
 1 

DIFFERENTIAL DRAG SPACECRAFT RENDEZVOUS USING AN 
ADAPTIVE LYAPUNOV CONTROL STRATEGY 

David Pérez* and Riccardo Bevilacqua† 

This paper introduces a novel Lyapunov-based adaptive control strategy for 

spacecraft maneuvers using atmospheric differential drag. The control forces re-
quired for rendezvous maneuvers at low Earth orbits can be generated by vary-

ing the aerodynamic drag affecting each spacecraft. This can be accomplished, 

for example, by rotating dedicated sets of drag panels. Thus, the relative space-

craft motion can be controlled without using any propellant since the motion of 

the panels can be powered by solar energy. A novel Adaptive Lyapunov Con-

troller is designed, and a critical value for the relative drag acceleration that en-

sures Lyapunov stability is found. The critical value is used to adapt the Lya-

punov controller, enhancing its performances. The method is validated using 

simulations in the Analytical Graphics Incorporated's Satellite Tool Kit soft-

ware. The results show that the Adaptive Lyapunov technique outperforms pre-

vious control strategies for differential drag based spacecraft maneuvering. 

I. INTRODUCTION 

This work presents a novel adaptive Lyapunov control strategy to perform spacecraft rendez-

vous maneuvers at Low Earth Orbits (LEO), exploiting atmospheric differential drag forces. 

C.L.Leonard (see reference 1) introduced an alternative method for generating the control forces 
required by the rendezvous maneuvers at LEO. This method consists of varying the aerodynamic 

drag experienced by different spacecraft, thus generating differential accelerations between them. 

The interest towards this methodology comes from the decisive role that efficient and autono-
mous spacecraft rendezvous maneuvering will have in future space missions. In order to increase 

the efficiency and economic viability of such maneuvers, propellant consumption must be opti-

mized. Employing the differential drag based methodology allows for virtually propellant-free 

control of the relative orbits, since maneuverable dedicated drag surfaces can be powered by solar 
energy. The ORBCOMM constellation formation keeping (see reference 2) is the first application 

of these ideas, while, the JC2Sat project developed by the Canadian and Japanese Space Agencies 

(see references 3 and 4) is an envisioned application of these ideas.  

The variation in the drag can be induced, for example, by closing or opening flat panels at-

tached to the spacecraft, hence effectively modifying its ballistic coefficient. The reference frame 

commonly employed for spacecraft relative motion representation is the Local Vertical Local 
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Horizontal (LVLH) reference frame, where x points from Earth to the reference satellite (virtual 

or real), y points along the track (direction of motion), and z completes the right-handed frame 
(see Figure 1). In such a frame we envision a target and a chaser spacecraft, and the following 

three cases for the configurations of the panels can be considered (see Figure 1): 

1. All the panels of the chaser are deployed generating the maximum possible drag while 

those of the target are not deployed to achieve the opposite, hence generating a nega-
tive acceleration of the chaser relative to the target. 

2. All the panels of the target are deployed generating the maximum possible drag while 

those of the chaser are not deployed to achieve the opposite, thus generating a positive 
acceleration of the chaser relative to the target. 

3. Both chaser and target have a couple of panels deployed, which means that there is no 

relative acceleration between the spacecraft. This can be also achieved by having both 
spacecraft closing all of their panels. 

 

Figure 1. Drag panels concept to generate differential drag (obtained from 5). 

It is worth to underline that atmospheric differential drag is expected to provide an effective 

control only in the orbital plane (x and y); for this reason we will limit our discussions to the in-
plane motion, assuming that no out-of-plane (z) motion is present, or that it is controlled with dif-

ferent means. 

The magnitude of the differential drag acceleration fluctuates during the maneuver as the 

spacecraft encounters regions of the thermosphere with different atmospheric densities. In the 
thermosphere, atmospheric density can change significantly due to solar and geomagnetic activi-

ties. These variations are difficult to model and measure accurately on board; hence, robust con-

trol strategies must be designed to increase the reliability of spacecraft maneuvering using differ-
ential drag.  
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The problem of designing a control system for the rendezvous maneuver using differential 

drag becomes the problem of designing a real-time logic to command the closed and open posi-
tions for the flat panels, with the intent of forcing the satellites to follow the desired rendezvous 

trajectory, or simply regulate to a final desired state (rendezvous). It is worth underlying that the 

sought-for logic needs to be based on the assumption that the control is either positive maximum, 

negative maximum, or zero (Figure 1) neglecting the time required by the panel to rotate. This 
logic is here designed using a Lyapunov approach. In essence, a Lyapunov function of the track-

ing error is selected, and the control signal is chosen so that the tracking error converges to zero 

(i.e. the first order time derivative of the Lyapunov function is negative), thus, the nonlinear dy-
namics of the system are forced to follow a desired trajectory. This significantly simplifies the 

control problem, since the desired trajectory can be designed using controlled linear dynamics 

approximating the reality of spacecraft relative motion. The method proposed here builds upon 
and improves previous work presented and tested in references 6 and 7.  

