1t IAA Conference on Space Situational Awareness (ICSSA)
Orlando, FL, USA

IAA-ICSSA- 06-38
SAFETY ANALYSIS FOR SHALLOW CONTROLLED RE-ENTRIES THROUGH
REDUCED ORDER MODELING AND INPUTS’ STATISTICS METHOD

Simone Flavio Rafano Carna!’), Sanny Omar®, David Guglielmo®, Riccardo
Bevilacqua®
(WGraduate Research Assistant, University of Florida, MAE-A 211, 939 Sweet Water
Drive, Gainesville, FL 32611, 352-846-1477, s. rafanocarna@ufl.edu
(?)Graduate Research Assistant, University of Florida, MAE-A 211, 939 Sweet Water
Drive, Gainesville, FL 32611, 352-846-1477, sanny.omar@ufl.edu
(® Postdoctoral Researcher, University of Florida, MAE-A 211, 939 Sweet Water Drive,
Gainesville, FL 32611, 352-846-1477, dguglielmo@ufl.edu
4 Associate Professor, University of Florida, MAE-A 308, 939 Sweet Water Drive,
Gainesuville, FL 32611, 352-846-1477, bevilr@ufl.edu

Keywords: Ground population risk assessment, Re-entry safety analysis, Safety
boxes, Inputs’ Statistics, Reduced order model, Drag De-orbit Device

In recent years, the interest and demand for small satellites have grown exponen-
tially. While in the past the end-of-life design for this type of spacecraft was often ap-
proximated or totally neglected, it has recently become increasingly important. Indeed,
small spacecraft able to achieve advanced mission objectives are more frequently on
the worldwide space agenda. They may contain components which might withstand
the re-entry conditions and reach the ground. In addition, these spacecraft are usually
limited to shallow re-entries which are more sensitive to atmospheric model uncer-
tainties and thus have larger debris fields. The objective of this work is to provide a
reliable and efficient statistical analysis to estimate the risk to aeronautic and maritime
traffic as well as to ground based populations. A simple geometric safety assessment
is proposed, based on the safety boxes concept introduced in the ESA Space Debris
Mitigation Compliance Verification Guidelines. Correctly estimating the dimensions of
a safety box and locating it over uninhabited regions, such as the oceans, guarantees
a casualty risk below a prescribed value. Furthermore, by estimating the probabil-
ity of debris landing outside the largest possible safety box within which there is a
zero casualty risk, the maximum probability of control failure admissible for the mis-
sion can be estimated. This proposed safety analysis is achieved using two re-entry
models of differing complexity. The high fidelity model includes both the aerodynamic
and aerothermodynamic effects that occur during re-entry and is used to statistically
characterize “high level” uncertain variables such as the ballistic coefficient and the
demise altitude. The reduced order model is based on these high level variables and
captures the spacecraft fragmentation behavior and its re-entry dynamics with signif-
icantly less computation time than the high fidelity model. Coupled with advanced
statistical techniques designed to estimate very low probabilities such as the Inputs’
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Statistics Method, a reliable safety analysis can conducted with a limited overall com-
putational burden. The proposed safety analysis is applied to a fictitious 2U CubeSat
mission that performs a controlled re-entry using the Drag De-orbit Device developed
by the ADAMUS laboratory at the University of Florida.

1. Introduction

Whenever a spacecraft mission is launched where the satellite will re-enter the at-
mosphere at the end of the mission, it is necessary to asses the risk that re-entering
debris will pose to persons or property on the ground [1]. For satellites launched in
the United States, NASA'’s Debris Assessment Software (DAS) [2] is frequently utilized
to estimate an upper bound on the probability of human casualty associated with an
uncontrolled satellite re-entry. Other countries have different software packages and
regulations [3], but in any case, the casualty risk associated with the re-entering debris
of a given mission must not exceed a specified value.

While most small satellites such as CubeSats [4] do not exceed the maximum ca-
sualty risk when re-entering without control, the advancement and miniaturization of
technology has resulted in satellites too small to contain thrusters but containing in-
struments made of materials such as tungsten or titanium that will survive re-entry.
In addition, the increasing number of satellites being launched will likely lead to a de-
crease in the acceptable casualty probability per satellite. For satellite missions that
exceed the acceptable casualty risk associated with an un-controlled re-entry, it is nec-
essary to control the de-orbit point of the satellite to ensure that the debris land in an
unpopulated are such as the South Pacific Ocean Uninhabited Area (SPOUA) [5].

When a controlled re-entry is required, a detailed analysis of the spacecraft re-
entry profile is necessary to assess compliance with the debris mitigation guidelines.
To do this, object oriented analysis software such as NASA’s ORSAT [6, 7] and space-
craft oriented analysis software such as ESA’s SCARAB [8] have traditionally been
used. Spacecraft oriented approaches require a detailed computer model of the satel-
lite where the behavior of each specific spacecraft component during the re-entry is
considered. Object oriented approaches model the satellite as a combination of sim-
ple objects (cubes, spheres, etc.) that when simulated along a re-entry trajectory,
yield a debris profile similar to that of the real satellite. Often, the spacecraft behavior
simulated using the spacecraft oriented approach is utilized to determine the set of
parameters (e.g. demise altitude) and their statistical characterizations that should be
utilized in the more computationally efficient object oriented simulation [9]. By conduct-
ing Monte Carlo simulations with the object oriented tool, a statistical characterization
of the debris field generated by the satellite can be determined. This debris field will
be dependent on the physical properties of the satellite, the expected initial conditions
of the re-entry trajectory, and the uncertainties of the environmental conditions.

Unfortunately, software packages such as ORSAT and SCARAB are tightly con-
trolled by NASA and ESA and can generally be used by spacecraft builders only as
analysis tools rather than design tools. That is, the mission designer would specify to
NASA or ESA the characteristics of their spacecraft and the expected re-entry initial
conditions, and they would be told whether the spacecraft is complaint with the de-

bris guidelines or not without receiving detailed information about the inner workings
2



or numerical results of SCARAB or ORSAT. For large satellite missions, a propulsive
de-orbit burn is generally conducted, so the re-entry trajectory will be steep, the debris
footprint will be much smaller than for a shallow re-entry [10], and the satellite operator
will be confident that the satellite is compliant with debris guidelines prior to running
any analysis. SCARAB or ORSAT can then be used to verify that the spacecraft is
indeed complaint. However, for some missions, an iterative analysis of the re-entry
profile may be an important part of the design process.

Recent studies have shown that controlling the de-orbit location of a spacecraft us-
ing solely aerodynamic drag is feasible [11, 12, 13, 14] and several retractable drag
devices are in development to enable a spacecraft to perform this controlled re-entry
[15, 16]. This paper specifically investigates the case of a 2U CubeSat attached to
the Drag De-orbit Device (D3) being developed by the University of Florida Adavanced
Autonomous Multiple Spacecraft Lab [15], but the approaches discussed can be gen-
eralized to any satellite. Drag-controlled re-entries, in general, will be much shallower
than propulsive re-entries, so the debris footprints will be much larger. For this rea-
son, the debris profile must be carefully analyzed, and the targeted de-orbit point must
be optimized to minimize the casualty risk associated with the debris profile. While
there is published information on modeling the aerothermodynamic properties of re-
entering spacecraft [17, 18], the existing literature, aside from ref.[19], does not contain
a comprehensive study of the relations required to implement a high fidelity spacecraft
re-entry model. In addition, there is no existing publicly available analysis of the debris
profile of a satellite that is based on both the re-entry aerothermodynamics and the ex-
pected initial condition errors resulting from de-orbit point targeting using aerodynamic
drag. There is also not a well defined methodology of selecting the optimal de-orbit
point and determining the performance of a drag controlled satellite required to meet
the debris mitigation guidelines.

Section 2 of this paper begins by briefly describing the high fidelity re-entry model
that is detailed in ref.[19]. This model accurately computes the behavior and thermal
profile during the re-entry of a rectangular-shaped satellite possibly equipped with the
D3 device. In sec.3, the statistical distributions of the variables used in the high fi-
delity model are discussed. This includes the aerodynamic and aerothermodynamic
variables (sec.3.2) as well as the expected distributions on the orbital conditions at
de-orbit point achieved through the targeting algorithm in ref.[11] (sec.3.1). A reduced
order model discussed in sec.4 is derived which contains far fewer input variables than
the high fidelity model. This model can be utilized to rapidly run many simulations that
capture the spacecraft re-entry profile specified by the high fidelity model with a signif-
icantly lower computational burden. Once the reduced order model is developed, the
detailed debris mitigation requirements are discussed in sec.5 along with a method
of ensuring compliance with the requirements. The compliance method involves the
calculation of safety boxes (sec.6) using the novel and computationally efficient Inputs’
Statistics Method such that the probability that a spacecraft fragment lands outside the
safety box is below a prescribed value. Next, sec.7 provides a method of selecting the
optimal de-orbit point such that the safety box lies in the middle of the SPOUA and
is as far away as possible from land, minimizing the risk from falling debris. Finally,
given the nominal casualty risk from uncontrolled re-entry and a desired altitude below
which the spacecraft decay trajectory will be uncontrolled, sec.8 provides a method
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of calculating the maximum allowable probability of failure of the controlled re-entry
process such that the spacecraft remains complaint with a given debris mitigation re-
quirement. Overall, this paper provides a comprehensive method for analyzing the
expected debris profile from a drag-controlled satellite mission and provides tools that
allow satellite builders to design the end-of-life mission plan such that the risk from
re-entering debris is minimized.

