1t IAA Conference on Space Situational Awareness (ICSSA)
Orlando, FL, USA

IAA-ICSSA-17-101-06
REMOVAL OF ORBITAL DEBRIS FROM GEOSTATIONARY ORBITS USING
SOLAR RADIATION PRESSURE AND LYAPUNOV CONTROL

Patrick W. Kelly', Riccardo Bevilacqua', Leonel Mazal, and Richard S. Erwin®®
M University of Florida, 939 Sweetwater Drive, MAE-A 211, Gainesville FL, 32611,
(352)846-1477, pkelly89@ufl.edu, bevilr@ufl.edu, leo.mazal@ufl.edu
@ Air Force Research Laboratory, 3550 Aberdeen Ave. SE, Kirtland AFB NM,
87117-5776,(505)846-9816, richard.erwin@us.af.mil

Keywords: Solar Radiation Pressure, Orbital Debris, Solar Sail, Lyapunov Control,
Geostationary Orbit

The accumulation of space debris continues to grow as commercial space applica-
tions become more affordable and existing satellites approach the end of their opera-
tional lifetimes. To protect global interests in current and future satellite missions, the
Inter-Agency Debris Coordination Committee (IADC) has established guidelines for
proper disposal of retired satellites. Based on these guidelines, we propose a satel-
lite concept called TugSat to assist in the removal of satellites from geosynchronous
equatorial orbits (GEO) using the effects of solar radiation pressure (SRP). Solar ra-
diation pressure is the dominant non-gravitational perturbation in the GEO belt and
can be directed deliberately using large, high-performance solar sails. Using sail ori-
entations derived from Lyapunov functions, a solar-sailing CubeSat can be tasked to
deorbit satellites on the order of 1000 kg using the current state of the art in solar
sailing technology. Due to this reliance on SRP, the TugSat CubeSat can be reused
repeatedly and indefinitely to remove unwanted objects from valuable slots in the GEO
belt. The entire deorbit maneuver will demonstrate toggled control of a satellite’s semi-
major axis, eccentricity, inclination, and GEO belt longitude. The TugSat concept will
ultimately provide a low-cost, long-term, and reusable solution for GEO belt clean up.

Nomenclature

= semi-major axis, km
surface area, km?
eccentricity
inclination, rad
cost function
longitude, rad
mass, kg

= sail surface normal unit vector

= true anomaly, rad

= gravitational parameter, ‘%3

= <3>3&g“'m)>m
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r = position magnitude, km

r position vector, km

w angular velocity =4

) phase angle, rad

o state error

0 angle between sail surface normal and sun position vectors, rad
u argument of latitude, rad

v velocity magnitude,

v velocity vector, X

Vv candidate Lyapunov function

X state column vector (matrix notation)
e orbital element parameter vector

® Earth

« moon

© = sun

1. Introduction

Orbital debris accumulation is a topic of growing interest as the number of artifi-
cial satellites increases each year. Spent rocket bodies and dead satellites litter Earth
orbits, threatening interference with operational satellites or increased fragmentation
due to debris-to-debris collision. At geosynchronous equatorial orbits (GEO), debris
accumulation is not as severe as that present at low-Earth orbits (LEO); however, GEO
is operationally more restrictive due to its narrow dimensions. The Inter-Agency Space
Debris Coordination Committee (IADC) has defined the dimensions of the GEO region
as presented in Table 1 [1, 2]. Satellites in this region do not experience atmospheric

Table 1: Protected GEO Belt Region

Property Value
GEO Altitude 35,786 km
Lower Altitude GEO-200km
Upper Altitude GEO+200km
Inclination +15 degrees

drag, so abandonment of assets in the GEO belt poses an indefinite problem for geo-
stationary operations. It is common practice to deorbit end-of-life satellites to graveyard
orbits above the GEO belt; however, orbital debris runs the risk of reentering the GEO
belt due to the effects of solar radiation pressure (SRP). For these reasons, the IADC
also establishes unique deorbit guidelines for satellites in the GEO belt, which are pre-
sented in Table 2 [1, 2]. Unfortunately, only about a third of end-of-life GEO satellites
have been able to meet these recommendations as the vast majority of satellites expe-
rience subsystem failures over their lifetimes [3, 4]. The Galaxy 15 incident is a highly
publicized example of the orbital debris problem at GEO and the potential impact of
space congestion on satellite operations [5]. As Galaxy 15 drifted through the GEO
belt, multiple satellites were at risk of collision, some having to perform avoidance ma-
neuvers. Though control was eventually regained for Galaxy 15, for many satellites,

this is not possible.
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Table 2: GEO Region Disposal Guidelines

Perigee Altitude < GEO + 235 km +(1000 - Cg - £)

235 km: sum of the upper altitude of the GEO protected
region (200 km) and the maximum descent of a
re-orbited spaceraft due to luni-solar and
geopotential perturbations (35 km).
solar radiation pressure coefficient, 1 ~ 1.5
aspect area to dry mass (‘:—;)
0.003

®)
AR ]

Eccentricity

To address unresponsive satellites, active debris removal methods have been de-
veloped to retrieve and deorbit unwanted bodies from orbit. For example, “Space
Sweeper” is designed to eject LEO debris by harnessing the momentum exchange of
plastic collisions to effectively sling orbital debris into lower orbit for eventual deorbit
using atmospheric drag [6]. “GLiDeR” addresses GEO debris through the attraction
of charged particles between a reorbiter spacecraft and the unwanted debris; by will-
fully maintaining an attractive force between the two bodies, GLiDeR can reorbit GEO
debris to an acceptable graveyard orbit [7]. The focus of this paper also addresses
maintenance of the GEO belt, harnessing SRP as the primary means of propulsion
to perform repeated deorbit of orbital debris. The proposed satellite concept, called
“TugSat”, will use a large, highly reflective solar sail to maneuver a deorbiter satellite,
with captured payload, to a disposal orbit beyond the GEO belt. TugSat can then be
reorbited to GEO for rendezvous in a desired GEO slot for capture of another drifting
payload.