In particular, a stable linear reference model is introduced; this model tracks the desired ren-

dezvous trajectory. The Lyapunov controller can then be used to either directly track the desired 

trajectory or track the dynamics of the linear reference model. In this work the Lyapunov control-
ler is directly tracking the final desired position, that is the zero relative position and velocity be-

tween chaser and target spacecraft, which is the rendezvous condition. The stable linear reference 

model is still needed for the regulation case, even if the linear reference is not tracked. In fact, the 
linear stable model enables the definition of the correct Lyapunov function that in turns drives the 

nonlinear dynamics to behave in a desired fashion in terms of time response.  

In order to enhance the performance and robustness of the Lyapunov controller, a way of 
adapting the Lyapunov function, in terms of the drag acceleration critical value necessary for sta-

bility, is developed. The definition of appropriate Lyapunov functions is a challenge that varies 

from problem to problem, and a widely studied theory exists (see references 8, 9, and 10). In this 

work, we define a quadratic Lyapunov function of the tracking error, and we change its positive 
definite matrix in an adaptive fashion, effectively changing the Lyapunov function in real time to 

achieve the best performances during the rendezvous maneuvers. The adaptation is achieved 

through analytical expressions giving the dependence of the differential drag acceleration critical 
value from the chosen stable linear model. By means of these relationships, the differential drag 

critical value is maintained minimal during the maneuver, achieving the best possible control au-

thority margin in real time. All the derivatives necessary to obtain the analytical results are com-

puted and presented in the paper.  

The foremost contributions of this work are: 

1) An analytical expression for the differential drag acceleration critical value that ensures 

stability in the sense of Lyapunov for the system. 

2) Analytical expressions for the partial derivatives of the critical value of the differential 

drag acceleration in terms of Q (Lyapunov equation matrix), and Ad  (reference linear dy-

namics matrix). 

3) A control strategy, based on the Lyapunov approach, for two spacecraft rendezvous using 

differential drag, which uses adaptation to choose in real time an appropriate positive def-

inite matrix P in a quadratic Lyapunov function. 

4) Demonstration of feasibility of the approach via Satellite Tool Kit (STK) numerical simu-
lations. 

5) Assessment of the performances of the designed adaptive Lyapunov control strategy in 

terms of the duration of the rendezvous maneuver and the number of switches in the dif-
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ferential drag (control effort), in comparison with the non adaptive Lyapunov control 

strategy previously presented by the authors in reference 7.   

6) Overall, this paper provides a valuable strategy that can be implemented onboard real 

spacecraft, even small spacecraft with limited computing capabilities. In fact, the adap-

tive Lyapunov-based control methodology does not require numerical iterations and can 

run in real time, requiring onboard measurements that would be available during flight. 

The paper is organized as follows. Section II introduces the concept of atmospheric differen-

tial drag and its mathematical expression. Section III illustrates the spacecraft relative motion lin-

ear and nonlinear dynamics employed in the following developments. Section IV is dedicated to 
the Lyapunov function definition, the panels’ activation strategy, as well as the analytical deriva-

tives of the differential drag critical value with respect to the independent variable matrices. In 

section V we use such derivatives to create the novel adaptive Lyapunov controller. Section VI 
validates the approach via Satellite Tool Kit numerical simulations, and Section VII draws the 

conclusions. 

II. DIFFERENTIAL DRAG 

The drag acceleration experienced by a spacecraft at LEO is a function of the atmospheric 
density, atmospheric winds, velocity of the spacecraft relative to the medium, and the geometry, 

attitude, drag coefficient and mass of the spacecraft.  The interdependence of these parameters 

(e.g. the drag coefficient is affected by the temperature of the medium which also determines the 
density of the medium) and the lack of knowledge in some of their dynamics make the modeling 

of the drag force a challenging and still largely unsolved problem. This results in large uncertain-

ties regarding the control forces available for maneuvers using drag forces. Consequently the con-
trol systems used for drag maneuvers must be able to cope with these uncertainties.   

The aerodynamic acceleration experienced by a spacecraft is typically decomposed into the 

lift (lift forces are negligible at LEO) and drag forces, the latter usually expressed as: 

 
21

2
d sa BCv  (1) 

Where ρ is the atmospheric density, vs is the velocity of the spacecraft relative to the atmos-

pheric particles.  The ballistic coefficient BC is given by :  

 
DC A

BC
m

  (2)          

Where CD is the drag coefficient of the spacecraft, A is the cross-wind surface area of the 

spacecraft and m is the mass of the spacecraft.  