2. High fidelity model of the re-entry

Three necessary building blocks have to be implemented to characterize the evolu-
tion of the spacecraft dynamics to a potential ground impact: the aerodynamic model,
the aerothermodynamic model, and the dynamic model of the spacecraft [20]. The
aerodynamic model gives an estimation of the drag force acting on the vehicle, char-
acterized as the exchange of momentum between it and the surrounding flow [17]. The
aerothermodynamic model calculates the heat power that enters into the structure due
to the fact that air flows at high speed around the spacecraft [21]. The aerodynamic
model and the aerothermodynamic model are nested inside the dynamic model and
ultimately provide it with the estimation of two key parameters: the drag coefficient
and the heat power at the outside of the spacecraft, respectively. Finally, the dynamic
model provides the trajectory followed by the spacecraft as position and velocity values
over time through the integration of the equations of motion [22].

The choice of the specific mathematical law to characterize the key parameters
depends on 1) the flowfield regime, determined through the Knudsen number and the
Mach number, 2) the assumption and underlying hypothesis selected for the specific
problem, and 3) by the spacecraft nose geometry. Semi-analytical laws and correla-
tions, developed in the literature [18, 21, 23, 24, 25, 26, 27, 28, 29], can be used in
order to avoid time-consuming CFD-based calculations. Unfortunately, most of these
models are derived in dated and difficult-to-access papers and technical reports, each
using a completely different nomenclature and notation. They are based on specific
assumptions, which are often not mutually compatible. Therefore, we decided to de-
velop a comprehensive work [19], currently under publication, that includes all the
necessary and sufficient laws, data, and correlations to describe the re-entry of small
satellites. The selected laws are consistent in their assumptions and approximations.
They are presented in an organized fashion and with a uniform nomenclature in order
to provide the reader with a tool that is easy to understand and implement. We encour-
age the reader to refer to ref.[19] for all the details. Here, we include only the tables
that specify the correlations for the modeled 2U CubeSat (tab.1) and the attached drag
device (tab.2). This Drag De-Orbit Device (D3) consists of four repeatedly retractable
tape-spring booms that deploy to a length of 3.7 m to expedite orbital decay and facil-
itate orbital maneuvering and controlled re-entry using the algorithms in ref.[12, 11].
The details of the D3 are discussed in ref.[30]. The CubeSat is assumed to re-enter
the atmosphere with the D3 booms deployed to a specified level (0.5 m? in this paper),
and at some point during the re-entry, the D3 booms will melt, bend due to the aero-
dynamic force, or both.

The simulation of the re-entry of the CubeSat equipped with the D3 device is set
up as illustrated in fig.1. The numerical propagation starts from a prescribed de-orbit
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Table 1: Summary of all the correlations used in the aerodynamic and aerother-

modynamic models

Aero-dynamic
model

Aerothermo-
dynamic model

Free molecular regime Kn > 10 Schaaf and Chambre’s analytic model [26]
Transition regime  0.01 < Kn < 10 Wilmoth’s  bridging | Legge’s bridging law
law [31] [24]
Hypersonic Blunt | Modified Newton | Fay and Riddel's
regime nose | Law [27] correl. [28]
Continuum | Ma > 10 :
regime Sharp | Newton Law [17, 32] | Eckert’'s model [29]
Kn <0.01 nose
Hypersonic- Blunt | Sigmoid bridging for- | Fay and Riddel's
supersonic nose | mula correl. [28] if Ma>6
transition or else no heat [8]
2 < Ma<10
Sharp | Sigmoid bridging for- | Eckert’s model [29] if
nose | mula Ma > 6 or else no
heat [8]
Low Mach number Hulburt’s data [33] No heat [8]
Ma <2

Table 2: Summary of all the correlations used in the aerodynamic and aerother-
modynamic models of the D3 system

Aero-dynamic
model

Aerothermo-
dynamic model

Free molecular regime Kn > 10 Schaaf and Chambre’s analytic model [26]
Transition regime  0.01 < Kn < 10 Wilmoth’s bridging law [31]
Hypersonic Deployed | Modified Newton Law | Fay and Riddel’s cor-
and [27] rel. [28] if Ma > 6 or
Continuum | supersonic else no heat [8]
regime regime X : )
Kn < 0.01 Ma> 2 Bent Li and Nagamatsu | Fay and Blddels cor-
theory [34] rel. [28] if Ma > 6 or
else no heat [8]

Low Mach number

Ma <2

Not of interest

No heat [8]

point (DEO point) at the geodetic altitude hpeo. Since the D3 provides 3-axis stabi-
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Figure 1: Different phases of the simulation.

lization with the 1U face of the CubeSat pointing in the velocity direction (named HW
face pointing mode in [19]), the spacecraft is assumed to maintain this attitude dur-
ing the initial part of the re-entry. The D3 booms are deployed with a predetermined
length of 0.5 m. Their bending stiffness has been designed in order to withstand a
maximum torque CM# of about 0.35Nm. Therefore, the booms are expected to bend at
an altitude of about 95 km, as estimated in [19]. When the aerodynamic force is large
enough that the boom bending torque is exceeded, the D3 booms are considered fully
bent and parallel to the flow, contributing to the drag force only through shear stress
with the surrounding flow. When the D3 booms melt, the trajectory of the sole CubeSat
is propagated in a tumbling mode. The numerical simulation proceeds until the space-
craft melting condition is reached. In the re-entry scenario, two possible situations may
occur:

« if the D3 booms bend before melting (fig.1(a)), the geodetic altitude at which
this event occurs is recorded as bending altitude hgeng. Then, the D3 booms are
considered aligned with the flow. Since the center of pressure is still behind the
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center of mass, they continue to provide stabilization in the HW face pointing
mode. The integration proceeds up to the CubeSat structure demise altitude
hDem-

« If the D3 booms melt before bending (fig.1(b)), the geodetic altitude at which this
event occurs is recorded as the D3 demise altitude /pzpem- Then, the integration
proceeds considering the CubeSat only, in tumbling mode, up to its demise at

hDem-

From the spacecraft demise altitude to the ground impact point, the trajectory of a
single debris fragment is propagated with a specified ballistic coefficient. This repre-
sents the re-entry of a CubeSat containing an instrument made of a material such as
tungsten or titanium that does not melt on re-entry.

3. Statistical characterization of the high fidelity model

As suggested by Renaud and Martin in [5], the uncertain variables for atmospheric
re-entry may be grouped into three categories:

 spacecraft re-entry performances and initial conditions;
» environmental factors;
* break-up/explosion model.

In the first category, we include the guidance navigation and control (GNC) errors
that inevitably result during the drag-controlled orbital decay of the spacecraft. Envi-
ronmental uncertainties result from the imperfect nature of the selected atmospheric
model and the inability to precisely predict future solar activity which influences the
atmospheric density. Finally, in the case of a CubeSat re-entry, we do not expect
a catastrophic explosion of the spacecraft due to the small amount of fuel on board.
Rather, a slow and progressive fragmentation process is more likely to occur. This pro-
cess is approximately captured by the aerothemodynamic model and thermal model
of the spacecraft, as described in [19]. Nevertheless, there is always significant uncer-
tainty in any model or correlation used. In the rest of this section, the choices of the
statistical distributions for each uncertain variable are discussed.

3.1. GNC dispersions

The D3 system allows a host spacecraft to control its orbital decay and can be uti-
lized with the algorithm in ref.[12, 11], hereafter called targeting algorithm, to reach a
specific DEO point. In the targeting algorithm, the DEO point is defined as a longitude
and geocentric latitude when the spacecraft crosses a specific geocentric altitude. Two
sources of error result from the targeting algorithm: a tracking error and a guidance
error. The guidance specifies a nominal trajectory that the spacecraft must follow to
de-orbit in a desired location. Often, however, the algorithm is unable to calculate a
guidance that brings the satellite precisely to the desired DEO point (guidance error).
The tracking algorithm continuously modulates the spacecraft ballistic coefficient to en-
sure that the satellite remains on the guidance despite uncertainties in the estimated
drag force. This tracker is not perfect however, and there will always be some discrep-
ancy (tracking error) between the actual and desired satellite positions at a given point
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in time. The error between the desired DEO point and the actual DEO point obtained
at the final point of the tracking trajectory is the overall (combined guidance and track-
ing) GNC error.

The DEO point becomes the initial condition for the propagation of the re-entry
dynamics with the high fidelity model introduced in Section 2. Because of the GNC
errors described above, the DEO point is not perfectly known, but it can be statistically
characterized through a MC analysis. This analysis consists of a significant number of
simulations of the guidance and the tracking of the targeting algorithm. The number
of runs must be high enough to guarantee a specified confidence level and relative
error [35]. To compute it, based on our experience with the targeting algorithm, the a
priori assumption of having normally distributed errors is introduced. The Kolmogrov-
Smirnov test [36] is used to justify a posteriori this choice and fails to reject to null
hypothesis of normality with a confidence of @ = .05. Thus, with this assumption, we
can estimate the confidence levels for the standard deviations o of various uncertain
variables as ([37]):

(N - )62 ol < (N - 162

X (za/Z,N—l) X (21 —a/2,N-1)
where N is the number of samples, 1 — « is the confidence level we want to achieve,
¢ is the sample standard deviation and x7,_, , y_,, is the (1 — a/2)-quantile of the chi
square distribution with N — 1 degrees of freedom. Therefore, setting the half-width of
the confidence level equal to the desired relative error RE and solving eq.1 for N, we
get the minimum required number of runs as:

(1)

2

2 RE

N=1+ - (2)

1
2 2
VX(I—G/Q.N—]) VX(0/2,N—])

Eq.2 is a non linear equation that can be solved with a classical root solver. In this
case, relative error is defined as a percentage of the standard deviation. For consis-
tency throughout the paper, we require a confidence level of 95% and a relative error
of 10% and consequently we need to run at least 200 simulations. This confidence
level means that if the 200-run MC campaign were repeated, there would be a 95%
probability that the true standard deviation is within 10% of the standard deviation as-
sociated with the new MC runs.