Using environmental forces to enhance satellite operation has been the topic of
many works, leading to interesting methods of satellite control ranging from semi-major
axis control using the Earth’s magnetic field [8] to satellite formation control by means
of atmospheric drag [9]. Control of spacecraft in this manner can reduce propellant
dependencies, minimize control efforts, or extend satellite lifespans. This paper is
concerned with the viability of orbital control of a satellite using the momentum ex-
change of sunlight. With the absence of atmospheric drag, the next most significant
neoconservative perturbation is SRP. The results presented here will prove orbital de-
bris removal can be performed using solar sails; providing free and near infinite delta-V
and allowing for repeated characterization of a satellite’s orbit by means of semi-major
axis, eccentricity, inclination, and longitude control.

Solar radiation pressure has already been proven a capable means of propulsion,
especially in the formation of exotic, non-Keplerian orbits or interplanetary transfer
orbits [10, 11]. Additional uses for SRP have been proposed for assistance in satellite
disposal for low-Earth orbits [12] or medium Earth orbits (MEO) [13], as well as escape
from geosynchronous orbits [14]. These maneuvers are achieved by aligning a solar
sail to alter a satellite’s orbital velocity to raise or lower the satellite’s altitude. Specific
strategies for changes in semi-major axis and eccentricity are given in [15], illustrating
appropriate satellite orientations throughout the orbit, based on the relative position
between the spacecraft and the sun. It is clear from these findings that acceleration
and velocity vector geometries play a key role in controlling the effect of applied SRP
forces. This research presents a geometrical method for optimizing the rates of change
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in the orbital elements and illustrates how the proposed method can be used to perform
more advanced maneuvers such as orbital debris removal. To address the challenge
of satellite placement into orbital slots in the GEO belt, the control techniques will also
be used to perform targeting of GEO belt longitudes. Longitude targeting will allow
solar sailing satellites to maneuver between desired regions in the GEO belt.

The current state of the art in solar sailing technology is demonstrated with such
examples as JAXA'’s IKAROS spacecraft [16], The Planetary Society’s LightSail-1 [17],
and NASA’s Sunjammer [18]. JAXA’s IKAROS in particular is the first satellite to use
solar radiation pressure as its primary means of propulsion and is capable of attitude
and orbit control using a high performance solar sail. LightSail-1 was a 3U CubeSat
which successfully deployed a highly reflective, 32 m? solar sail in LEO before tumbling
back into Earth’s atmosphere after seven days of orbit. Sunjammer boasts the largest
solar sail ever constructed, weighing 32 kg with a 38 m x 38 m solar sail and surface
area over 1200 m2. With these satellites in mind, other ambitious uses for solar sailing
satellites are presented in the body of this study.

The TugSat concept introduces a propellant-less deorbit method using a nonlin-
ear, Lyapunov-inspired controller. This controller produces sail orientations capable of
tracking desired semi-major axis, eccentricity, inclination, and longitude values. This is
achieved by optimizing time derivatives for the satellite’s orbital elements based on the
satellite’s SRP exposure using the Gaussian variation of parameters (VOP) equations.
Key geometric relationships between the satellite’s acceleration and orbital velocity
vectors will dictate the implementation of these optimized sail orientations. These
orientations are validated using Monte Carlo simulations. Ultimately, through a com-
bination of sail-based maneuvers, the TugSat simulation will demonstrate deorbit of
defunct satellites from the GEO belt, as well as placement of the deorbiter satellite into
desired slots within the GEO belt.

The remainder of the paper is organized as follows: Sec. Il introduces the dynamics
of a satellite operating at geosynchronous altitudes, Sec. Ill addresses the control
techniques employed to manipulate key orbital elements, Sec. IV outlines the TugSat
mission concept, and Sec. V provides a summary of the findings presented in the
previous sections.

2. Satellite Dynamics Model

2.1. Force Model

The dynamics model for the GEO orbit includes three gravitational contributions
and one non-gravitational perturbation. Gravitational influences come from the Earth’s
gravity, which includes the C,, and C,, gravitational harmonic coefficients, and third
body perturbations from the moon and sun. Acceleration from the solar radiation pres-
sure is the only non-gravitational perturbation and acts as the control input for the
maneuvers presented in Sections Il and IV.

The total acceleration acting on the satellite can then be described as

'I"='I"®+'i‘q +'I"®+'I"SRP (1)

As illustrated in Montenbruck and Gill [19, p.55], the Earth’s gravitational acceleration
at GEO is on the order of 102X, with oblateness contributions on the order of 107°£%

sec?

and 107'°X% for C,, and C,, respectively. The effects of the sun and moon exhibit ac-

celerations on the order of 1078 s‘% Geostationary satellites, with typical area to mass
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sec2 "

This magnitude poorly competes with the gravitational accelerations; however, by in-
creasing the area to mass ratio of the satellite, the magnitude of the experienced SRP
acceleration can increase to match or even overcome the effects of the sun and moon.