Using equation (1), magnitude of the relative acceleration caused by the differential aerody-

namic drag for the spacecraft system (target and chaser) is given as: 

 
21

2
D l srea vBC   (3) 

Where ΔBC is the difference in ballistic coefficients between the target and chaser. The accel-

eration expressed above is described earlier in Figure 1. 

In the thermosphere, the solar activity creates large variations of temperature, which drive var-
iations of the atmospheric density. These variations produce significant changes in the available 

magnitude of drag acceleration for a given ballistic coefficient.  
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III. LINEAR REFERENCE AND NONLINEAR MODELS 

Hill’s groundbreaking work on lunar motion (see reference 11), which described the motion of 
the Moon relative to the Earth, was the first study on the relative motion of bodies in space. Af-

terwards, inspired by Hill’s work, Clohessy and Wiltshire (see reference 12) developed a linear 

model, which describes the motion of a chaser spacecraft relative to a target spacecraft. This 

model has been widely used in applications involving low thrust proximity maneuvers. Unfortu-
nately, this model does not account for the differential effects on the spacecraft motion due to 

nonlinearities such as the J2 perturbation, caused by the earth’s flattening. The effect of the J2 

perturbation and other nonlinearities is more significant in maneuvers with longer times of execu-
tion such as those performed using differential drag. For this reason the use of a linear model that 

partially accounts for averaged effects of these nonlinearities is desired, as the one described in 

the following section. The model described in the following section is used for the derivation of 
the Lyapunov controller. 

Linear Reference Model  

A linearized model which represents the relative motion of spacecraft under the influence of 

the J2 was developed by Schweighart and Sedwick (see reference 13). Adding the control accel-
eration vector (u) to the Schweighart and Sedwick equations, the following system of linear dif-

ferential equations in the LVLH frame is obtained.  
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Where n is the mean motion of the target, J2 is the second zonal harmonic, R is the Earth mean 

radius,  rt is the target’s orbit radius and it is the target’s inclination.  Noteworthy, the control ac-
tion is only along the y direction, as depicted in Figure 1. 

Since the dynamics of the Schweighart and Sedwick model are unstable, a Linear Quadratic 

Regulator (LQR) feedback controller is used to stabilize them and obtain the necessary linear 

model for Lyapunov developments. The resulting reference model is described by:     

     d d d d x A x , A A - BK,   (5) 

Where K is a constant matrix found by solving the LQR problem for the Schweighart and 

Sedwick model, thus ensuring Ad to be Hurwitz. The QLQR matrix and RLQR value used to solve 

the LQR problem are: 

 
19,   1.5*10LQR LQRR I

4x4
Q  (6) 

 It is worth mentioning that the state vector xd is the desired reference trajectory, and control 

action is along the y direction only (since the drag force acts always opposite to the direction of 
motion).  This stable linear reference system can be regulated or forced to track a desired guid-

ance trajectory.  
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Nonlinear Model  

The dynamics of spacecraft relative motion are nonlinear due to effects such as the J2 pertur-
bation, and the nonlinear variations on the atmospheric density at LEO. The adaptive Lyapunov-

based approach suggested here intends to cope with these unmodeled effects, by minimizing the 

differential drag critical value at all times. In this section the model that will be used for the non-

linear dynamics is presented. The general expression for the real world nonlinear dynamics, in-
cluding nonlinearities such as the J2 perturbation, is defined as: 

    , , 0

Drel
T

Drel

a

x y x y u

a




    


x f x Bu x  (7) 

where aDrel acts along the y direction only, as explained earlier. All the nonlinearities are ac-

counted for in the nonlinear function f(x). For the development of the Lyapunov controller f(x) is 
assumed to be a function of the spacecraft position only, and is assumed (for a single spacecraft in 

the inertial frame) to be:  

  
3

[ ]T

in in inx y z
r


 

r
f r ,    r  (8) 

Where r is the position vector of the spacecraft in the inertial frame, r is its magnitude and μ is 
the gravitational parameter.  

IV. LYAPUNOV APPROACH 

In this section the nonlinear adaptive control law based on the Lyapunov approach is de-

scribed. The approach is inspired by previous work from one of the authors (see reference 6) and 
was further developed by the authors in reference 7.  

