linear dynamics to follow the reference model in a much more accurate way, that is following the 



 18

linear reference model more closely (see Figure 10 and Figure 13), in less time (see Figure 9 and 

Figure 12), and by introducing much less error the in y direction as the error in the x direction is 

being reduced (see Figure 10 and Figure 13). The parameters used to evaluate the performance of 

the controllers are the number of switches in the control (control effort), the duration of the ma-

neuver, the means for the critical and actual value of the differential drag acceleration, and the 

difference between these two values (control margin). The actual value for the differential drag 

acceleration is available from the atmospheric model used; although, in practice this value would 

not be known a priori, and therefore it is not used by the controller. 
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Figure 12. Rendezvous control Case 2  signals: (top) non-adaptive Lyapunov controller and (bot-

tom) adaptive Lyapunov controller 
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Figure 13. Rendezvous Case 2 error over the entire maneuver: (left top) x error, (left bottom) y 

error, and (right) normalized error. 
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Table 3. Performance parameters for all simulations 

Parameter 
Re-Phase 

(Regulation) 

Fly-Around 

(Tracking 

Trajectory) 

Rendezvous (Track-

ing Dynamics) 

Case 1 Case 2 

Non--

Adaptive 

Control Changes 124 41 239 37 

Time (hr) 30.7333 13.15 66.05 38.9167 

Drag Mean Critical value (m/s
2
) -2.93E-

07
 -6.50E-

06
 -1.16E-

04
 -1.71E-

04
 

Mean Actual Drag(m/s
2
) 9.61E-

06
 3.38E-

05
 3.56E-

05
 3.50E-

05
 

Margin(m/s
2
) 9.90E-

06
 4.03E-

05
 1.52E-

04
 2.06E-

04
 

Adaptive 

Control Changes 107 37 124 36 

Time (hr) 27.4 13.15 49.2833 37 

Drag Mean Critical value (m/s
2
) -6.54E-

07
 -7.23E-

06
 -1.50E-

04
 -1.74E-

04
 

Mean Actual Drag(m/s
2
) 9.52E-

06
 3.38E-

05
 3.47E-

05
 3.50E-

05
 

Margin(m/s
2
) 1.02E-

05
 4.10E-

05
 1.85E-

04
 2.09E-

04
 

As it can be observed from the data in Table 3, the use of the adaptive controller reduced the con-

trol effort required to perform all three maneuvers with improvements of 13.7%, 9.8%, 48.2% 

and 2.7% for the re-phase, fly-around, Case 1 and Case 2 rendezvous maneuvers respectively. 

Moreover, the adaptive controller also reduced the duration of the maneuver with improvements 

of 10.9%, 25.4% and 4.9% for the re-phase, Case 1 and Case 2 rendezvous maneuvers respective-

ly. There was no improvement in duration for the fly-around, since the simulation was not 

stopped when within 10m of the desired final position, but after 2.5 orbital periods after reaching 

the desired stable relative orbit. Additionally, the adaptive controller also was able to increase the 

control margin with an improvement of 2.7%, 1.8%, 18% and 1.6% for the re-phase, fly-around, 

Case 1 and Case 2 rendezvous maneuvers respectively. The fact that the improvements of the 

adaptive controller over the non-adaptive controller are much larger for Case 1 than Case 2 (ren-

dezvous maneuver) is caused by the better selection of the initial linear reference model in Case 

2. This leads to two observations: the first one is that the adaptation provides even better results 

as the accuracy of the linear reference degrades, and the second one is the substantial impact that 

the nature of the linear reference model (matrix Ad) has on the performance of the Lyapunov con-

troller. As was previously shown in 
1
, 

2
 (for a rendezvous maneuver using only regulation), the 

implementation of the adaptive controller yields improvements in terms of control effort, maneu-

ver duration and control margin; however, the use of the general partial derivatives for the adapta-

tion allows for performing more complicated maneuvers beyond those that can be achieved by 

using regulation.  

VI. CONCLUSIONS 

An adaptive Lyapunov controller based on differential drag is here generalized from the au-

thors’ previous work, to enable any planar spacecraft relative maneuvering. The development of 

analytical expressions for general partial derivatives of the differential drag critical value in terms 

of matrices Q and Ad (chosen by the control designer, i.e., independent variables), allows for the 

implementation of the adaptive Lyapunov controller, for tracking a trajectory, the dynamics of a 

reference model, or simply regulating to a desired final state. Consequently, the adaptive Lyapun-

ov controller can be used for various propellant-less autonomous relative maneuvers within the 

orbital plane using differential drag as the source of control force. The results for the re-phase, 

fly-around, and the rendezvous maneuvers indicate that the implementation of the adaptive Lya-

punov controller allows for smoother maneuvers with less duration, less actuation, and greater 
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control margin for the three different controller configurations studied. The use of the general 

derivatives will allow for the implementation of the adaptive Lyapunov controller in maneuvers, 

in which a specific path is desired, consequently, opening the possibilities for many other maneu-

vers using differential drag, provided that they are confined to the orbital plane. The results also 

confirm the importance of the linear reference model on the performance of both adaptive and 

non-adaptive controllers, representing an important topic for further investigation. 
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