The Earth-based accelerations expressed in an Earth-centered, Earth-fixed (ECEF),
principal axis coordinate system are

ratios on the order of 0.01 ‘]?—; experience SRP perturbations on the order of 10710 km

y X
Fo =2we| —% |+ws| vy |- VY (2)
0 0
with ., I R
y=_H 1+(C—’) 30,52 L1135 (3)
r r r? 2 r?

where wy is the angular velocity of the Earth, x, y, and z are the satellite’s position coor-
dinates in the principal axis coordinate system, and ¥ is the gravitational potential from
the Earth, with gravitational parameter u, mean radius of the Earth @, gravitational har-
monic coefficients C,, and C,,, and satellite position magnitude r. The principal axis
coordinate system is the standard ECEF coordinate system rotated -14.93 degrees
about its z-axis [20]. The behavior of a satellite under the influence of these Earth
dynamics is examined in Lara and Elipe [21]. From Vallado [22, p.575], third body
perturbations can be modeled as

r-r 15(r ro)
r—{3 zeak__( 2$k)}r®kl (4)
Tok 2 Tek
where y is the gravitational parameter for third body k and rg, is the position vector of
third body k (with magnitude rg) as measured from an Earth-centered, inertial (ECI)

coordinate system. The ECI expression for acceleration due to SRP is modeled in
Montenbruck [19, p.81] as

2

. A
Fsgp = —kPg = cosO[(1 — )Py +2ecosbn] , O¢€ [0, E] (5)

r2 2

©
with the solar radiation pressure magnitude P, satellite distance from the sun r,, as-
tronomical unit AU, shadow coefficient « (from the moon and the Earth), reflectivity
coefficient &, area to mass ratio £, and the angle 6 between the sun direction vector
. (as measured from the satellite) and sail surface normal . Since the sail normal
direction is measured from the surface facing the sun, 6 is restricted to values between
0 and Z. For Earth orbits, the solar radiation pressure, P, is approximately 4.57¢-6 =
and can be scaled based on the instantaneous distance between the satellite and the
sun (Ar—l{z). Under a few assumptions, Ar—lg ~ 1,k = 1, &€ = 1, a characteristic acceleration

can beodefined as A

a. = 2P®_ (6)
m
and Eq. (5) takes the approximate form
.’;SRP X —d, COS2 oh , € [0, g] (7)
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From Equation (7) it is clear that the magnitude of the experienced SRP acceleration
directly depends on the orientation of the sail surface normal. The direction of the SRP
acceleration can be determined as a result of assuming perfect reflectivity (¢ = 1). Due
to the specular reflection of incident photons, the satellite will experience an SRP force
acting in the direction opposite that of the sail surface normal, thrusting in the —n di-
rection. In this way, the SRP force can be directed in any direction negatively aligned
with the sun position vector. Sail alignment at 6 = 0 (surface normal in-line with the
sun position vector) will produce maximum SRP magnitudes, directed away from the
sun. Orientations with 6 = 7 (sail perpendicular to the sun) experience minimal accel-
erations, making it possible to “turn off” SRP, assuming negligible accelerations acting
on the satellite bus structure. Intermediate orientations will result in SRP accelerations
acting in the direction opposite the sail surface normal with decreasing magnitudes as
6 approaches 7. Figure 1 illustrates the relationship between the experienced SRP
force and the sun direction vector.

90
120 60
0.8

150 0:6 30

180 SRP Force Envelope Sun Direction

210 330

240 300
270

Figure 1: 2-D polar representation of the SRP force envelope based on sun di-
rection. Radial magnitudes are fractions of the maximum available SRP force.

In the upcoming sections, simulations are based off a 50 kg satellite equipped with
a perfectly reflective, 800 m? (approximately 28 m x 28 m) solar sail. This area is based
on attainable sail sizes and desirable area to mass ratios given the current state of the
art for solar sailing satellites. With the additional mass of a 1000 kg payload, the area
to mass ratio of the total system is 0.76 %gz resulting in a characteristic acceleration of

approximately 6.95¢-9 £ at GEO.

sec?

2.2. Gaussian Variation of Parameters
The satellite control logic will make use of time derivatives for the satellite’s orbital

elements. Expressions for these rates of change can be determined using the Gaus-
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sian variation of parameters formulas. These VOP equations are detailed in [22, p.636]
and are expressed in the following manner

da 2 i P
Ny —a e + cos(v)
dt na {Sm(v) RF (COS(V) - 1+e cos(V)) S}
di rcos(u)
— =TIy
dr a2l -e?
. (8)

do rsin(u)
—_— W
dt a2 V1 - €2 sin(i)

1-¢? H
dow _ & cos(Fy +sin() |1+ =) Fy - Lot v
dr nae P "
dv 1 —e? 2 +ecos(v)
dr nae {COS(V) B 1+e cos(v) S}

where common notation is used for the orbital descriptors as outlined in the Nomen-
clature section. The perturbing forces, Fz, Fs, and Fy are components of the specific
force vector, F, in the LVLH (local vertical, local horizontal) coordinate system with R
pointing along the position vector of the satellite, S in the orbit plane perpendicular to
R and in the direction of satellite motion, and W = R x §. Equation (8) can be written
in matrix form as the product of two matrices Z and F, defined as

- f_eze sin(v) ;1\/%7 1_: 0
e sin) Lo (costn 4 FERG) 0
0 0 %ﬂ
na? V1—e?
w0 0 0 st (9)
na? V1=? sin(i)
_ \/E cos(v) % sin(v) (1 + ,_r)) _ reosings
| Lfcos)  -dEEdemy 0
and
F=[Fx Fs Fyl' (10)
resulting in
x=Zx)F (11)
where
x=[a e i Q w V' (12)

The rows of the Z matrix can be thought of as row vectors, ¢, (x), corresponding to a
specific orbital element g € {a, e, i, Q, w, v}.

