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This work presents a feedback control strategy to perform spacecraft rendezvous 
maneuvers exploiting differential drag forces. Differential drag is an alternative 
method for generating control forces at low Earth orbits, by varying the 
aerodynamic drag experienced by different spacecraft, thus generating differential 
accelerations between the vehicles, virtually without use of propellant. The 
variation in the drag can be induced by modifying the spacecraft cross-wind 
sectional area. The interest towards this methodology comes from the decisive 
role that efficient and autonomous spacecraft rendezvous maneuvering will have 
in future space missions, since virtually propellant-free maneuvers can be 
performed. The proposed approach controls the nonlinear dynamics of spacecraft 
relative motion using on-off control, by introducing a linear model to analytically 
generate a guidance trajectory, based on the linearized equations of spacecraft 
relative motion.  A guidance control sequence trajectory is used for the control of 
the real dynamics until an error threshold is met. Once this occurs, a new guidance 
trajectory is generated, and its control sequence is used. The process is repeated 
until rendezvous conditions are satisfied. A numerical simulation is presented to 
validate the approach. 

1. Introduction 
 

This paper presents a feedback control strategy for the rendezvous maneuver of a 
chaser and a target spacecraft using aerodynamic differential drag.  Control of space 
rendezvous maneuvers is an increasingly important topic, given the potential for its 
application in operations such as autonomous guidance of satellite swarms, on-orbit 
maintenance missions, refueling and autonomous assembly of structures in space. 
Several control strategies for spacecraft rendezvous maneuvers using thrusters have 
been developed in past few years (see references [1] and [2]). Nevertheless, given the 
high cost of refueling, an alternative for thrusters as the source of the control forces is 
desired with the intent to reduce costs for future space missions.  A differential in the 
aerodynamic drag experienced by the target and chaser spacecraft produces a 
respective differential in acceleration between the spacecraft which can be used to 
control the motion of the chaser relative to the motion of the target spacecraft. The 
concept of spacecraft maneuvering using differential drag was first proposed by 
C.L.Leonard [3]. The main advantage of differential drag maneuvering is that it does not 
require the use of any type of propellant, which is clearly not the case for standard 
thruster-driven maneuvers. However, these maneuvers can only be performed at low 
Earth orbits, where there are enough atmospheric particles to generate sufficient drag 
forces. An application of these principles is the JC2Sat project being developed by the 
Canadian and Japanese Space Agencies (see references [4] and [5]). 
The reference frame commonly employed for spacecraft relative motion representation 
is the Local Vertical Local Horizontal (LVLH) reference frame, where x points from Earth 
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to the reference satellite (virtual or real), y points along the track (direction of motion), 
and z completes the right-handed frame (see Fig. 1).  
To generate the drag differential, the chaser and target spacecraft must have different 
cross-wind sectional areas. A simple way of achieving this is to provide the spacecraft 
with a system of rotating flat plates which in practice can be solar panels. Three cases 
for the configurations (see Fig. 1) of the plates are considered, where a chaser 
spacecraft can increase, equal, or decrease its atmospheric drag with respect to a 
target. The plates re-orientation delay time is assumed negligible with respect to the 
maneuvers duration, thus, it is assumed that the plates rotate instantly, generating a 
bang-off-bang control profile, as suggested in [6], [7], and [8].  

 
Fig. 1 Drag plates concept to generate differential drag (obtained from [8]). 

 

In order to cope with the reality of nonlinearities and non modeled effects,  a feedback 
approach for forcing nonlinear systems, controlled by on-off actuators only, to track 
linear models is here proposed.  
The control strategy selects the sequence of positive, negative or zero differential 
accelerations of the chaser relative to the target. This selection is designed so that the 
dynamics of the spacecraft system (chaser and target spacecraft) tracks a linear 
reference model, whose utilization allows for analytical development of a guidance 
trajectory and its respective control sequence. This control sequence is applied to the 
real nonlinear dynamics of the system. As the maneuver progresses, the tracking error 
grows due to the difference in dynamical behavior between the linear model used to 
create the guidance and the nonlinear system. Once this error reaches a threshold, a 
new guidance trajectory is generated and its respective new control sequence is 
implemented. This procedure is repeated until rendezvous conditions are achieved. This 
significantly simplifies the control problem, since the desired trajectory (in this case the 
trajectory for the rendezvous maneuver) can be designed using linear control 
techniques on the linear reference model.  Moreover, the use of this control method 
allows for the design of a smoother control action with less switching in the differential 
drag than previous work of one of the authors [8]. 
The foremost contributions in this work are: 

1) A feedback control strategy for the rendezvous maneuver of a chaser and target 
spacecraft using differential drag. 