A Lyapunov function is defined as:    

 , , 0d dV  T
e Pe, e = x - x e = x - x P  (9) 

Where P is a positive definite matrix, e is the tracking error vector, x and xd are defined as the 

actual spacecraft relative state vector and the reference state vector respectively. The first order 
time derivative of the Lyapunov function can be manipulated, using some algebra, to obtain (see 

also reference 6): 

   ˆ2 ( )T T T

DrelV a u - 
d d d d

e (A P + PA )e e P f x - A x + B Bu  (10) 

If the matrix Ad is Hurwitz, a symmetric positive definite matrix Q is chosen such that the 

Lyapunov equation (11) is satisfied. For this reason the reference model must be stable, which is 

the case for the stabilized Schweighart and Sedwick model shown in equation (5). For a given set 

of matrices Q, and Ad the following Lyapunov equation must be solved to find P 

 
T

d d
-Q A P + PA  (11) 

Choosing a positive definite Q matrix, results in the following expression for the time deriva-

tive of the Lyapunov function: 

 2V    T
e Qe  (12) 

where ∆ is given by: 

 û     (13) 
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and β, δ and û (the command sent to the panel actuators) are given by the following expres-

sions: 

 

1

ˆ,   0

1

Drela u




  


T
e PB  (14) 
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d de P A x f x Bu  (15) 

The three states for û represent the commands: all panels open on chaser and all closed on tar-

get (-1), no differential between spacecraft, i.e. same panels deployed or no panels deployed on 
both spacecraft (0), and the opposite of the first configuration, i.e. all panels open on target and 

all closed on chaser (1).  

Equations (10), (12) and (15) represent the case in which the nonlinear system is tracking the 
reference model (state vector  x tracks state vector xd); however, if the nonlinear system, directly 

tracks a desired guidance, equations (10), (12) and (15) simplify to: 

     ˆ2 ( ) 2 ,  T

t Drel tV a u =     T
e P f x x B e P x f x  (16) 

Furthermore, if the desired guidance is assumed to be a constant zero state vector, (the control-

ler acts as a regulator), which is the desired final state for a rendezvous maneuver (zero relative 

positions and velocity between chaser and target), equations (10), (12) and (15) are reduced to: 

    ˆ2 ( ) 2 ,  T

DrelV a u = -    T
e P f x B e P f x  (17) 

It must be mentioned that even though the matrices Ad and Q are not present in equations (16) 

and (17), they still affect the behavior of V  since they are used to obtain P. This causes the ma-

trix P to still contain information on the linearized dynamics of the system initially contained in 
matrix Ad. The P matrix enforces certain relationships among the system’s states, and also 

weights their contribution within the Lyapunov function, in such a way to obtain a desired con-

trolled relative motion between the two spacecraft. The characteristics of this desired motion (e.g. 
time response) are chosen by selecting the linear dynamics.  

Drag panels activation strategy 

Guaranteeing 0  would imply that the tracking error (e) converges to zero, since the term 

involving Q is already negative. In other words, as long as 0   , the system dynamics of the 

spacecraft will converge to the desired state. However, since the control variable û does not affect 

δ, the system cannot be guaranteed to be Lyapunov stable for the chosen Lyapunov function if δ 

is positive, and has a higher magnitude than β. The magnitude of β is linearly dependent on the 
atmospheric density ρ, which indicates that if ρ is too small the system is unstable since β will not 

have a magnitude large enough to overcome a positive value of δ of greater magnitude. In others 

words, the motion of the spacecraft cannot be controlled if ρ is not large enough, that is there is 

not enough control authority (not enough drag force for controlling the spacecraft motion). 

 The activation strategy for the control (as proposed in reference 7) is designed such that 

the chosen value of û forces the product βû to be negative, thus û can be expressed as: 

 ˆ ( ) ( )u sign sign    T
e PB  (18) 

Due to the low magnitude of the relative accelerations that are attainable at LEO, this activa-

tion strategy is applied every 10 minutes (see the simulations section). This allows for lower fre-

quencies of actuation, and for the drag forces to have enough time to change the orbits of the 



 8 

spacecraft. It is worth emphasizing that all the components in the above activation strategy would 

be available in real time on board the spacecraft.  

Critical value for the magnitude of differential drag acceleration 

As it can be seen in equations (12) and (13), the control signal û is only present in one of the 

three elements constituting V . Consequently, the product βû is the only one that can be used to 

influence the behavior of V  which must be always negative to insure that the system is stable in 

the sense of Lyapunov. This suggests that there must be a minimum value for aDrel that allows for  

V  to be negative for given values of β and δ. This value is found analytically by solving the fol-

lowing inequality: 

 ˆ0 Drela u  T
e PB  (19) 

which results from the inequality 0  . Solving this expression for aDrel yields: 

 
Drela




T
e PB

 (20) 

The absolute value comes from replacing the û for –sign(e
T
P B).  This inequality indicates that 

if the differential drag acceleration between the spacecraft is larger than the right hand side of the 

inequality, the derivative of the Lyapunov function will be negative, and consequently the track-
ing error will go to zero. The right hand side of the inequality then constitutes an analytical criti-

cal value for the magnitude of the differential drag, which can be calculated in real time during 

the maneuver, and it provides a proxy value for the necessary atmospheric density to ensure sta-
bility for the controller. This lower bound or critical value is defined as 

 
Dcrita




T
e PB

 (21) 

For the simplest case in which the controller acts as a regulator (see equation (17)) equation 

(21) becomes: 

 
 

Dcrita 

T

T

e P f x

e PB
 (22) 

As it can be observed from equation (22), the critical aDcrit depends on the tracking error vec-
tor e and the matrices P and B for the cases in which the nonlinear system is directly tracking the 

desired guidance or being regulated. B, and e cannot be changed by design; however, the matrix 

P, (determined in equation (11)) depends only on the matrices  Q, and Ad, which are chosen pro-
vided that they satisfy some requisites, namely, Q being positive definite and Ad being Hurwitz 

and being an approximation of the systems dynamics. 