L =|lr Lus Low] (13)
z=[¢0 o oo (14)

These expressions describe how the satellite responds to perturbations acting on an
otherwise Keplerian orbit. Note the coupling among the various orbital elements.
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3. Lyapunov-Inspired Control

As described in the previous section, the exerted SRP force can only oppose the
sun position vector(Fsgp - 7o < 0). This adds a significant performance constraint by re-
moving any solutions requiring a control input with a positive SRP force component
along the sun position vector. To add further complications, the force magnitude is
not uniform across all sail angles, 6 eéo,g]. These constraints result in underactu-
ated, low-thrust satellite maneuvering. Given these complex, nonlinear equations and
stringent constraints, formulation and solution as a direct optimal control problem is
considered infeasible. As a result, the developed method will address control of a
satellite’s orbital elements individually, accepting any coupled effects on the remaining
orbital elements. Controlling the satellite’s orbit in this manner requires careful consid-
eration of the order in which to address each orbital element, and does not result in
precise tracking of a desired state. For the TugSat mission in particular, it is only nec-
essary to deorbit, reorbit, and target specific GEO belt slots using SRP. These tasks
have broad requirements for a, e, i, and longitude values and no restriction for Q, w,
and v values.

Define the state error, o, as the difference between the actual and desired state.

c=x-xq=[0, 0, 07 0q o, o] (15)

Individual errors for the state variables will be denoted o, where ¢ is a specific orbital
element. To attain a desired value for orbital element ¢, a Lyapunov function, V, can
be designed as

o (16)
with derivative

V=o0,0, (17)
The control input within ¢-, should be designed to make V negative definite. This can
be achieved by setting ¢, equal to a scaled negative of o,

o, = —ko, (18)
with scaling constant & > 0, resulting in

V= —ko-é (19)

a negative definite Lyapunov derivative. In the development that follows, the sail ori-
entation angle 6 will be determined such that Eq. (18) is achieved, thereby proving
convergence of the error o, to zero.
From Eq. (8), the orbital element error time derivative can be expressed in the
following form
0q = LrFr+ {ysFs + LuwFw = §F (20)

The specific force F contains contributions from the gravitational harmonic coefficients,
third bodies, and solar radiation pressure. Grouping the gravitational contributions
together in F,,,, the specific force can be re-written as

F= Fgrav + FSRP (21)
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resulting in

(j-q = {q (Fgrav + FSRP)
= gngrav + {qFSRP (22)
=D + {,Fsrp

where D is the disturbance due to the gravitational accelerations and Fsgp is the spe-
cific force due to SRP. The control input can now be determined using Fsgp. Using Eq.
(7) to model the specific force due to SRP, Eq. (22) becomes

o,=D- (ac cos’ 0) I (23)

where 1 is the matrix equivalent to 7.

A new coordinate system will now be introduced, to examine vector relationships in
o, through reference of the sun direction unit vector #, and a VOP vector { made up
of the components of £].

New basis vectors are defined as follows

é) =y (24)
{ - (( : f'o) ;\'@
I = (£ - Fo) Foll
é3 = él X éz (26)

In this coordinate system, an angle « is formed between é, and the projection of h
in the é,-é, plane, an angle g is formed between ¢, and ¢, and an angle § is formed
between the é,-é, plane and /. These relationships are illustrated in Figure 2. The

(25)

ézz

~
€,
3

4

Figure 2: lllustration of vector relationships for optimized sail orientation.
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SRP force expressed in terms of angles «a, 8, and ¢ is now given as follows

fl = cos @ cos & + sin @ cos &, + sin 0é; (27)
Fo -l = cosacosd (28)
¢ - i =] [cosBcosacosd + sinBsinacos ] (29)

where ||£|| is the magnitude of the parameter vector ¢. Rewriting Eq. (23) in terms of
Egs. (27-29) results in

0qy=D-a.l{ll cos’ & [0052 a(cosacosB +sina sin,[i’)]

(30)

=D -pcos’ S [0052 () cos (a —,8)]
where p is the product of the characteristic acceleration a. and the VOP vector mag-
nitude ¢£. To calculate the extrema of Eq. (30), it is required that cos§ = 1 — § = 0;
restricting 7 to the é,-é, plane and resulting in

il = cosaé, + sinaé, (31)
Since 7, -7t > 0, it follows that a € [-7/2 ,7/2]. A cost function J can now be defined as
J = cos? (@) cos (a — B) (32)

which can be used to optimize Eq. (30) and yield instantaneous maximum rates of
change in ¢,. With g determined by the sun position vector é, and the parameter vector
£, a is the only controllable angle in J. As a result, the solution space for potential
control inputs varies periodically as the satellite orbits the Earth. The desired « angle
can be determined over the range [-7/2 , /2], which either minimizes or maximizes J.
Equation (31) will give the desired sail orientation using the optimized « angle. Using
Eqg. (32), instantaneous maximum or minimum rates of change can be attained for the
satellite’s orbital elements.

The task of targeting a desired orbital element value can be achieved by equating
Eqg. (18) and Eq. (30), resulting in

—ko, = D — pcos’(6) cos*(a) cos(a — B) (33)
Isolating the « terms, Eq. (33) produces

D+—Im'q = cos’(6) cos*(a) cos(a — B) (34)

with cos®(6) cos?(a) cos(a — B) bounded between [-1, 1]. Recalling that D, p, and g are
dictated by geometry, values for k, 6, and @ must be determined to achieve Eq. (34).
Here, a problem arises which halts the formulation of a true Lyapunov controller. Re-
gardless of the design of the scaling constant k, no guarantees can be made to bound
the left side of Eq. (34) between [-1, 1] due to the uncertainty (in both sign and rel-
ative magnitude) of the disturbance D. Methods to address this disturbance will be
investigated in a separate study, outside of the scope of this paper.