Each simulation begins from the same typical ISS orbit (400 km altitude circular
orbit inclined at 51.9 degrees), but with a different initial epoch (and hence different
density profile). The epoch is randomly varied between November 2003 and Novem-
ber 2014 to capture the density variations throughout the 11-year solar cycle. The
same DEO point (Apeo = 99° longitude, {peo = 0° geodetic latitude) is targeted in order
to characterize the errors for a specific de-orbit scenario. Since the estimation of the
on-ground dispersion of the fragments surviving the re-entry is driven by the number
of uncertainties on the problem, these uncertainties must be reduced as much as pos-
sible. A large source of uncertainty exists on the altitude at which the D3 will be unable
to modulate the booms due to heat-induced failures of the internal mechanisms. If the
D3 booms fail in an unknown configuration, there will be significant uncertainty on the
ballistic coefficient during re-entry resulting in large ground dispersions. Furthermore,
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a potential asymmetric failure condition may occur, giving rise to unforeseen aerody-
namic stabilization conditions which cause the fragments to fall very far from expected.
To eliminate this issue, the D3 device operations are shut down at a predetermined al-
titude high enough that heat-induced failure of the D3 is not a concern. The selected
DEO altitude is 120km (geodetic) and the D3 booms are set to deploy with length of
0.5m at this altitude.

Using the final inertial state vector {R, V} of the tracking trajectory, the GNC error
at the DEO point can be expressed in terms of four key parameters which strongly
affect the subsequent propagation of the re-entry dynamics: the along-track error v/,
the cross-track error v, the relative flight path angle y, and the error on the magnitude
of the relative velocity vector v. More specifically, the relative velocity vector v is the
velocity relative to the rotating atmosphere as defined in Vinh et al. [22] and computed
as:

v=V-ws xR (3)

where wy is the rotational angular velocity vector of Earth. The relative flight path angle
v is the angle within the local vertical plane between v and the horizontal plane. It can
be computed introducing two common reference frames (fig.2): the Earth-centered lo-

plane

Equator

Meridian through
reenwich

Figure 2: Reference frames illustrations: Earth Centred Earth Fixed (ECEF)
frame in red, Earth Centred Local (ECL) frame in blue and Vehicle centred In-
trinsic (VCI) frame in green.

cal (ECL) reference frame, indicated by the three unit vectors {i’,j’, k'}, and the Vehicle-
centered intrinsic (VCI) reference frame, indicated by the three unit vectors {i”,j”’,k”}
[19, 22]. They are defined as:

., r ., kxi

e T ik
9

K=ixj (4)



for the ECL frame and:
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for the VCI frame. The vector k is the north pole direction and r is the position vector
direction, all expressed in the same reference frame as the relative velocity vector v.
Thus, the flight path angle is computed as:

’

Vi
v -i'|

The along track and cross track angle are introduced in order to reduce the correlation
that actually exists in the data if they are directly dealt with in terms of latitude and
longitude. They are computed projecting the position on a reference frame tangent to
the ground track. The rotation angle 6 between the tangent to the ground track at the
DEO point and West-East direction of the normal Mercator projection is computed as:

cos ' (i" i) (6)

’y:

6 = tan™! (tan ¢ cos ¢) (7)

where ¢ is the geocentric latitude and y is the relative heading angle. The heading
angle is the angle in the local horizontal plane between the local parallel and the pro-
jection of the relative velocity vector v in the local horizontal plane, positively in the
direction of motion (see fig.2). It can be computed as:

B vk
vk

W cos™! (K" - K”) (8)

So, the along track v,, and cross track v, errors are computed as:

vy, =cos 6 (A1 — Apgo) + sin b (¢ — ¢peo) (9)
v, = —sinf (1 — Apeo) + cos 6 (¢ — Ypeo) (10)

The numerical distributions of these four selected variables for the 200-run MC simu-
lation are shown in fig.3. They are all approximated as normally distributed, with the
exception of the cross track angular error. We find that a truncated Student’s-z location
scale distribution [37, 38] is a better fit for cross-track error, as is also verified by the
Kolmogrov-Smirnov test (fig.4). This is due to the outliers points that come from the
more limited longitude controllability of the targeting algorithm [11]. In the targeting
algorithm, the system will always try to correct latitude error through a modification of
the total argument of latitude experienced during the decay trajectory and use any re-
maining drag controllability to correct longitude error to the extent possible. As a result,
if targeting does not begin with sufficient orbit lifetime remaining, there may be some
residual longitude error that the algorithm cannot correct. If control is performed only
by modifying the argument of latitude of the decay trajectory, the maximum distance
between any point on Earth (below the orbital inclination) and the closest reachable
target location is limited. The maximum angular error will be less than the amount
that Earth rotates in half an orbital period. Considering a 90 minute orbital period, a
given point will move 11.3 deg in half an orbital period due to the rotation of the Earth.
For this reason, the guidance longitude errors will not be greater than 11.3 deg due

to insufficient controllability, and the t-distribution is truncated at a maximum error of
10
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Figure 3: Statistical distribution of GNC errors

11.3 deg. With the normal or r-distributions assumed, the mean value, standard devi-
ation (st. dev.), and degrees of freedom (d.o.f.) (for z-distribution) collected in tab.3.2,
are sufficient to characterize the distributions of the aforementioned variables.

Finally, in addition to these four variables that account for the errors in the position
and velocity at the DEO point, we add the uncertainty on the initial temperature of both
the CubeSat structure and the D3 booms. Both temperatures are also considered
normally distributed having mean values equal to the steady state temperatures and
standard deviations of 10 degrees.

3.2. High fidelity model dispersions

Even if a great effort is made to accurately model all the environmental factors af-
fecting the dynamics, uncertainties always exist. For instance the solar activity which
strongly influences the expansion/contraction of the top layers of the atmosphere can-
not be predicted precisely very far in advance [39]. Therefore, we have to consider the
atmospheric model, regardless of its complexity and accuracy, with some degree of
uncertainty. For a full characterization of the flow field, we need to know the upstream
state variables: density p.,, temperature T.,, and pressure P.. As suggested in ref.[3],

an uniform distribution can be used to model the uncertain density within +20% the
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Figure 4: Comparing of CDF resulting from the statistical fitting of the GNC
errors

value provided by the selected atmospheric model. This choice is due the high en-
tropy of the uniform distribution, making it the most conservative approximation when
limited other modeling information is available [35]. We use the same characterization
for T, and P, as well. In addition, we consider uncertainties on the dynamic viscosity
U and the free stream velocity magnitude V.. The former includes the uncertainties
in the Sutherland law [18] and is modeled by a uniform distribution within +20% of the
expected value, while the latter takes into account the movement of the atmosphere,
which especially significant for the upper layers [40]. The approximation introduced
in the equations of motion, derived in [22, 19], considers an atmosphere that simply
follows Earth in its rotation. Thus, V., is taken equal to the magnitude of the relative
velocity v. To model the uncertainty on V.., we consider an additional random term V.,
uniformly distributed between +200m/ s

Ve =v+ Ve (11)
Furthermore, describing the phenomena of aerodynamic and aerothermodynamic

interactions between the spacecraft body and the flow field through algebraic corre-
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lations introduces approximations, simplifying assumptions, and modeling errors. To
take them into account, all variables that are inputs to the correlations are considered
uncertain.

In the Free molecular regime, we include the wall temperature and the Schaaff and
Chambre’s accommodation coefficients, oy, or and a. [26]. The wall temperature in-
cludes two variables: the first one for the CubeSat structure temperature T,, and the
second one for the D3 booms temperature TP38. They are uniformly distributed within
+50% with respect to the value provided by the integration of the thermal equations
[19]. Accommodation coefficients are considered for the interaction of both the Cube-
Sat structure material (Aluminum) with air, o/, % and ¢, and the D3 booms material
(stainless steel) with air, o, o' and a°. They are modeled as normally distributed
with the parameters reported in tab.3.2.

In the Transition regime, the Free molecular-Transition and the Transition-Continuum
Knudsen boundaries, Kn™ and KnCR respectively, are regarded as random variables
and are used both in the Wilmoth’s and in the Legge’s bridging formulas [24, 31]. Their
logarithms are normally distributed with mean values equal to the limits suggested by
Wilmoth et al. in [31]: 1 for the Free molecular-Transition boundary and -2 for the
Transition-Continuum boundary. The standard deviations are taken equal to 0.33 so
that the three-sigma errors differ from the suggested values by one order of magnitude.