2) Demonstration of feasibility of the approach via numerical simulations. 
3) Assessment of the performances of the designed control strategy in terms of the 

accuracy in the tracking of the linear reference model and the number of 
switches in the differential drag caused by the control strategy. 

This work is organized as follows: Section 2 presents the spacecraft system dynamics 
explaining the effect of aerodynamic drag, Section 3 illustrates the guidance used, 
Section 4 comments on the Nonlinear Model used, Section 5 explains the development 
of the Feedback Control Strategy, Section 6 contains the simulations performed, and 
finally, Section 7 presents the conclusions. 
 

2. Relative Motion Spacecraft Dynamics 
 

Hill’s seminal paper on lunar theory [9] which described the motion of the moon relative 
to the Earth was the first study on the relative motion of bodies in space.  Based on 
Hill’s work, Clohessy and Wiltshire [10] developed the linear model that bears their 
name, which describes the motion of a chaser spacecraft relative to a target spacecraft. 
This model has been widely used in applications involving low thrust proximity 
maneuvers. However, this model does not account for the differential effects on the 
spacecraft motion due to nonlinearities such as the J2 perturbation, caused by the 
Earth’s flattening. The effect of the J2 perturbation and other nonlinearities is more 
significant in maneuvers with longer times of execution such as those performed using 
differential drag. For this reason the use of a linear model that partially accounts for 
averaged effects of these nonlinearities is desired. 
 

2.1. Schweighart and Sedwick Relative Motion Equations 
 

A linearized model which represents the relative motion of spacecraft under the 
influence of the J2 was developed by Schweighart and Sedwick [11]. By simply adding 
the control acceleration vector (u) to the Schweighart and Sedwick equations, the 
following system of linear differential equations in terms of relative positions, velocities 
and accelerations in the LVLH is obtained:  
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This set of equations is used to generate the desired trajectory for the rendezvous 
maneuver. It is important to note that equations (1), (2), and (3) assume circular 
reference orbit, a small separation between target and chaser in comparison to the radii 
of their orbits, and that only J2 effects, drag and 2-body forces are acting on the 
spacecraft system. Moreover, the Schweighart and Sedwick equations do not provide 
any information related to the attitude of the spacecraft, and in this paper it is assumed 
that attitude is stabilized by other means than the differential drag.  
 



2.2. Differential Drag 
 

At low Earth orbits (LEO) there is still a significant amount of atmospheric particles, 
which induces a pressure on the surface of any object moving at those orbits. In others 
words at LEO atmospheric density (ρ) is large enough to induce aerodynamic drag 
against the motion of a spacecraft.  The relative acceleration caused by the differential 
aerodynamic drag for the spacecraft system is given in [7] as: 

 2

2
D r

BC
a V

ρ∆
=  (5) 

where the ballistic coefficient ∆BC is given by: 
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Since this acceleration is caused by drag, then it only acts in the direction opposite to 
motion (negative y direction in the LVLH frame). This means that the only nonzero 
component of the control vector is uy. Hence the control vector in the LVLH frame is: 

 T[0 –   0]Da=u  (7) 

It can be observed from equations (1), (2), and (3) that the dynamics in the x and y 
directions are independent of those on the z direction. Also from equation (7) it can be 
observed that control can be achieved only on the along-track direction of orbital motion 
(y direction). This indicates that by using differential drag, only motion in the x-y plane, 
with its velocities, can be controlled for the dynamics described in equations (1) and (2). 
 

2.3. Transformation of the Schweighart and Sedwick equations 
 

Taking into account only equations (1), and (2) the state space representation of the 
Schweighart and Sedwick equations is defined in equation (8). The motion of the 
spacecraft system outside of the x-y plane is not considered since the drag cannot 
influence it. 
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with matrix A1 and vector state x defined as follows: 
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The state space representation of the Schweighart and Sedwick equations can be 
decomposed into a double integrator and a harmonic oscillator as described in [12], 
resulting in a new state vector z using the following transformation: 
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The solution to the state space system (10) is analytical when the control is of bang-off-
bang nature. It can be found in reference [7]. 
 

3. Guidance 
 

Analitycal guidance for the rendezvous problem can be found by linearizing the 
dynamics of the spacecraft system resulting in the Schweighart and Sedwick equations, 
as described in the following. 
 