In this study, the controller will orient the sail to best achieve Eq. (34). First, 7 will
be restricted to the é,-¢, plane by once again choosing § = 0. The scaling constant

10



is a flexible design choice, chosen to weight control of the error against the effects of
D. The updated cost function becomes

3 D + ko,

J= (35)

— cos*(@) cos(a — B)

to be minimized numerically across the interval a € [—g, g] as no analytical solution
exists for Eq.(35). Though stability of this result cannot be confirmed analytically, the
controller will be proven effective through Monte Carlo simulations.

Toggling control between the orbital elements in this manner results in switched
system-like behavior. The state evolution can be interpreted to switch between two
sets of dynamics: a system under the influence of SRP and a system free of SRP. A
nested layer of switching exists within the SRP dynamics, where the sail orientations
work to enhance changes in a specific orbital element. In a general sense, the ori-
entations are used to utilize only the desirable effects of the solar radiation pressure.
When no desirable SRP contributions exist within a given SRP solution space (e.g., all
possible sail orientations result in an increase in semi-major axis when attempting to
decrease the satellite’s semi-major axis), the solar sail is oriented perpendicular to the
incoming sunlight, minimizing the contribution from the SRP force.

4. TugSat

The TugSat simulation will demonstrate the potential to remove orbital debris from
the GEO belt using a solar sailing satellite. Recall, TugSat is simulated as a 50 kg
satellite equipped with an 800 m? solar sail, resulting in an area-to-mass ratio of 16 ‘]‘(‘—;
In simulation, the satellite will be deorbiting a 1000 kg payload, decreasing the area-
to-mass ratio of the total system to 0.76 {%gz Initialized in equatorial orbit within the
GEO belt, TugSat will begin by raising the semi-major axis of its orbit by 350 km. Once
the semi-major axis target is achieved, TugSat will begin reducing the eccentricity of
its new orbit while maintaining an altitude above the IADC guidelines for graveyard
orbits. Next, TugSat will release the 1000 kg payload and begin descent back to the
GEO belt, targeting a desired GEO belt longitude for rendezvous with another payload.
These maneuvers will be executed using sail orientations produced by the Lyapunov
analysis and implemented under the full dynamics model as described in Section II.
The following simulations will expand upon the TugSat maneuvers while demonstrating
switched-control of the semi-major axis, eccentricity, inclination, and longitude.

4.1. Semi-Major Axis

The first goal for deorbit using TugSat is to increase the semi-major axis of the
payload. An increase in the semi-major axis will result in an increase in the satellite’s
apogee and a net increase in the satellite’s average orbital altitude. For tracking of a
desired semi-major axis, a4, the Lyapunov function is written as

1

V= —0'3
2 (36)
=§m—%f
with
V= 0,0,

=(c1£1—ad)a



Position Magnitude vs Time Semi-Major Axis vs Time
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Figure 3: Sail orientations to increase the semi-major axis. Position and semi-
major axis values are zeroed at the GEO belt.

The expression for @ is known from Eq. (8) and the semi-major axis error can be
found using the methods described in Section Ill. Implementing the semi-major axis
orientations results in the behaviors illustrated in Figure(3).

To verify the reliability of these orientations, 1000 simulations were performed to
target a desired semi-major axis. These simulations were configured using uniformly
randomized initial conditions as detailed in Table 3. These initial conditions place the

Table 3: Simulation Properties for Semi-Major Axis Control Tests

Orbital Elements Range
ap semi-major axis 42,164 km
ey eccentricity € [0,0.005]
ip inclination € [-0.0175,0.0175] rad
Q, right ascension of the ascending node ¢ [0, 2x] rad
wo argument of perigee € [0, 2x] rad
vo true anomaly € [0,2x] rad
ay ap + 500 km

Note: Simulation durations of 1 year, initialized between the years 2000 and 2020

satellite within 200 km of the GEO altitude and 1 degree latitude of the GEO slot. All
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Randomly Initialized Semi-Major Axis Maneuvers

Semi-Major Axis Error (kim)

0 50 100 150 200 250 300 350
Time (days)

Figure 4: Performance results of 1000 simulations to target desired semi-major
axis.

simulations result in successful error convergence as illustrated in Figure (4).

4.2. Eccentricity

Once the desired semi-major axis is attained, the eccentricity must be reduced so
that both perigee and apogee values remain above the graveyard orbit threshold. Two
methods are now presented.

4.2.1. Greedy Approach
The Lyapunov function corresponding to eccentricity control is

1,
V= EO'e
1 (38)
=5 (e—el)’
with
V= 0.0,
=(e—eyé (39)

where ¢, is the desired eccentricity. The expression for ¢ is known from Eqg. (8) and
the sail orientations to minimize the eccentricity error can be found using the methods
described in Section lll. Implementing these orientations can reduce the eccentricity
as illustrated in Fig. (5).

To validate these orientations, 1000 simulations were executed with initial condi-
tions described in Table 4 below. As displayed in Fig. (6), eccentricity values can be
reduced to steady-state values of around e = 1.75 x 1073, corresponding to a difference
of 160 km between apogee and perigee using these orientations.
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Position Magnitude vs Time Semi-Major Axis vs Time
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Figure 5: Sail orientations to minimize eccentricity after raising semi-major axis.
Position and semi-major axis values are zeroed at the GEO belt.