In the Continuum regime, we distinguish between blunt and sharp nosed objects. A
blunt nose is considered when the D3 booms have not yet melted and provide attitude
stabilization in face pointing mode. In this case, we include in the list of uncertainties
all the thermodynamic variables of interest (Lewis number, density, pressure, specific
enthalpy, dynamic viscosity, velocity gradient, and dissociation enthalpy) both at the
edge of the boundary layer of the stagnation point (indicated with the subscript 2 in
[19]) and at the wall, that appear in the Fay and Riddel’s correlation [28] and in the
Modified Newton Law [27]. All the selected statistical characteristics are provided in
tab.3.2. To compute the average heat power on the different faces of the CubeSat from
the estimated stagnation heat, the Koppenwallner’s formula is utilized [8]. An uncertain
coefficient xx,, is considered in this formula to account for the error in the percentage
of stagnation heat that reaches the other surfaces, making the final formula as:

Gw; = 45 [KK()pp +(1- KK()pp) sin 91] (1 2)

Kkopp 1S NOrmally distributed with a mean of 0.1 as prescribed by the Koppenwaliner’s
formula and 0.02 as the standard deviation. The sharp nose model is used for both the
edge and the corner pointing modes, which are necessary to characterize the tumbling
mode of the spacecraft after the D3 booms melt. In light of this, we have to consider the
Eckert solution [29] and Newton law [17] for sharp nosed objects (see Table 1). Using
the Eckert solution adds to the list of uncertainties all the thermodynamic variables of
interest (Prandtl number, density, dynamic viscosity, velocity magnitude and specific
enthalpy) both at the reference condition (indicated with superscript *) and at the edge
of the boundary layer (indicated with subscript ¢). In addition, the pressure coefficient
given by the Newton law can be modified to account for uncertainties as:

Cp; = KNewt Sil’l2 0,' (1 3)
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where ky.,, is @ normally distributed random variable with a mean value of two as pre-
scribed by the Newton’s law itself and 0.2 as standard deviation. When the D3 booms
bend before melting, the Li and Nagamatsu theory is introduced to estimate the drag
produced by the booms [34]. This approximated model takes as inputs most of the
thermodynamic variables introduced so far, with the addition of the temperature at the
stagnation point 75, which must also be added to the list of uncertainties.

The contribution to the heat power due to radiation with the air flow is estimated
with the Hamilton correlation [41]. An additional multiplying coefficient «y.., is added
here to include some uncertainty in this correlation and is uniformly distributed be-
tween £50%. In addition, part of the heat power entering into the structure by thermal
exchange with the air flow is dissipated by radiation with the environment. The amount
of dissipated heat over time depends on the body emissivity which we assume is not
perfectly known. The emissivities are considered normally distributed with mean val-
ues of 0.18 for Aluminum and 0.38 for stainless steel with standard deviations equal to
0.02.

Another important source of uncertainty is in the fragmentation process of the
spacecraft due to the severe aerothermodynamic conditions it is subjected to all along
the re-entry trajectory. The demise of the spacecraft occurs when the melting tem-
perature is reached and the thermal mass approaches zero because of the melting
process. This process is very complex to predict with high accuracy. Therefore, we
include here some uncertainties on the thermal model described in ref.[19]. First, the
thermal mass of the CubeSat is assumed to be the one prescribed by the model plus
a uniformly distributed random variable between 0% and +80% of the nominal thermal
mass to account for some heat dispersion into the payload and into the D3 shells and
motors. The thermal mass of the D3 booms is uniformly distributed between +20% of
the nominal value. The external surface area where the heat exchange with the air flow
and environment occurs may also change during the melting and fragmentation pro-
cess. To account for this, the external surface area of the CubeSat structure as well as
the surface areas of the D3 booms vary uniformly between +20% the estimated values.

After the demise of the spacecraft, we continue to follow the trajectory of a specific
fragment that may survive and reach the ground. In this study case, we imagine the
spacecraft is equipped with a component that can be approximated as a 300 g sphere
of titanium. Its ballistic coefficient is 163 kg/m?, normally distributed about the nominal
value with 10 kg/m? as the standard deviation.

Finally, the spacecraft configuration and the D3 bending stiffness are not perfectly
known and may change during the re-entry. Therefore, we set a normal distribution
both for the inclination angle of the D3 booms and for the maximum torque they can
withstand. The former has mean value of 20 degrees with respect to the rear face of
the CubeSat and 1 degree as the standard deviation. The latter has 0.35 Nm as the
mean value and 0.0167 Nm as the standard deviation [15].

To summarize, a total of 50 uncertain variables are considered: 4 in the initial state
vector given by the GNC controlled orbital decay, 2 for the initial temperature at the
DEO point, 5 for the upstream flow conditions, 8 in the Free molecular regime, 2 in
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the Transition regime, 19 in the Continuum regime, 4 for the melting model, 2 for the
radiation with the environment, 1 for the radiation with the air flow, 2 for the spacecraft
configuration, and 1 for the fragment’s ballistic coefficient after the spacecraft demises.
All these variables and their statistical characterizations are collected in tab.3.2.

Table 3: Collection of all the uncertain variables in the high fidelity model

Vari Dist. Uniform bounds Gaussian/Students-s params
ariable name Symbol

type Left Right Mean St. dev. | D.o.f.
DEO along track vy, Normal - - 0° 0.76° -
error
DEO cross track vy Stud. ¢ - - 0° 0.08° 0.95
error!
DEO flight path an- YDEO Normal - - —-0.135° 0.016° -
gle
DEO velocity mag- VDEO Normal - - 7.54 km/s 2m/s -
nitude
DEO CubeSat tem- Toeo Normal - - 546 K 10 K -
perature
DEO D3 booms Toe Normal - - 588 K 10K -
temperature
Upstream density Poo Uniform -20% +20% - - -
Upstream temper- Teo Uniform -20% +20% - - -
ature
Upstream pressure P Uniform -20% +20% - - -
Upstream dynamic Hoo Uniform -20% +20% - - -
viscosity
Upstream velocity Veo Uniform | =200 m/s | +200 m/s - - -
magnitude
Aluminum normal o Normal - - 0.9 0.1/3 -
accom. coeff.
Aluminum tangen- ol Normal - - 0.9 0.1/3 -
tial accom. coeff.
Aluminum thermal all Normal - - 1 0.2/3 -
accom. coeff.
Stainless steel nor- oy Normal - - 0.9 0.1/3 -
mal accom. coeff.
Stainless steel tan- oy Normal - - 0.9 0.1/3 -
gential accom. co-
eff.
Stainless steel as’ Normal - - 1 0.2/3 -
thermal accom.
coeff.
CubeSat wall tem- T, Uniform -50% +50% - - -
perature
D3 booms wall TD38B Uniform | —50% +50% - - -
temperature
Logarithm of | log;o Kn™ | Normal - - 1 1/3 -
Free molecular-
Transition Knudsen
boundary

Truncated at 11.3 deg
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Table 3 — Continued from previous page

Variable name Symbol Dist. Uniform bounds Gaussian/Students r params
type Left Right Mean St. dev. | D.o.f.

Logarithm of | log,, Kn°F | Normal - - -2 1/3 -

Continuum-

Transition Knudsen

boundary

Density at the wall Oyt Uniform -20% +20% - - -

Dynamic viscosity Lt Uniform -20% +20% - - -

at the wall

Enthalpy at the wall Py Uniform -20% +20% - - -

Prandtl number at Pry, Uniform -20% +20% - - -

the wall

Stagnation density o Uniform -20% +20% - - -

Stagnation dy- U Uniform -20% +20% - - -

namic viscosity

Velocity gradient at | (%) | Uniform | —50% +50% - - -

stagnation point

Stagnation  pres- Py Uniform -20% +20% - - -

sure

Stagnation temper- Ty Uniform -20% +20% - - -

ature

Lewis number Le Uniform 1 1.4 - - -

Dissociation  en- hp Uniform -20% +20% - - -

thalpy

Reference  Prantl Prt Uniform -20% +20% - - -

number

Reference density o Uniform -20% +20% - - -

Reference dynamic o Uniform -20% +20% - - -

viscosity

Velocity at the edge Ve Uniform -20% +20% - - -

of the boundary

layer

Recovery enthalpy h, Uniform -20% +20% - - -

Enthalpy at the wall Iy Uniform —20% +20% - - -

Koppenwallner’s KKopp Normal - - 0.1 0.02 -

formula coefficient

Newton’s formula KNewt Normal - - 2 0.2 -

coefficient

Hamilton’s correla- KHam Uniform -50% +50% - - -

tion coefficient

CubeSat thermal M, Uniform +0% +80% - - -

mass

D3 booms thermal mpo8 Uniform -20% +20% - - -

mass

CubeSat external S oxt Uniform -20% +20% - - -

surface

D3 booms external §D3B Uniform | -20% +20% - - -

surface

CubeSat emissivity e Normal - - 0.18 0.02 -

D3 booms emissiv- €% Normal - - 0.38 0.02 -

ity

D3 booms deflec- oP3B Normal - - 20° 10 -

tion angle
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Table 3 — Continued from previous page

. Dist. Uniform bounds Gaussian/Students : params

Variable name Symbol
type Left Right Mean St. dev. | D.o.f.

D3 booms max- CcMax Normal - - 0.35 Nm | 0.05/3 Nm
imum bending
torque
Fragment ballistic Brrag Normal - - 163 kg/m?> | 10 kg/m?
coefficient

4. Reduced order model of the re-entry

4.1. Purpose

The large number of uncertain variables in the high fidelity model may strongly hin-
der the estimation of low probabilities, especially when a reliability based approach
[385] such as the Inputs’ Statistics method is employed. This issue is known in the
literature as the Curse of dimensionality [42]. In this section, we describe a compu-
tationally efficient reduced order model that is able to capture the effects of the high
fidelity model using a smaller number of specially selected variables, named hereafter
“high level” variables.