Matrix derivatives 

Choosing appropriate values for the entries of Q and Ad will unequivocally modify the behav-

ior of aDcrit. To gain a better understanding of the relationship between the entries of matrices Q 

and Ad  and  aDcrit, the partial derivatives of aDcrit in terms of the matrices Q, and Ad are calculated.  
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The development of these partial derivatives requires the definition the following four matrix 

derivative representations defined in reference 14 (equations (23), (26), (27) and(28)): 
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Equation (23) shows the general representation for the partial derivative of an n-by-n matrix Y 

in terms of the n-by-n matrix X.  

A very useful operator when dealing with matrix derivatives is the vec operator which for an 
n-by-n Z matrix is defined in reference 14 as: 

  11 1 1
( )

T

v n n nn
vec Z Z Z Z Z Z  (24) 

Its inverse operator is defined as: 
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The following different representations of the general matrix derivative can be used for find-

ing complicated derivatives (matrix derivative chain rule, matrix derivative product rule, etc.): 
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Where the vectors Yv and Xv are the vectorized (vec) versions of the matrices Y and X. By ob-

serving the representations in equations (26) , (27) and (28), it is readily concluded that these 

three matrix derivatives, containing vectorized forms of the matrices X and Y, contain the same 
entries as the general matrix derivative (equation (23)), but organized in different structures. By 

rearranging the entries in these three matrix derivatives, it is possible to obtain the original matrix 

derivative.  
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Three reversible transformations from the representations in equations (26), (27) and (28) to 

the general matrix derivative representation in equation (23) are defined as follows: 

 Transformation 1: 

 
1
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v
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o Input: n
2
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2
 matrix Yv,Xv 

o Output: n
2
-by-n

2
 matrix Y,X 

o Transpose each of the rows of the input matrix Yv,Xv to obtain n vectors 

o Unvectorize each one of these n vectors to obtain n n-by-n sub-matrices 
o These sub-matrices are the blocks that form the output matrix Y,X 

 Inverse Transformation 1: 
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o Input: n
2
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2
 matrix Y,X  

o Output: n
2
-by-n

2
 matrix Yv,Xv 

o Divide the input matrix Y,X into n blocks, each composed of one n-by-n sub-
matrix 

o Vectorize all of these sub-matrices to form n vectors 

o These vectors are rows of the n
2
-by-n

2
 matrix Yv,Xv  

 

 Transformation 2: 
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o Divide the input matrix Yv,X into n blocks each composed of an n
2
-by-1 vec-

tors 
o Unvectorize each one of these n vectors to obtain n n-by-n sub-matrices 

o These sub-matrices are the blocks that form the output matrix Y,X 

 Inverse Transformation 2: 
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o Divide the input matrix Y,X into n blocks, each composed of an n-by-n sub-

matrix 

o Vectorize all of these sub-matrices to form n vectors n
2
-by-1 

o These n
2
-by-1  vectors are the blocks that form the n

3
-by-n output matrix Yv,X 

 

 Transformation 3: 

 
 

3

T

v


 
 

 
  
 

YY

X X
 (33) 



 11 

o Input: n
3
-by-n matrix [Yv]

T
,X  

o Output: n
2
-by-n

2
 matrix Y,X 

o Divide the input matrix [Yv]
T
,X into n blocks each composed of a 1-by-n

2
 

vectors 

o Transpose these vectors to obtain n
2
-by-1 vectors 

o Unvectorize each one of these n vectors to obtain n n-by-n sub-matrices 
o These sub-matrices are the blocks that form the output matrix Y,X 

 Inverse Transformation 3: 

 
  1

3

T

v 
 

 
 

 
 
 

Y Y

X X
 (34) 

o Input: n
2
-by-n

2
 matrix Y,X 

o Output: n-by-n
3
 matrix [Yv]

T
,X  

o Divide the input matrix Y,X into n blocks, each composed of a n-by-n sub-

matrices 

o Vectorize all of these sub-matrices to form n vectors n
2
-by-1 

o Transpose these vectors to obtain 1-by-n
2
 vectors 

o These 1-by-n
2
 vectors are the blocks that form the n-by-n

3
 output matrix 

[Yv]
T
,X 

 

The first step in the development of the desired partial derivatives  (aDcrit, Q and aDcrit, Ad) is to 

find the partial derivative of aDcrit in terms of the matrix P. This is accomplished by using equa-

tion (22) in which aDcrit is explicitly expressed in terms of P.  