Randomly Intialized Eccentricity Maneuvers
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Figure 6: Performance results of 1000 simulations to reduce eccentricity.
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Table 4: Simulation Properties for Eccentricity Reduction Tests

Parameter Range

ag 42,164 + 500 km

e € [0,0.015]

io € [-0.0175,0.0175] rad
Qg € [0, 2r] rad

wo € [0, 2n] rad

Yo € [0, 2n] rad

€4 0

Note: Simulation durations of 2 years, initialized between the years 2000 and 2020

4.2.2. Velocity Monitoring

For smaller £, eccentricity reduction using SRP can be improved through a part-
nering with the existing gravitational accelerations. Recall that the satellite dynamics
are dominated by these gravitational effects. These accelerations persist and cannot
be controlled; however, their effects on the satellite orbit can be enhanced using SRP.
In simulations it was noted that if the eccentricity control was modified as follows, a
lower transient response resulted.

To begin, note the characteristic velocity of a circular orbit (neglecting perturba-
tions) in terms of semi-major axis and gravitational parameter:

Veircular = li (40)
a

By polling the orbital velocity, it can be determined whether to accelerate or decelerate
the satellite by comparing the velocity to the value given by Eq. (40). Solar radiation
pressure can be used to amplify the desirable effects from the gravitational acceler-
ations, accelerating or decelerating the satellite as necessary. A velocity-monitoring
algorithm is now presented, to determine when to implement the eccentricity orienta-
tions for improved reduction of eccentricity:

if
V' Qravity > 0 and vV-F,<0 and V < Veircular
or
. (41)
V- Qypayity < 0 and V-, >0 and V > Veircular
then

il = cos aé; + sin aé,

where « is determined using the techniques from Section Il and the total gravitational
acceleration vector is defined as

Qgravity = re + r@ + rO (42)

This algorithm states that the total gravitational acceleration vector must be in posi-
tive alignment with the orbital velocity vector to increase the velocity with SRP, or in

negative alignment with the orbital velocity vector to decrease the velocity with SRP.
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Figure 7: Sail orientations to minimize eccentricity, using velocity monitoring
technique, after raising semi-major axis. Position and semi-major axis values
are zeroed at the GEO belt.

If neither of the conditions of Eq. (41) are met, the sail normal must be oriented per-
pendicular to the sun position vector, minimizing the undesirable effects of SRP. The
results of this velocity monitoring technique are illustrated in Figure (7). The Monte
Carlo analysis for the velocity monitoring technique is displayed in Figure (8) using the
same initial conditions from Table 4. Using this method, annual maximum changes
in eccentricity of approximately 0.012 are possible. These sharp drops in eccentric-
ity exist in periods of the orbit where beneficial vector alignments exist as outlined in
Eq. (41). The plateaus indicate periods of poor alignment between the eccentricity
and gravitational acceleration vectors. Steady state error convergence is achieved at
eccentricity values of approximately 0.001.

4.3. Inclination

Throughout the orbit, TugSat is exposed to out-of-plane accelerations which create
an increase in inclination, leading to oscillations of thousands of kilometers about the
equator. While these inclinations are inconsequential during the removal of orbital
debris, they can pose problems for rendezvous with a desired orbital slot. To address
these drifts, a Lyapunov function can be written as

2 (43)
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Figure 8: Performance results of 1000 simulations to reduce eccentricity with
velocity monitoring.

with

V = O','d','

o di (44)
= (i —ig) P
to determine a control input to achieve the desired inclination, i;. As before, the ex-
pression for g—; is known from Eq. (8) and sail orientations to minimize the inclination

error can be found using the methods described in Section .
To verify the utility of these orientations, 1000 simulations were executed with initial
conditions given in Table 5. For these simulations, the satellite is without payload,

Table 5: Simulation Properties for Inclination Control Tests

Parameter Range

ao 42,164 km

€o 0

o 0 rad

Q) € [0,2nx] rad

wo € [0, 2n] rad

Yo € [0, 2n] rad

r, 0 km (inclination of 0 rad)

Note: Simulation durations of 2 years, initialized between the years 2000 and 2020

characterized by an 2 ratio of 16 ’]‘(ng The satellite is initialized to drift throughout the
GEO belt for 180 days, accumulating inclination changes due to perturbations from
Earth’s oblateness and third body accelerations. Results of these simulations can be

17
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Figure 9: Performance results of 1000 simulations to reduce eccentricity with
velocity monitoring.

found in Figure (9), indicating effective reduction of planar-oscillations and return of
the satellite to the equatorial plane.

It is important to note that the inclination is only affected by out-of-plane accelera-
tions (those acting along the W direction). Solutions producing the desired W acceler-
ation may, however, include components in the R and $ directions, potentially affecting
the semi-major axis and eccentricity behaviors in an undesirable manner. A geometric
work-around is to orient the satellite to only produce accelerations in the W direction.
This approach may not achieve the desired control input from Eq. (44); however, the
resulting orientation will still produce the desired effect as confirmed in simulation.
Figure (10) illustrates the return to the equatorial plane using these inclination tracking
orientations. Geometries during the spring and fall equinoxes account for the smaller
oscillation events on the order of 30 km. Orbits occurring near the equinoxes exhibit
oscillations about the equatorial plane due to the geometries of the orbit inclination
and the sun direction vector. Favorable geometries simply do not exist for long enough
durations during these periods to allow for continuous dampening using only W accel-
erations.

4.4. Longitude Targeting

Once TugSat has released its payload with an acceptable semi-major axis and
eccentricity, return to the GEO belt commences. The return orbit requires controlled
descent for placement into a desired slot within the GEO belt for rendezvous with
another payload. A novel method for longitude targeting using SRP is now presented,
utilizing semi-major axis changes and their resulting effects on the satellite’s angular
velocity.