For instance, the ballistic coefficient is a very useful parameter because it entirely
includes the effects of the variation in time of both the drag coefficient and the space-
craft mass. Another example is the demise altitude of the spacecraft. It is the conclu-
sive event of a progressive process, caused firstly by the temperature increase due to
the thermal exchange with the flow and then by the decrease of the thermal mass of
the spacecraft when the temperature reaches the melting point. Hence, if the demise
altitude and the ballistic coefficient were known a priori, the computation of the drag co-
efficient and convective heat power into the structure would not be necessary. In other
words, the aerodynamic and the aerothermodynamic models would not be necessary
at all. Since they include most of the uncertainties of the problem, we can strongly
reduce their number. In addition, the aero- and the aerothermo-dynamic models usu-
ally require the majority of the time when numerically propagating a re-entry trajectory.
Therefore, the reduced order model has two important advantages: 1) it decreases the
number of uncertain variables and 2) it significantly speeds up the entire simulation.
The selected high level variables are statistically characterized by a MC simulation of
the high fidelity model. Since in this case we are not interested in a low probability
estimate but rather on the overall description of their distribution, the number of MC
samples can be limited to few thousands.

4.2. Description

The reduced order model contains the same dynamic model as the high fidelity
model, but includes the kinematic and dynamic equations only [19]. They are written
in the scalar form given by Vihn et al. in [22]. They consider the spacecraft as a point
mass having three translational degrees of freedom and are used to integrate position
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and velocity of the spacecraft in time. The 2001 United States Naval Research Labora-
tory Mass Spectrometer and Incoherent Scatter Radar Exosphere model (NRLMSISE-
00) [43] is chosen as most appropriate atmospheric model. The effect of the second
zonal harmonic J, is accounted for in the gravitational force model using the procedure
given by Vallado in [44] . Therefore, to propagate the re-entry dynamics, we need to
know i) the variation of the ballistic coefficient in time and ii) when the ballistic coef-
ficient abruptly changes. With the ballistic coefficient (8) known, we can express the
acceleration due to the aerodynamic drag as:

D=5 Vil (14)
where the upstream density p., is given by the atmospheric model and the freestream
velocity V., is approximated as the vehicle velocity with respect to Earth v. j” is the
second unit vector of the VCI reference frame [19]. In a typical simulation of the high
fidelity model, we can recognize two main events which induce a nearly instantaneous
variation of the ballistic coefficient: 1) the bending of the D3 booms or their total demise
and 2) the spacecraft demise.

Therefore, as illustrated in fig.5, we can divide the entire simulation into four parts:

1. altitude higher than 120 km, where the ballistic coefficient is approximately con-
stant and equal to that of the spacecraft at the DEO point Speo;

2. from 120 km down until the bending altitude hgeng Or the D3 booms’ demise al-
titude hpspem, Where the ballistic coefficient is considered linearly varying with
the logarithm of the Knudsen number. The initial value is Bpeo and the slope is
computed as:

B Bgeng — BoEO

dlog,, Kn DeplD3 - log,, (Kngend/Knpeo)

(15)

where g4 is the ballistic coefficient immediately before the bending of the
booms or their demise and Kngeng is the corresponding Knudsen number.

3. From the bending/demise altitude of the D3 booms down until the spacecraft
demise altitude hpem, Where the ballistic coefficient is again considered linearly
varying with the logarithm of the Knudsen number. The initial value is g, ,,
i.e. immediately after the bending or the demise of the booms, and the slope is
computed as:

(9,3 _ Boem _:Bgend
0log o Kn|g,ins 10810 (Knpem/Kngeng)

where Bpem is the ballistic coefficient of the spacecraft just before the CubeSat
structure demises and Knpen is the corresponding Knudsen number.

4. From the spacecraft demise altitude down until ground impact, where the ballistic
coefficient is considered constant and equal to the fragment ballistic coefficient

ﬁFrag
With this piecewise linear approximation, only 7 high level variables are necessary for
the full description of the ballistic coefficient all along the re-entry propagation: Bpeo,
(98/0 logloKn)DeplDS’ hgonds Basongs (9B]010819 Kn),_ ., hoem, Brrag- In order to complete
the description of the reduced order model, the uncertainty on the atmospheric density
18
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Figure 5: Piecewise linear approximation of the ballistic coefficient in the re-
duced order model

P and the GNC errors at the DEO point (v,,, v., ypeo and vpeo) must be added. Thus,
the number of uncertain variables is decreased from 50 in the high fidelity model to
12 high level variables in the reduced order model. This strongly reduces the curse of
dimensionality issue of the Inputs’ Statistics method [45] and decreases the computa-
tional time for the propagation of a single re-entry trajectory by approximately an order
of magnitude. On the same standard desktop computer, approximately 30 seconds
were required by the high fidelity model compared to about 0.7 seconds when the tra-
jectories were evaluated using the reduced order model.

4.3. Statistical characterization

Because the assumption of normality does not hold (except for the GNC errors)
and because the variables are generally correlated, the statistical characterization of
the reduced order model is computationally expensive compared to a model where the
variables are normally distributed and uncorrelated. As a consequence, the minimum
number of MC runs to guarantee a predetermined confidence level and relative error
for a given variable has to be estimated through the more general approach given
by Rubino and Tuffin in ref.[46]. The standard MC estimator of the probability that the
variable exceeds a given threshold is a binomial random variable. Thus, the confidence
level on this probability estimator § is given by:

Yy =7y) Y1 —v)

Za/zT <Y < 22
where N is the number of samples, 1 -« is the confidence level we want to achieve, vy is
probability that has to be estimated, and z,_,; is the (1 — @/2)-quantile of the standard
normal distribution. Setting the half-width of the confidence level equal to the desired
relative error RE and solving eq.17 for N, the minimum required number of runs is
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computed as:

N2 lenloy (18)

~ RE? vy

In order to have a good overall statistical description of the aforementioned variables,
we impose 95% confidence level and 10% relative error on at least 10% probability es-
timate, which requires running 3460 samples of the high fidelity model. Considering 30
seconds as the average time required for the propagation of a single re-entry trajec-
tory, the necessary time to statistically characterize the reduced order model is on the
order of 30 hours. This time is however extremely small compared to the one neces-
sary if the high fidelity model is used to attempt to compute directly the extremely low
probabilities associated with the safety boxes (about 2% of the time for a 99.99% safety
box). The MC analysis has been performed considering the 0deg latitude, 99 deg lon-
gitude, and 120km geodetic altitude DEO point introduced in section 3.1. The obtained
numerical distributions are grouped in figures 6 to 11.
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Figure 6: Distributions of the ballistic coefficient at the DEO point, the slope
of the ballistic coefficient with deployed D3 booms, and the D3 bending (or D3
demise) altitude
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Figure 7: Distributions of the ballistic coefficient at the DEO point, the slope
of the ballistic coefficient with deployed D3 booms, and the CubeSat demise
altitude

We note that Bpeo, heend, @and hpem closely follow a normal distribution, as con-

firmed by the Kolmogrov-Smirnov test [36]. (8/3/6 log,, Kn)DepID3 can be approximate as

a Gamma distribution [47]. g%, and (8,8/6 10g,, Kn)BentD have more complex distribu-
tions because these variables incorporate the characteristics of the ballistic coefficients
when the D3 booms bend and when they demise. Since in the second case, the Cube-
Sat keeps falling in a tumbling mode without the D3, the ballistic coefficient is higher
and increases faster than the case where the D3 booms are still attached but bent.
Having the booms demise before bending, however, is quite unlikely since it occurs on
average during only about 4% of the simulations. To model these two distributions, a
non parametric Gaussian kernel distribution is suggested [35, 48] and justified again
with the Kolmogrov-Smirnov test. All the parameters of the marginal distributions are
collected in tab.4.3. The correlation among the variables is modeled through a Gaus-
sian copula [35, 49], but it is considered only when it is significant. In particular, cor-
relations are considered between hpem and B, 4 (fig.9), between (9/dlog,, Kn)
(fig.9) and hgeng (fig.-11), between p., and hgeng OF hpem (fig.11), and between S
21
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Figure 8: Distributions of the ballistic coefficient immediately after the D3 bend-
ing (or demise), the slope of the ballistic coefficient with bent (or demised) D3
booms, and the D3 bending (or D3 demise) altitude

(98/910g,, Kn)BMD3 (fig.8).

Table 4: Statistical characterization of the high level variables necessary to describe the profile of the
ballistic coefficient in the reduced order model.