Equation (22) can be rewritten as: 

 
 

Dcrit

num
a

den
 

T

T

e P f x

e PB
 (35) 

The partial derivatives of the numerator and the denominator in terms of the matrix P are 

found to be: 

   ,    
T Tnum den 

    

T

T

e PB
e f x eB

P P e PB
 (36) 

After using the derivative quotient rule and some algebra the resulting expression is found: 

 
      

3

Dcrita
 



T T TT

T T

e PB e P f x eBe f x

P e PB e PB
 (37) 

The second step is to obtain the partial derivatives of the matrix P in terms of the matrices Q, 
and Ad. To obtain these derivatives equation (11) is rewritten as: 

 

4 4 4 4

,     

,    ( ),    ( )

v v v

v v vvec vec

 

     I Ix xd d

                                  A P Q

A A A P P Q Q
 (38) 
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Where   represent the Kronecker product defined in reference 14 for the same n-by-n Y and 

X matrices as: 

 

   

   

11 1

1

n

n nn

X X

X X

 

 
 
 
  

Y Y

X Y

Y Y

 (39) 

The transformation in equation (38) (found in reference 14) allows for the formulation of an 

explicit equation of the elements of the matrix P in terms of the elements of the matrices Q, and 

Ad, which is found to be: 

 
1

v v v

 P A Q  (40) 

Using equation (40) it is possible to find the partial derivatives of the vector Pv in terms of the 
vector Qv:  

  1
T

v
v

v


 



P
A

Q
 (41) 

Subsequently, transformation 1 is used to obtain the partial derivative of the matrix P in terms 
of the matrix Q, which yields: 

   1

1

T

v


  



P
A

Q
 (42) 

Again, using equation (40) it is possible to find the partial derivatives of the vector Pv in terms 

of the matrix Av: 

     16 16 16 16 16 16 16 16

1 1v
v v v

v

 
   


I I I

x x x x

P
A U A Q

A
 (43) 

Where Unxn is an n-by-n permutation matrix defined as: 

 

n n

nxn rs rs

r s

 E EU  (44) 

Where the matrix Ers is an elementary matrix with a one at position r,s and zeros elsewhere. 

Afterwards, the derivative of Av in terms of Ad is found to be: 

    4 4 4 4 4 4 4 4 4 414 41
v
     


I I I I

x x x x x x

d

A
U U U U

A
 (45) 

Where U1 is a permutation matrix defined as: 

 

4 4

1

T

rs rs

r s

 E EU  (46) 

The matrix chain rule, as defined by reference 14, is used to obtain the partial derivative of Pv 

in terms of the matrix Ad: 

 
 

16 16 4 4

( )

( )

T

vv v

v

vec

vec

    
     

      

I I
d d

x x

AP P

A A A
 (47) 
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Using inverse transformation 1, inverse transformation 3, and equations (45) and (43) the re-

sults of equation (47)  become: 

 
1 1

3 116 16 4 4
v v v

v

 
        

         
        

I I
d d

x x

P A P

A A A
 (48) 

Transformation 2 is used to obtain the partial derivative of the matrix P in terms of the matrix 

Ad, which yields: 

 
2

v
  

   
  d d

P P

A A
 (49) 

Next, the matrix chain rule is used again to obtain the partial derivative of the scalar aDcrit in 
terms of the matrix Q: 

 
 

1 1 4 4

( )

( )

T

Dcrit Dcrit
veca a

vec

    
     

     

I I
x x

P

Q Q P
 (50) 

Using inverse transformation 1, inverse transformation 3 and equations (42) and (37) the re-

sults of equation (50) become: 

 
1 1

3 14 4
Dcrit Dcrita a 

      
           

I
x

P

Q Q P
 (51) 

Finally, the matrix chain rule is used again to obtain the partial derivative of the scalar aDcrit in 

terms of the matrix Ad 

 
 

1 1 4 4

( )

( )

T

Dcrit Dcrit
veca a

vec

    
     

     

I I
x x

d d

P

A A P
 (52) 

Using inverse transformation 1, inverse transformation 3 and equations (49) and (37) the re-

sults of equation (52) become: 

 4

1 1

3 14
Dcrit Dcrita a       

     
      

I
x

d d

P

A A P
 (53) 

Equations (51) and (53) provide analytical expressions that can be calculated in real time, de-

scribing the behavior of aDcrit in terms of each and every one of the entries of the matrices Q and 
Ad, which can be changed provided that they satisfy their restrictions.  