To begin, the orbital longitude is now defined as

A= wt (45)

where A is the longitude of interest, w is angular velocity of the GEO slot, and 7 is the

time since a reference epoch. For circular orbits, the angular velocity is equivalent to
18
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Figure 10: Sail orientations to minimize inclination deorbit and release of pay-
load. Position and semi-major axis values are zeroed at the GEO belt.
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the mean motion, n, as follows

wzn:\/g (46)

The phase angle, ¢, between the satellite’s longitude and the desired GEO slot longi-
tude will be defined as

¢ = /lsatellite - /lslot (47)
From Eq. (46), it is clear that the angular velocity of a satellite in circular orbit has
an inverse relationship with the semi-major axis. With this information, a satellite can
speed up to a leading GEO slot by decreasing its semi-major axis or slow down to a
trailing GEO slot by increasing its semi-major axis.
To derive Lyapunov-based orientations for longitude targeting, the time derivative
of the longitude error ¢ must be expressed as

. d
= a‘ (Asatetiite = Astor) (48)

The angular velocity of the GEO slot is constant, so the time derivative of Ay, is simply
the mean motion of the slot, ny,. Due to the small eccentricity of the satellite orbit, the
longitude derivative of the satellite will be defined as

Asatellite = Msatellite (49)
resulting in

@ = Ngaeellite — Mslot (50)
For longitude control, an a term is desired, which can be found by taking one more

derivative:
.. 3
¢ = n.mlellite = _E %Cl (51)

From these dynamics equations, a controller can be designed to reduce the longitude
error using the time derivative of the satellite’s mean motion.
The Lyapunov candidate function will be defined as

1o 1,
Vi=3¢"+5n (52)

with Lyapunov derivative

V =¢¢+mi (53)
The n term is a back-stepping error defined as the difference between the satellite’s
mean motion and the satellite’s desired mean motion, ngy.

11 = Ngatellite — Md (54)

1 = Nsaellite — Md (55)

This error will be used in the Lyapunov analysis to drive ¢ to zero using an unmatched
control input. To introduce the back-stepping error into the dynamics, Eq. (50) is
rewritten as

¢ = Nsatellite — Nslot T 1d — Nd

= 1] — Nglot 2+Ond

(56)



Next, Eqg. (51) will be used with Eq. (55), resulting in

3
ﬁ:—z,/ga—nd (57)

Inserting these expressions into Eq. (53), the Lyapunov derivative can now be rewritten

as
. 3
V= ¢ (77 — Hglot + nd) +n (_5 %a - nd) (58)

Equation (58) can be made negative definite through the appropriate design of n4 and
a. A suitable design is presented as follows

ng = Nglot — k¢ (59)

4= —% \/‘E (g — ko — ki) (60)
u

Combining Egs. (58-60) results in

. 3 2 5
V= ¢(k77 — Hglot + Hslot — k¢) + 7][_5 \/g{g \/%(nd - k(b - kﬂ)} - I’ld]

= —k¢* + kgm + 1 (g — k¢ — kn — fg)
= —k¢* + kg — kne — kn*

ultimately yielding the negative definite Lyapunov derivative:
V = —k¢? — kn? (62)

Sail orientation angles can be determined by equating Eq. (30) and Eq. (60).

2 & . — 7.
-3 \/;(nd — k¢ —kn) =&, - I'sgp (63)

= —a.||Z,ll cos’ & [0052 a(cosacosf +sina sin,B)]
Choosing ¢ = 0 and recalling the definition of p, as the product of a. and ||Z,||, Eq. (63)

becomes
2(ng — k¢ — kn) \/E = cos’(a) cos(e — B) (64)
304 H

Note that for longitude targeting, nq is a constant (4 = 0) equal to ny. The constants
on the left-hand side of Eq. (64) can be combined to form p.

_ 2k(@+n) |ad
P¢——3—pa\/; (65)

A cost function J, can be expressed as

Jy = |p¢ — cos’(a) cos(a —,8)| (66)
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Figure 11: Sail orientations to target desired GEO belt longitude using control
of semi-major axis. Semi-major axis values are zeroed at the GEO belt.

As before, the desired orientations can be found by minimizing J, across the inter-

val @ € [-%,%]. With o determined, an algorithm to implement the longitude tracking

orientations is presented as

if
¢>0 and a<ag
or
67
¢ <0 and a>aq (67)
then

il = cos @é| + sin aé,

This algorithm addresses positive phase angles by raising the semi-major axis and
negative phase angles by lowering the semi-major axis using orientations produced by
the Lyapunov analysis. Figure (11) illustrates longitude targeting using this algorithm.

To gauge the performance of the longitude targeting method, 1000 simulations
were run to analyze error convergence and targeting times. Initial semi-major axis
values ranged from GEO =+ 500 km and launch dates fell between the years 2000 and
2020. Longitude values were randomized across all angles € [0,2x]. Figure (12) il-
lustrates the results of these simulations. A performance concern is made apparent
as a significant percentage of the simulations failed to reach steady state within the

2 year time span. Steady state error convergence was obtained within 2 degrees for
22



Longitude Error (degrees)

0 100 200 300 400 500 600 700
Time (days)

Inconclusive Lyapunov-Based Targeting
F— . — T

- ! e ']

Longitude Error (degrees)

0 100 200 300 400 500 600 700
Time (days)

Figure 12: Successful and inconclusive error convergence using longitude tar-
geting method for 1000 simulations. Successful error convergence within 2
years for 80.2% of simulations.
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80.2% of the simulations. To explain the convergence behaviors, targeting scenarios
are divided into two cases as described in Table 6. It is observed that targeting ma-

Table 6: Longitude Targeting Cases

Case A Case B

sgn¢ -sgn(a—aq) >0 sgng -sgn(a—aq) <0

neuvers initialized with longitude and semi-major axis errors corresponding to Case A
are capable of error convergence within 2 years. Initial conditions falling under Case
B can take over 5 years to achieve error convergence. Figure (13) displays targeting
times based on initial phase angles for each case. From these results it is apparent
that successful longitude targeting times depend upon the initial relationship between
the phase angle and semi-major axis error.