3.1. Trajectory for the Schweighart and Sedwick model 
 

The rendezvous maneuver can be preliminarily separated into two sequential phases, 
as previously suggested in the literature ([7] and [8]). In the first phase the spacecraft 
are driven towards a stable relative orbit; in the second phase the oscillation of the 
relative orbit is canceled out and the rendezvous conditions are achieved, namely zero 
relative position and velocity. In order to find this solution, the state vector 
transformation from the LVLH coordinate to the new set of coordinates z = [z1 z2 z3 z4]

T 
appears to be convenient since it provides a representation of the system behavior in 
which the dynamics of the system are decoupled into a double integrator and a 
harmonic oscillator. The transformation is linear and it does not shift the origin, which 
means that to satisfy the rendezvous condition the transformed coordinates (z) must 
reach zero for rendezvous to occur.  
In the transformed coordinate system the first phase of the maneuver drives the z1 and 
z2 components to zero. This process is demonstrated in Fig. 2 a) in which starting from 
state α, a differential acceleration between the vehicles is induced. Due to its bang-off-
bang nature this differential acceleration can only be negative, positive or zero. The sign 
of this relative acceleration is changed at states β, γ, and δ thus driving z1 and z2 to the 
origin in the z1-z2 plane. 
The second phase consists of driving z3 and z4 to zero. This results in z1 and z2 
deviating from the origin in the z1-z2 plane; however, by applying the negative and 
positive relative accelerations, required to drive z3 and z4 to the origin in the z3-z4 plane, 
for exactly the same time intervals, the z1 and z2 coordinates will reach the origin in the 
z1-z2 plane at the end of the second phase. The second phase, only for the z3-z4 plane, 
is illustrated in Fig. 2 b) in which, starting from state ε no relative acceleration is applied 
until state ς reached. This inactive period of ∆tw is desired in order to assure that the 
system follows a trajectory in which the time interval for positive and negative relative 
accelerations is the same. As shown in [8] the value of ∆tw can be found as follows: 
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Afterwards, starting from state ς a relative acceleration is again induced. Then at states 
η and θ the sign of the relative accelerations is changed after time intervals of ∆t and 
2∆t respectively. As shown by [7] this time interval ∆t can be calculated using: 
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where coefficients h, f, and g are given as: 
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Subsequently, the sign of the relative acceleration is maintained for another ∆t time 
interval after which the origin in the z3-z4 plane is reached. Since positive and negative 
relative accelerations are maintained for net time intervals of 2∆t, the origin is reached 
in both z1-z2 and z3-z4 planes. Once the trajectory for the two phases in the transformed 
coordinates is found, the analytical control sequence is translated back into the original 
x, y reference, and the guidance trajectory is generated.  

 
Fig. 2 Two-phase differential drag guidance ([7]): a) first phase: stabilization of 
the relative orbit, b) second phase: final rendezvous, canceling out oscillations. 

 
Furthermore the time-varying eccentricity of the harmonic oscillator motion before 
rendezvous is given as: 
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As indicated in [7] at the end of the first phase e0 must be smaller than ec otherwise the 
inverse cosine in equation (12) cannot be evaluated. This critical value was determined 
in [7]  to be: 
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As recommended in [7] if at the end of the first phase e0 is larger than ec then e0 is 
corrected using the following equation: 

 
0 0 ce e 0.99e= −  (16) 

And then equation (12) is used and phase two is performed as illustrated before. The 
second phase is repeated until e0 is larger than ec and then the final second phase is 
executed driving all the z states to zero. It is important to note that in a real-world 
application of this guidance the tracking error is not expected to reach zero, but to reach 
a residual value near the origin. The reason for this behavior is the on-off nature of 
differential drag which does not allow for a smooth control action. 



The real world problem of designing a control system for the rendezvous maneuver 
using differential drag becomes the problem of designing a feedback control law for the 
flat panels, forcing the satellites to follow the two-phase guidance (see Fig. 2), coping 
with nonlinearities, uncertainties, and navigation errors. Previous results [7] suggest 
control implementations to track the guidance shown in Fig. 2, that results in satisfactory 
differential drag based rendezvous maneuvers. However, some thrusting capability was 
required to complete the mission in previous work [7], due to small inaccuracies in 
guidance tracking, and a high number of switching commands to the drag plates. These 
limitations translate into a non propellant-free maneuver, and demanding energy 
requirements for the plates' actuators. 
 