Variable name Symbol Dist. Gaussian params Gamma params
type Mean St. dev. a b

Ballistic coefficient BpEo Normal 15 kg/m* | 0.79 kg/m? - -

at DEO point

Slope of the ballis- | (;p+;) Gamma - - 4.19 | 0.346 kg/m?

tic before D3 bend- S0 DeplD3

ing or demise

D3 bending geode- hBend Normal 95.4 km 850 m - -

tic altitude

Continued on next page
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Table 4 — Continued from previous page

Variable name Symbol Dist. Gaussian params Gamma params
type Mean St. dev. a b

Ballistic coefficient Bgend Non para-

immediately after metric

bending or demise

Slope of the ballis- ((ﬂogﬁ)%mm Non para-

tic after D3 bending metric

or demise

Demise geodetic hpem Normal 85.9 km 208 m

altitude

The final impact point predicted by the reduced order model is slightly different from
the one predicted by the high fidelity model. This is due to both the piecewise linear
approximation of the ballistic coefficient and to the fitting of the distributions of the vari-
ables and their correlations with specific distribution laws. It has been estimated that
the average value of this error is on the order of 50 km in the down track direction.
Nevertheless, this represents only an offset in the quantile computation, associated
with a certain probability of interest. As a consequence, subtracting the mean value
of the error, the quantile estimate is accurate with respect to the one predicted by the
high fidelity model. Indeed, in fig.12, when the safety boxes dimensions, given by
the up-track range (U-range) and down-track range (D-range), are plotted for different
values of probability, the offset between high fidelity model and reduced order model
quantiles is clearly visible (see sec.6.1 for more details on the safety box geometry).
When the total length of the safety box is computed by subtracting the U-range from
the D-range, the offset is eliminated and both models have similar distributions for the
total safety box length as can be confirmed by the Kolmogrov-Smirnov test.

5. International safety requirements

The risk reduction measures required for the re-entry of a spacecraft are regu-

lated by requirements documented in Space Agencies’ instructions and guidelines.
The European guidelines [3] strictly follow the French Space law [50]: “the operator
responsible of a spacecraft controlled re-entry shall identify and compute the impact
zones of the spacecraft and its fragments for all controlled re-entry on the Earth with
a probability respectively of 99% and 99.999% taking into account the uncertainties
associated to the parameters of the re-entry trajectories”.
The “Safety Boxes” definition is derived from this requirement as the containment con-
tours on the ground such that the probability that a fragment falls outside is below a
controlled or known value [5, 51]. This controlled value is usually called probability
level and indicated by «. In particular, two safety boxes are usually of interest [3]:

» The Declared Re-entry Area (DRA) should delimit the area where the debris
should be enclosed with a probability of 99% (i.e a = 1072) given the delivery
accuracy.
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Figure 9: Distributions of the ballistic coefficient immediately after the D3 bend-
ing (or demise), the slope of the ballistic coefficient with bent (or demised) D3
booms, and the CubeSat demise altitude

» The Safety Re-entry Area (SRA) should delimit the area where the debris should
be enclosed with a probability of 99.999% (i.e a = 1075) given the delivery accu-
racy.

The DRA is used to implement the procedures of warning and alerting the maritime
and aeronautic traffic authorities. The mission operators are in fact required to provide
the authorities with the technical information in order to issue NOTAM (Notice To Air-
men) and AVURNAYV / NAVAREA (Notice to Mariners) messages. The NOTAM area is
computed as the envelop of the DRAs relative to baseline and all the back-up strate-
gies [9]. The SRA is the indicator of a possible risk for population and properties. It
used to design the re-entry trajectory such that the SRA does not extend over inhab-
ited regions, does not impinge on State territories and territorial waters without the
agreement of the relevant authorities. Usually, the re-entry trajectories are designed
such that the SRA of the baseline strategy is included within the SPOUA, or South Pa-
cific Ocean Uninhabited Area [5]. It is the largest uninhabited area on Earth, bordered
by the 185 East and 275 East meridians and by the 29 South and 60 South parallels.
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Figure 10: Distributions of the ballistic coefficient at the DEO point, the slope of
the ballistic coefficient with deployed D3 booms, the ballistic coefficient imme-
diately after the D3 bending (or demise), and the slope of the ballistic coefficient
with bent (or demised) D3 booms

The NASA safety requirements [1] state that the probability of human casualty from
surviving debris from a given mission must be less than .0001 (1:10,000) where a sur-
viving debris object with energy greater than 15 joules is considered to have a potential
for casualty. For controlled re-entry, the trajectory must be designed such that surviv-
ing debris with an energy of 15 joules or greater are more than 370 km from foreign
landmasses and more than 50 km from US territories. In addition, the product of the
probability of failure to control the re-entry location multiplied by the casualty proba-
bility from uncontrolled re-entry must be less than 0.0001. For example, a spacecraft
that nominally has a 0.001 casualty probability from uncontrolled re-entry must have a
0.9 probability of successfully controlling the re-entry location. While this is the gen-
eral policy, some missions may have stricter requirements. For example, if a satellite
contains hazardous material such as radioactive elements that may cause harm to
persons or property beyond the initial impact, or if the satellite is a member of a fleet
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Figure 11: Distributions of the upstream atmospheric density coefficient, the D3
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of spacecraft, the allowable casualty probability may be less. In fact, during the Euro-
pean Space Agency’s Automated Transfer Vehicle spacecraft mission, the permissible
casualty probability from re-entry debris was only 1077 [5]. In the current study, the
permissible casualty probability was assumed to also be 10~".

The nominal casualty probability of the satellite assuming uncontrolled re-entry can
be calculated based on the casualty area of the surviving orbital debris and the orbit
inclination. The casualty area (D,) in m*> associated with the mission is given by [1] as

N
2
Dy = Z (0.6 + v/A;) (19)
i=1
where N is the number of debris fragments, A; is the maximum cross sectional area of
each fragment, and the factor of 0.6 m* accounts for the average surface area of a per-
son that can be struck by a fragment. The total human casualty probability expectation
associated with an uncontrolled re-entry is then calculated by

En = DAPd (20)
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Figure 12: Up-track range (U-range), down-track range (D-range) and full length
of the safety boxes versus the associated probability computed through a MC
simulation with the high fidelity and the reduced order models.

where P, represents the average population density for the given orbit. Fig.13 from
ref.[52] gives P, as a function of orbit inclination. In the analyzed scenario, a single
debris fragment is considered that is modeled as a sphere with a radius of .025m>. The
spacecraftis in a 51.9 degree inclined orbit and so the estimated population density of
20/km? for this inclination in the year 2050 is utilized (fig. 13). Using this value and Eq.
20 yields an expected casualty probability of E, = 8.3x10~° assuming an uncontrolled
re-entry.

Finally, even when controlled re-entry techniques are used, the debris will land over

a region on the ground, not on a specific point. The safety box concept is used in this

work to estimate this region of debris landing when the re-entry control process works

as expected. « is the probability of debris falling outside the safety box. If all cases

where debris lands outside the box are assumed to have the same casualty risk as

an uncontrolled re-entry (E,), the casualty risk associated with the mission can be
computed as:

E=E,(P;+(1-P)a) (21)

where P, is the probability of the spacecraft failing to perform a controlled re-entry

(possibly due to hardware failures). Specifically, the first term E, P is the casualty risk

associated with a potential failure of the control whereas the second term E, (1 - Pf) @
is the casualty risk associated with a successful controlled re-entry where debris falls
outside the safety box. For eq.21 to hold, there must be no casualty probability within
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Figure 13: Average Population Density vs. Orbit Inclination [52]

the safety box. Therefore, the re-entry is designed such that the safety box is fully
included within the SPOUA.

To fulfill the safety requirement, E must be lower or equal than 107’ In sec.7, a pos-
sible approach is described to target the optimal DEO point to get the safety box fully
within the SPOUA and optimize the room available. In sec.8, the maximum allowable
probability of failure P, that still allows the mission to meet the safety requirements is
computed for different DEO altitudes.

6. Safety box calculation

6.1. Safety box geometry

The safety boxes are approximated as having a rectangular shape and are usu-
ally described in terms of along track and cross track dimensions, as shown in fig.14.
The nominal trajectory defines the ground track. The ground track is computed assum-
ing the spacecraft continues on its orbit without perturbations. The Aimed Impact Point
(AIP) is defined as a reference target and is computed by deterministically propagating
the mean values of the dispersions. The along track range (A-range) is usually divided
in up-track range (U-range) if the fragment falls before the AIP, and down-track range
(D-range) if the fragment falls after the AIP. The sign is assumed negative if up-track
and positive if down-track. They are computed as curvilinear integrations along the
ground track from the AIP to the projection of the impact point over the ground track.
The cross track range (C-range) is usually much smaller than the A-range and often it
is simply considered constant and equal to the maximum value that it can attain as in
ref. [5]. In the D3 controlled re-entry, however, the C-range can be significant because
of the heavy tail of the cross track GNC error at the DEO point, so it is more accurately
estimated. When computed, the C-range can be projected on the the ground track as
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in Fig 14. Its sign is determined according to the second axis of a reference frame
tangent to the ground track, with the first axis positive in the direction of motion and
the third axis positive in the zenith direction. In other words, for an observer sitting
on the ground track and aligned with the velocity vector, the C-range is positive if the
fragment falls on his left (L-range) and negative if it falls on his right (R-range). The
safety box associated with a given probability level is thus fully determined when the
A-range and the C-range are computed.

It is important to remark on the difference between footprint and safety box con-
cepts in order to not mix them up. The footprint is built up through a MC simulation
and is the collection of all the impact points corresponding to the sample cloud. It
is numerically built and a-priori it disregards any probabilistic information. Differently,
the safety box is associated with a given probability level and can be derived from a
statistical post-processing of the footprint. The safety box dimensions are estimated
by computing the probability of a debris impact occurring outside the box itself. The
smaller the probability, the larger the safety box must be.

6.2. Input-Output formulation

All the variables needed to propagate the re-entry dynamics of the CubeSat equipped
with the D3 device through the reduced order model have been defined in section 4
and their associated dispersion are discussed in sections 3 and 4. Therefore, the
problem can be now set up with a suitable input-output formulation to apply a statisti-
cal method for the computation of the safety boxes. This formulation is schematically
illustrated in fig.15.