4.5. Deorbit Simulation

With the primary maneuvers outlined, the entire TugSat simulation can be pre-
sented. The simulation will begin with TugSat and payload in a perfectly circular, equa-
torial orbit. Specifically, TugSat will deorbié ihe payload by increasing the apogee and



raising the semi-major axis 350 km above the GEO altitude. Once the desired semi-
major axis is achieved, TugSat will reduce the eccentricity of the orbit before releasing
the payload to drift in a disposal orbit as outlined in Table 2. After releasing the pay-
load, Tugsat will return to the GEO belt, targeting its initial longitude from the start of
the simulation. This longitude has been chosen arbitrarily in order to demonstrate suc-
cessful targeting of a desired GEO slot. During rendezvous with the GEO slot, TugSat
will reduce its inclination, returning to an equatorial orbit with increased performance
due to the increase in the 2 ratio without payload. TugSat will successfully complete
its mission upon rendezvous with the targeted GEO slot within the bounds defined in
Table 1. Figure (14) displays the TugSat simulation. TugSat successfully deorbits and
releases its payload in less than a year. In under a year and a half, TugSat success-
fully returns to the GEO slot as defined by the IADC. The simulation continues to allow
TugSat to further reduce eccentricity and inclination errors. In under two years from the
start of the deorbit maneuver, TugSat reduces the out-of-plane motion to within 5 km
while maintaining steady-state semi-major axis, eccentricity, and phase error values.

Figures (15) and (16) plot the Lyapunov functions for the TugSat simulation to
gauge the performance of the Lyapunov-based sail orientations. These figures an-
alyze the performance during the deorbit and reorbit phases of the simulation. Recall,
satellite deorbit does not have inclination or longitude requirements. The Lyapunov
functions decrease non-monotonically due to the switching between control of semi-
major axis, eccentricity, inclination, and longitude and the presence of the gravitational
perturbations. From Figures (15) and (16), the optimized sail orientations prove effec-
tive, even under the influence of the full dynamics model.

For this simulation, deorbit and reorbit maneuvers were completed with a delta-V
of 0.03 2 and 0.17 X respectively, without the use of thrusters or propellant. Though
the satellite was able to return to the desired GEO location, actual rendezvous with
a second payload would require assistance from thrusters for fine maneuvering and
successful docking with the payload. By repeating these maneuvers, multiple GEO
slots can be made available for reuse using a single solar sailing satellite.

5. Conclusion

Solar radiation pressure serves as a powerful resource for satellites in high alti-
tude orbits, particularly GEO, providing an avenue for low-precision, indefinite satellite
maneuvering with virtually infinite delta-V. Control techniques inspired by a Lyapunov
analysis, along with the Gaussian variation of parameters equations, produce opti-
mized sail orientations for control of a satellite’s orbital elements. Though stability
could not be proven analytically, the Monte Carlo results validate the stability of these
orientations. Through intelligent switching between control of the orbital elements,
the TugSat simulation allows for orbital debris removal and subsequent GEO slot ren-
dezvous in under 2 years without the use of propellants. Supplementing these ma-
neuvers with thrusters for time sensitive, fine maneuvering will greatly enhance the
capabilities of a solar sailing mission and open the door for precision rendezvous and
docking using solar sailing satellites.

Inspired by the present capabilities of solar sailing technology, the TugSat sim-
ulation outlines one potential use for a solar sailing satellite. Small-scale satellites,
including CubeSats, are especially suited for such an application. Using a spacecraft
on the scale of a 6U CubeSat, sufficient delta-V can be provided to deorbit space
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Figure 14: TugSat simulation results. Star denotes release of payload. Circle
denotes successful targeting of GEO belt longitude based on IADC guidelines.
Cross denotes ideal value for rendezvous.

debris many times more massive than the solar-sailing satellite itself. With the con-
tinued trend towards miniaturization, SRP may provide a low-cost, primary means of
propulsion for many future satellites.

These findings can be used in future work to investigate optimal, SRP-propelled
trajectories for geostationary applications. These techniques may also prove useful for

orbit on other celestial bodies where SRP is capable of combating accelerations in a
26



Lyapunov Function for Semi-Major Axis Error
T T T

V()
— N W A

0 50 100 150 200
Time (days)

Lyapunov Function for Eccentricity Error
T T T

0 I I I I
0 50 100 150 200

Time (days)
Figure 15: Lyapunov functions during deorbit phase of TugSat simulation.

Lyapunov Function for Semi-Major Axis Error Lyapunov Function for Eccentricity Error

7 3
6 2.5
5 Pt
c? Ss
>3 >
2 tr
1 0.5
0 - - - 0 - -
0 100 200 300 400 0 100 200 300 400
Time (days) Time (days)
6 Lyapunov Function for Inclination Error 3 Lyapunov Function for Longitude Error
5
6 b
4
=3 > 4
2
2 -
1
0 . . . 0 . . .
0 100 200 300 400 0 100 200 300 400
Time (days) Time (days)

Figure 16: Lyapunov functions during reorbit phase of TugSat simulation.

local environment. Solar sailing can help to reduce propellant dependencies, allowing
for the allocation of resources on larger payloads, more sensors, or the elongation of
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a satellite’s operational lifespan. Using SRP, any number of solar sailing missions can
be performed using tactful combinations of these presented maneuvers.
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