V. ADAPTIVE LYAPUNOV CONTROL STRATEGY 

By calculating the partial derivatives defined in equations  (51) and (53), the entries of the ma-

trices Q and Ad, to which aDcrit is the most sensitive are identified (those entries which have the 
largest partial derivative). Once these entries are identified, the one with the highest partial deriv-

ative is selected, and slightly modified by a small value (δA =10
-6
 for Ad, and δQ =10

-6
 for Q). The 

sign of this modification is chosen such that it reduces the derivative of aDcrit, thus inducing a 
downward trend in the behavior of the critical value for the magnitude of the differential accelera-

tion. By reducing this critical value the overall robustness of the controller is improved. The 

adaptive variations in the Q and Ad are expressed as: 
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 ( ) ,     ( )
ij ijDcrit Dcrit

A A Q Q

ij ij

dA dQa a
sign sign

dt A dt Q
   

    
      

       

 (54) 

Where κA and κQ are defined as: 

 
1 if  for , , 1 if  for , ,

,   

0 else 0 else

Dcrit Dcrit Dcrit Dcrit

ij kl ij klA Q

a a a a
i j k l i j k l

A A Q Q 

    
    

     
 
 

 (55) 

These were designed such that the modified Q and Ad matrices still satisfy their requirements 
of positive definiteness for Q and for Ad being Hurwitz. The adaptations of the Q and Ad matrices 

also affect the panels’ activation strategy since they cause variations in P which is used for the 

panel activation strategy (see equation (18)). In other words, the adaptations of the matrices Q 

and Ad result in an adaptation of the quadratic Lyapunov function shown in equation (9). The ad-
aptations are applied at the same time that the drag panels’ activation strategy is applied, that is 

every 10 minutes. The control strategy is summarized in Figure 2. 

 

Figure 2. Control Strategy diagram. 

VI. NUMERICAL SIMULATIONS 

The proposed technique was validated using computer numerical simulations. The initial or-
bital elements of the target and other parameters for the numerical simulations are shown in Table 

1. The target and chaser spacecraft are assumed to be identical, therefore drag coefficient and 

frontal areas for all panel configurations are the same. The initial relative position and velocity of 

the chaser in the LVLH frame are shown in Table 2 (the same initial state was used in previous 
work in references 7 and 15). 

Obtain state 
vector from 

STK 

Calculate 
matrix 

derivatives 

Adapt 
matrices Q, 

and Ad 

Run panel 
activation 
strategy 

Propagate in 
STK for 10 
minutes 
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Table 1.  Spacecraft Parameters 

Parameter Value 

Second zonal harmonic J2 1.08E-03(from reference 16) 

Radius of the Earth R (km) 6378.1363 

Gravitational parameter μ (km3/sec2) 398600.4418 

Target’s inclination (deg) 98 

Target’s semi-major axis (km) 6778 

Target’s right ascension of the ascending node (deg) 262 

Target’s argument of perigee (deg) 30 

Target’s true anomaly (deg) 25 

Target’s eccentricity 0 

vs (km/sec) 7.68 

m(kg) 10 

Smin (m
2) 0.5 

S0 (m
2) 1.3 

Smax (m
2) 2.5 

CDmin 1.5 

CD0 2 

CDmax 2.5 

Table 2. Initial conditions in the LVLH frame 

Parameter Value 

 x (km) -1 

 y (km) 2 

x (km/sec) -8.40E-06 

y (km/sec) -1.70E-04 

 

An STK scenario with full gravitational field model, variable atmospheric density (using 
NRLMSISE-00 available in STK) and solar pressure radiation effects is used. STK’s High-

Precision Orbit Propagator (HPOP) is used for simulating the maneuvers. The control strategy is 

implemented in MATLAB, which interacts with the STK scenario using STK Connect com-

mands. The nonlinear dynamics of the system in the inertial frame are propagated in STK. At 
each time step, STK sends the state variables to MATLAB where they are transformed into the 

LVLH frame. The partial derivatives of aDcrit, in terms of the matrices Q, and Ad are computed 

(see equations (51) and (53)), and the adaptation of these matrices is performed (see equation (54)
). This allows for the recalculation of the matrix P and the calculation of the control signal. This 

signal is fed into STK in the form of panel configurations for the spacecraft. To reduce the fre-

quency of actuation and allow the drag forces enough time to change the orbits, the adaptive Lya-

punov controller was activated every 10 minutes. Moreover, the rendezvous maneuver was as-
sumed to be finalized when the inter spacecraft distance was below 10m. 