The d = 12 high level variables of the reduced order model are here called inputs of
the problem and are collected in the random vector X € R?. For any input combination,
the transfer function ¢ : RY — R? propagates the re-entry dynamics up to ground
impact and estimates: 1) the along track distance Y,, with respect to the AIP and 2) the
cross track distance Y, from the ground track. They are collected in the bidimensional
vector Y = {Y,,, Y.} € R?, called output of the transfer function. Y is computed in two
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Figure 15: Schematic illustration of the input-output formulation for the safety

boxes computation.
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Figure 16: Schematic illustration to clarify the computation of the along track
distance of a fragment impact point with respect to the AIP.

steps:

1. project the impact point of the fragment, called P in fig.16, on the ground track

as:

C=d-$8

(22)

where d joins P to a point on the ground track very close to it but slightly towards
the AIP, which is indicated with S, § is the unit vector tangent to the ground track
in S oriented in the motion direction, and C is the projection of P on the ground
track; computing the tangent to the ground track in C as:

6 =sin"'(§-j) (23)
. the cross track distance is computed as
Y, =sign(-sinfd-i+cos6d-j)Acp (24)

whereas the along track distance can be approximated by numerically integrating
the distance from the AIP as:
Y, = sign(dc — Aazp) (Asc + Z Ai] — Errreaoramod (25)
i=1
where A; indicates the distance on the Earth surface between two consecutive
points on the ground track, and Acs and Acp are the distance from C to S and
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from C to P, respectively. All the distances A;, Acs and Acp are computed as
the shortest distance on the ellipsoid (geodetics) given by the WGS84 model
to better approximate the actual shape of Earth. This is done using the Vin-
centy’s algorithm in ref.[53]. The error due to the use of the reduced order model
Errreqoramod, €Stimated as 50 km in sec.4, is subtracted from this integration.

6.3. Problem statement

Since the safety box is fully defined once the A-range and the C-range are defined,
the problem requires the computation of four thresholds: U-range, D-range, R-range
and L-range. Nevertheless, only one constraint, the required probability level «, is
available so the problem admits infinite solutions. An engineering condition is therefore
introduced which sets the probability outside the A-range «,, to be less than or equal
to 10% of a and the probability outside the C-range «, to be less than or equal to
90% of «, so that the overall probability outside the safety box is still less than or
equal to a as required. This proportion was chosen because the A-range is generally
much bigger than the C-range and is subject to a larger number of dispersions. It is
therefore more likely that if a point falls outside the safety box and reaches an inhabited
region, it will be in the along track direction. The independent «,, and a, values make it
possible to study the two directions separately. In both directions, the problem requires
the identification of two thresholds 7, and T,, with T, < 0 and T, > 0, such that the
probability that the output Y falls outside the interval [T}, T»] is less than or equal to a
predetermined value «a:

1-(T,<Y<T)<a (26)

For the A-range problem T, will be the U-range and 7, the D-range and «,, will be
considered, while for the C-range problem T; will be the R-range and T, the L-range
and «, will be considered.

In addition, a sensitivity analysis on the 12 input variables has been carried on
and we have found that the GNC errors on the position at the DEO point, defined in
terms of along track v,, and cross track v, do not significantly affect the A-range of the
safety box. On the other hand, all the other 10 variables do not significantly affect the
C-range of the safety box. This is shown in fig.17, where nine 4000-runs MC footprints
are shown starting from three DEO points having different latitudes (0 deg and +20 deg)
and a longitude of 99deg. For each DEO point, the associated MC simulations were
performed considering: 1) the full set of 12 variables (green), 2) only v,, and v, (black)
and 3) the 10 variables excluding v,, and v, (red). As can be visually verified, the
black footprint accurately estimates the C-range and the red footprint matches the A-
range. This is also verified with the Kolmogrov-Smirnov test and shown in fig.18 in
terms of cumulative distribution functions for the equatorial case. Similar plots can be
obtained for the other two cases. Therefore, this subdivision of 10 + 2 input variables
is assumed to always be valid for this problem and is adopted in all the following safety
box computations. This is beneficial when the Inputs’ Statistics method is applied
because it further reduces the problem dimensionality.

6.4. Inputs’ Statistics method

When the Inputs’ Statistics method is chosen, the problem is formulated in an al-
ternative way with respect to eq.26. Instead of working on the output distribution, the

objective is to approximate the optimal failure domain Q" of the problem [45]. Q7"
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Figure 17: Monte Carlo footprints for different DEO points and input variables.

0.8 | 4
r 0.6 - 4
a
O 04} 4
s With all 12 input variables
0.2 With all except v/, and v, only | |
0 il 1 1 1 1 1 1 1
-1500 -1000  -500 0 500 1000 1500 2000 2500 3000
Along track direction
1 T T
0.8 | 4
r, 0.6 - 4
a
O 04} J
s With all 12 input variables
0.2 With v/, and v, only 7
0 ! 1 1 1 1
-200 -100 0 100 200 300 400

Cross track direction

Figure 18: CDF plot for different DEO points and input variables.

corresponds to the failure domain which provides the smallest possible interval [T, T,]
and in the current problem, results in the smallest possible safety box. The Single
Step Inputs’ Statistics method attempts to find QO’” by considering the d-dimensional

contour surfaces & of the multivariate probablllty density function (pdf) f of the input
vector X. The particular € enclosing a probability equal to 1 — « is chosen and the
two thresholds 7, and T, are computed as the minimum and maximum cases which
may occur inside € [51]. This initial approximation is always conservative and may
be quite accurate when few input dimensions are considered. This is the case for the
computation of the C-range of the safety box because only two input variables are
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used. For that reason, the Single Step solution of the C-range is retained as final one
in all the following results. On the other hand, since 10 input variables are considered
for the A-range problem, the Single Step approximation is too conservative and so we
rely on the Multistep algorithm [45]. The Multistep algorithm improves the Single Step
solution by iteratively estimating the error on the probability estimate through a Crude
Monte Carlo (CMC) method [35]. The CMC method works by simulating trajectories
with initial conditions selected outside the current € to reduce the dimension of the
. ~k+1 . . . . . . .=
successive £  input domains. This ultimately brings the current failure domain Q,
closer and closer to the optimal one Q]?’”. The details of the Multistep algorithm can
be found in ref.[45], and a more in-depth treatise on the Inputs’ Statistics method is
contained in ref.[54].

As described so far, the Inputs’ Statistics method is based on the d-dimensional
pdf and its contours surfaces. Therefore, as long as the marginal distributions of the
input variables are known and the correlation is somehow defined, the Inputs’ Statis-
tics method can be applied to the problem. This is the case for the problem under
analysis here because the marginals have been defined in sec.3.1 and in sec.4, and
a Gaussian copula is used to take into account the correlation among the variables.
However, there are two approaches to the Inputs’ Statistics method. The first is to di-
rectly use the contour surfaces of the pdf in the physical space. This approach may be
of interest if the multivariate pdf and its contours can be mathematically described in
an easy manner. Otherwise, a better approach is to transform the physical space into
the standard normal space such that the contour surfaces are d-dimensional spheres
centered on the origin of the axes and described as:

EN=xeR: x"x<1) (27)

where ¢ is the sphere radius squared. We adopt the second approach in this work
because the marginals follow different types of distributions (normal, gamma, uniform,
kernel approximated, etc..) and so the mathematical description of the multivariate
pdf is not known. This transformation is achieved through the Diagonal transforma-
tion [35] (particular case of the Probability Integral transform [55]) for variables that
are not correlated and the Nataf transformation [56, 57] for the correlated variables.
More specifically, if Fy, is the marginal cumulative distribution function (cdf) of the i-th
physical variable x;, the Diagonal transformation 7, states that:

u; = 7p(x;) = q)5,11 (FX;(xi)) (28)

is a standard normal variable, i.e. with zero mean and unitary standard deviation.
@;! = V2 erf'(2x - 1) is the inverse of the standard normal cdf. For the Inputs’
Statistics method, we are mostly interested in the inverse transformation 7', because
the search points of the optimization algorithm have to be converted to the physical
space in order to compute the cost function ([51]). The inverse transformation can be
written as:

x; = Fy! (o1 () (29)

where F}! is the inverse of the i-th marginal cdf. The Nataf transformation 7 is the
composition of two successive transformations: 7y = 7y, o 7y,. The first one coin-
cides with the Diagonal transformation: 7y, = 7, converting the physical vector X with
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correlation matrix R into a Gaussian vector Z with correlation matrix R, and with stan-
dard normal marginal distributions (generally R # Ry). The second transformation 7,
converts Z into the standard normal vector U with the independent components as:

U=1y,2Z)=TZ (30)

where T is any square root of R;'. A common choice of I' is the Cholesky decom-
position [58] of R,'. In the simple case of Gaussian copula, R, coincides with the
correlation matrix of Z, so the entire transformation 7y is defined and its inversion is
straightforward.