4. Nonlinear Model 
 
The dynamics of spacecraft relative motion are nonlinear due to effects such as the J2 
perturbation. The Feedback approach here suggested intends to cope with these 
limitations. In this section the model used for the nonlinear dynamics and for testing the 
control strategy is presented. The general expression for the real world nonlinear 
dynamics of the acceleration of a spacecraft is defined as:  

 23 J
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where u is the control acceleration caused by aerodynamic drag in the inertial frame, 
and aJ2 is the acceleration caused by the J2 perturbation defined in the inertial frame as: 
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5. Feedback Control Strategy 

 
In this section the feedback control law is designed, with the aim of mitigating the 
current limitations of differential drag control. A guidance trajectory following the logic 
described in section 3 is generated such that it drives the linear system from its initial 
state (initial positions and velocities of the target and chaser spacecraft) to the 
rendezvous state. Along with this guidance trajectory, the control sequence for the 
linear model to follow this trajectory is also generated. This control sequence is applied 
to the nonlinear model. Since the dynamical behavior of the two models diverges over 
time, the tracking error grows as the maneuver is propagated with the nonlinear 
dynamics. For the suggested approach the tracking error in velocity only was used. 
Once the tracking error reaches a critical value, a new guidance trajectory that drives 
the linear system from the current state to the rendezvous state is recomputed, along 
with its control sequence. This new control sequence is implemented on the nonlinear 
model, and the process is repeated until the state of the nonlinear model reaches 
rendezvous conditions. The critical value for the tracking error is reduced as the state of 
the system approaches rendezvous conditions. It is worth emphasizing that all the 
components in the control strategy described above would be available in real time, and 
therefore on board the spacecraft.  
 



6. Numerical Simulations 
 
Numerical simulations, using the parameters shown in Table 1, and the initial conditions 
shown in Table 2 (previously used in [7]), were used to validate the approach. 
 

Table 1 Simulation Parameters 

Parameter Value 

J2 1.08E-03 

R (km) 6378.1363 

iT (deg) 51.595 

rT (km) 6728.1363 

µ(km
3
/sec

2
) 398600.4418 

Vr (km/sec) 7.68 

mT (kg) 10 

mC (kg) 11 

ST (km
2
) 5.0E-07 

SC (km
2
) 3.0E-06 

CDT 2 

CDC 5 
 

Table 2 Chaser initial position, and 
velocity in the LVLH 

Parameter Value 

x (km) -1 
y (km) 2 

xV (km/sec) -8.40E-06 

yV (km/sec) 
-1.70E-04 

 

 
For the simulations, a MATLAB program that generates the guidance trajectories and 
their respective control sequences was created. The nonlinear dynamics of the system 
were propagated using Simulink and, as explained before, new guidance trajectories 
were generated each time the tracking error reached the critical value. For the Initial 
conditions and parameters chosen, it was necessary to generate six linear guidance 
trajectories in order for the system to approximate rendezvous conditions. The resulting 
simulated trajectories in the x-y and Vx-Vy planes of the nonlinear system along with the 
initial guidance trajectory can be seen in Fig. 4. 

 
Fig. 3 Simulated Trajectory in the x coordinates: a) x-y plane, b) Vx- Vy plane 

 

Furthermore the final stages of the rendezvous maneuver simulation can be seen in Fig. 
4. The final relative distance and velocity between the Chaser and the Target were of 28 
m and 1.647 cm/s respectively. 



 
Fig. 4 Detail of the Simulated Trajectory: a) x-y plane, b) Vx- Vy plane 

 

The control profile over the entire rendezvous maneuver (see Fig. 5) requires a low 
frequency of actuation in comparison with previous results [7], which allows for realistic 
considerations for the application of the feedback control presented here.  

 
Fig. 5 Control signal profile over the entire maneuver (see Fig. 1). 

 

 

7. Conclusion 
 

In this work a new application of the of feedback principles for the autonomous control 
of a spacecraft rendezvous maneuver by making use of differential drag is presented. 
By varying the differential drag between the chaser, and target satellites their motion in 
the x-y and Vx-Vy planes in the LVLH frame is controlled. These variations are induced 
by the action of sets of plates fixed to the spacecraft. The nature of this variation is 
assumed to be of bang-off-bang nature with only three possible values: maximum 
differential acceleration, minimum differential acceleration, and zero differential 
acceleration. Trajectories of the rendezvous maneuver are generated using the 
Schweighart and Sedwick linear model and implemented on a nonlinear model of the 
system. Once the tracking error reaches a critical value, a new guidance trajectory is 
generated and implemented. The process is iterated until the system reaches the 
rendezvous state. The resulting controlled actuation is an improvement over previous 
results since it presents a significantly lower frequency of actuation and a reasonably 
small residual error. 
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