Noteworthy, both the adaptive Lyapunov approach here developed, as well as the non adaptive 

Lyapunov approach suggested earlier by the authors (7), are able to drive the spacecraft to rela-
tive distances in the order of a few meters, with no propellant required, outperforming by orders 

of magnitude the results presented in reference 15. 
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Simulations of the adaptive Lyapunov controller are compared with simulations of the non 

adaptive Lyapunov controller presented by the authors in reference 7. The results of the simula-
tions are presented in Figure 3, Figure 4, Figure 5 and Figure 7, comparing the maneuver trajecto-

ries, control sequences, critical values for the magnitude of the differential acceleration, and er-

rors between the non-adaptive Lyapunov controller and the adaptive Lyapunov controller. 

 

Figure 3. Numerical simulation result maneuver trajectory in the x-y plane: (Left) Complete ma-

neuver, (Right top, and bottom) Final Stages of the maneuver. 

 

Figure 4. Numerical simulation result control signals: (Top) non adaptive Lyapunov controller, 

(Bottom) Adaptive Lyapunov controller. 
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Figure 5. Numerical simulation result: Critical value for the magnitude of the differential accel-

eration (aDcrit) over the entire maneuver. 

 

Figure 6. Numerical simulation result: Comparison between the critical value for the magnitude 

of the differential acceleration (aDcrit) and the actual value of the differential acceleration for the 

adaptive controller. 

 

Figure 7. Numerical simulation result error over the entire maneuver: (Left top) x error, (Left 

bottom) y error, (Right) Normalized error. 
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The adaptive Lyapunov controller was able to reach the rendezvous state after 29hr, which 

represent a reduction on the maneuver duration of 24% over the non adaptive Lyapunov control-
ler (which took 38hr). Furthermore, the adaptive Lyapunov controller required 56 changes in the 

panels’ configurations, which signifies a reduction on the control effort of 50% over the non 

adaptive Lyapunov controller (which needed 113). The average value for the critical value for the 

magnitude of the differential acceleration (shown in Figure 5) for the adaptive Lyapunov control-
ler was 4.43*10

-5
m/sec

2
, which means a reduction on this value of 39% over the non adaptive 

Lyapunov controller (which had 7.36*10
-5

m/sec
2
). It is worth underlying that a reduction in the 

critical value implies increased margin on control authority during the maneuver. 

The non adaptive Lyapunov controller needs more time and a higher control effort since it ap-

proaches the rendezvous state performing more persistent and higher oscillations (these oscilla-

tion can be seen in  Figure 7 after six hours have elapsed, and Figure 3 Right). The reduction on 
the maneuver time and the control effort is caused by the adaptation of the matrix P which allows 

the adaptive Lyapunov control to tune itself as the error evolves; this results in lower oscillations 

on the errors behavior (see Figure 7) and in the trajectory itself (see Figure 3 Right) in the later 

stages of the maneuver, which is when smoother/finer action is required.  

Figure 6 Right also shows an increase of the error during the first portion of the manuever, 

which also means an increase of the Lyapunov function, before the system can finally drive itself 

towards the zero error desired state. This is due to two main factors. The first reason is that the 
control is allowed to change state only every 10 minutes, ignoring required changes in the panels 

configurations within that time frame. This was imposed to enable realistic simulations, and 

remove the possibility of chattering. In addition, despite the average reduction of the differential 
drag critical value obtained with the adaptive Lyapunov controller, there are still intervals where 

the actual differential drag acceleration is lower than the critical acceleration (see Figure 6). 

Overall, the proposed approach still enables rendezvous maneuvers that are realistic from the 

actuation point of view, in terms of duration, and it holds a potential for straightforward 
implementation on real spacecraft. 

VII. CONCLUSIONS 

In this work a novel adaptive Lyapunov controller for spacecraft autonomous rendezvous ma-
neuvers using atmospheric differential drag is presented.  An analytical expression for the critical 

value for the magnitude of the differential acceleration that ensures stability in the sense of Lya-

punov for the system is found. Based on this, analytical expressions for the partial derivatives of 

the critical value with respect to the independent variable matrices required by the Lyapunov con-
troller are derived. These partial derivatives are used for the development of the adaptation strate-

gy for the Lyapunov function. The quadratic Lyapunov function is modified in real time, during 

flight, minimizing the value of the differential drag critical acceleration, thus maximizing the con-
trol authority margin. The adaptive control method is validated using numerical simulations in 

Satellite Tool Kit. The performance of the adaptive control method is assessed in terms of the 

number of switches in the differential acceleration (control effort), and maneuver duration in 
comparison with a non adaptive Lyapunov controller.  

 The resulting behavior of the adaptive Lyapunov controller is an improvement over the 

non adaptive Lyapunov controller  since it presents a significantly lower control effort (50% less 

actuation) and it takes less time to reach the desired rendezvous state (24% less time). The 
implementation of the reference model on the adaptive Lyapunov controller (in this work the 

system tracked a constant final state) is expected to allow the method to track a desired path and 
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not only a constant state, opening to the possibility of potentially performing any type of 

spacecraft relative maneuver using atmospheric differential drag.   
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