6.5. Some typical results

Starting the re-entry propagation from the 120 km DEO point introduced in sec.3.1,
we tested the algorithm on several required safety box probabilities. The results as
well as the associated performances of the Inputs’ Statistics method are collected in
tab.5. The plot of the associated safety boxes are given in fig.17. As expected, for
the A-range computation, the efficiency of the Multistep Inputs’ Statistics with respect
to the CMC method increases with a decrease of the allowable probability of debris
landing outside the safety box. For «;,=10"* and «,, = 10~° the method performs well,
requiring only 15% and 4% of the samples used by the CMC. The convergence analysis
for the A-range corresponding to a,, = 10~ is given in fig. 20 and similar convergence
results were obtained for all the other probability levels. The number of iterations is,
in all the cases, lower than 30. The computational time is almost proportional to the
number of propagated samples if the time for the optimization processes is neglected.
Thus the same efficiency ratio holds also for the computational time. Considering an
average of 0.7 seconds for a single run of the reduced order model, the time required
to estimate a;, = 107 with the Inputs’ Statistics method is 12 days. Using instead the
CMC, N = 3.8x10’ propagations are required to achieve the 95% CL and 10% RE, so
the computation would last 10 months. If to this we add the time required to statistically
characterize the variables of the reduced order model, the time can be compared with
a hypothetical CMC applied directly to the high fidelity model. We used 3460 runs of
the high fidelity model (average time of 30 seconds). So the total time for the Inputs’
Statistics with the reduced order model is 13.5 days. The total time of CMC with the
high fidelity model would be 36 years.

These orders of magnitude of computing time reduction justify the use of the In-
puts’ Statistics method coupled with the reduced order model for the computation of
very small probabilities. The computational time was further reduced by implement-
ing a parallel computation on a desktop computer equipped with a four-core processor.
We can also note that the A-range increases linearly with the decrease of the logarithm
of the probability. With a total probability of « = 10~#, the A-range length is 4780 km, so
we can still easily fit the safety box within the SPOUA.

The C-range computation is instead performed with the Single Step algorithm. The
computational time is almost negligible since only a few minutes are necessary to
perform the two optimization processes. To estimate the accuracy of the Single Step
solution, the Multistep algorithm has been applied to the C-range problem and the
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Table 5: Summary of results and Inputs’ Statistics performances for the compu-
tation of A-ranges and C-ranges for safety boxes associated with different levels
of probability. Dimensions are given in kilometers.

Prob. A-range C-range

¢ ayy N les % U-range D-range a, R-range L-range Errorg
107" | 1072 3.8x10*  80% -910 1780 | 9x1072 20 32 +190%
1072 | 1073 3.8x10° 41%  -1150 2330 | 9x1073 -57 144 +95%
1073 | 107* 3.8x10° 15%  —1330 2810 | 9x10™* 76 190 +20%
1074 | 1075 3.8x107 4% -1480 3300 | 9x107° -91 202 +9%

A Nominal ATP
— — — Groundtrack
- = =SPOUA

Closest islands
a=10"!
a=10"?

Geodetic latitude ¢ [deg]

120 140 160 180 200 220
Longitude X [deg]

Figure 19: Safety boxes for different probability levels associated with DEO point
99 deg longitude, 0 deg latitude and 120 km geodetic altitude.

error between the two solutions is computed as:

_ SingleStep
C-range ~ ) 31)

Multistep

Errorq, = 100 (
C-range

As shown in tab.5, this error is always positive because the Single Step solution is
always conservative. The error decreases logarithmically with a logarithmic decrease
of the required probability. For o, = 9x 107> the Single Step solution is only 9% larger
than the Multistep solution, so for low probability levels the Multistep algorithm is not
necessary. Furthermore, the C-range is always quite small (about 6% —7% of the A-
range), so the A-range is definitely the primary parameter to be adjusted to ensure the
safety box lies inside the SPOUA.
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7. Optimal De-Orbit Point

7.1. Purpose

In the previous section, the procedure to compute the safety box associated with
a general probability level when starting the re-entry propagation from a specific DEO
point has been described. Here, we explain how to generalize the statistical character-
ization of the input variables in order to be able to change the DEO point and directly
re-apply the Inputs’ Statistics method to compute the new associated safety boxes
without re-run the MC analysis with the high fidelity model. This procedure may be
useful in several circumstances including placing the safety box in an optimal location
inside the SPOUA. This allows one to optimize the available space and minimize the
casualty risk. This in turn also provides the optimal DEO point to aim for with the tar-
geting algorithm [12]. This generalization procedure can be useful during the mission
operations. For example, the optimal DEO point may need to be changed if more ac-
curate density forecasts become available. The safety box depends on the expected
density profile and the distribution of that density profile. If the density profile changes,
the optimal safety box will change. Also, if the satellite is close to the de-orbit time,
there may no longer by sufficient controllability left to target the desired DEO point.
In that case, a new optimal DEO point can be picked from the set of reachable DEO
points. Also, after observing the spacecraft in orbit, a more accurate estimate of the
spacecraft ballistic coefficient can be obtained which will also affect the location of the
optimal DEO point.

7.2. Generalization of the errors
When we set a different DEO point to be reached through the targeting algorithm,
it may provide slightly different distributions of the errors at the DEO point both in
terms of mean value and dispersions around the mean value. In ref[12, 11], some
convergence results as well as a general MC analysis is provided. Nevertheless, as
long as the DEO point keeps the same altitude and the latitude and longitude vary
within a neighborhood of the initial ones, these differences are not very significant.
Additional analysis has been performed in this study showing that the only effects
which should be taken into account are the variations of the mean values of the velocity
magnitude vpgo and the flight path angle ypzo with the DEO point geodetic latitude
{peo- They can be linearly approximated as:
m
deg

/J;/DEO = Hypo T+ 2.6x 10_3 (ngEO - gDEO) (33)

where {pko is the initial geodetic latitude for which the errors have been characterized
through the MC analysis of the targeting algorithm (see sec.3.1) and ¢}, is the new
geodetic latitude where we want to set the DEO point. The linear fitting is justified in
fig.21. Similar relationships may apply to other variables of the reduced order model,
but the magnitudes of these variations are very small and can be neglected since they
do not have a significant effect on the safety box dimensions.

,U:,DEU = Hvpgo + 0.24 (G)EO - gDEO) (32)

It is very important to highlight that the above relations are valid when the DEO
point is kept at the same geodetic altitude. The flight path angle and the velocity mag-
nitude profiles significantly change when the DEO point altitude is varied. This must
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Figure 21: Average relative velocity magnitude and flight path angle vs. DEO
point geodetic latitude.

be taken into account to reliably estimate the safety box. Changing geodetic latitude
and longitude but keeping the same altitude can be done exploiting some algebraic
relations derived by Vallado in ref.[44] and spherical trigonometry. For the sake of
completeness, we briefly describe this transformation. Given the new geocentric lati-
tude ¢, and the altitude 40, the new geodetic latitude can be computed by solving
the following non-linear equation using a root finder:

2
€s

tan @pzo = tandppo | 1 -
1+ hpro/Re A1 — €2 sin* £,

where Rq is the equatorial radius of Earth (6378.1363 km) and e, = 0.081819 is its
eccentricity. The new distance from Earth center is computed as:

(34)

’ _ Cos ngO h R@ (35)

Yppo = ———— +
DEO ; DEO
COS Yo 2 2 g
I —egsin” (),

The new argument of latitude u},,, is calculated keeping the same branch of the trajec-
tory, descending or ascending, with respect to the initial DEO trajectory. This means

sin ¢’

Uppo = T — sin”! (%fo) if 7/2 < mod (upgo, 27) < 37/2 (36)
sin ¢’

Uy = sin”! (%) otherwise (37)
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where i is the orbital inclination. Assuming the same orbital eccentricity ¢’ = e and the
same orbital flight path angle? ., = pzo, We get that the true anomaly must also be

the same: 6., = Opro. SO the new argument of perigee «’ is:

W' = uppo ~ Opro (38)
and the new orbital semi-major axis is:

r 1+eé cos®,
4 = DEO( DEO) (39)

1-e?
Imposing a latitude change inevitably results in a longitude change. To set the desired

longitude 1;,,.,, we set the new right ascension of the ascending node Q’ as:

Y (AN ®pp _y[COs Upgo
Q = Appp — — ——= |+, 40
DEO S|gn( | cosT | o + Osia (40)
where 6y, is the sidereal angle (e.g. from the vernal equinox to the foot of the Green-
wich meridian in the equatorial plane).

7.3. Convergence procedure

The objective now is to iteratively move the DEO point to optimize the safety box
inside the SPOUA. This procedure can be divided into three steps:

1. Computation of the desired AIP

The minimum latitude where the safety box can be placed is equal to minus the orbital
inclination. If this does not exceeds the SPOUA lower bound (60 deg South), as in the
case study under analysis (orbital inclination i = 51.9deg), a good option is to place
the center of the safety box as far South as possible. This constraint can be enforced
setting the desired argument of latitude of the safety box center, let us call it uyp,,,, t0
3/2n. Consequently, the desired argument of latitude for the AIP can be computed as:

D-range + U-range

UAIPpe, = UMIDp., = (41)

Eq 41 assumes that the A-range does not vary significantly when changing the DEO

point for the same probability level. This is not actually true, but it is a good initial guess

that will be corrected later. For the following computations, we consider « = 107#,

corresponding to D-range= 2810 km and U-range= -1330 km from tab.5. Thus, we

get that ua;p,,, = 263.35deg. Similarly, to optimize the SPOUA width, the longitude

of the safety box center Ayp,,, is set in the middle of the SPOUA, corresponding to

the 230deg East meridian. Consequently, the desired longitude of the AIP A4p,,, is
computed as:

/lAIPD” = AMIDDL’Y - Sign (%)Cos_l (m) +

) ' tani COS YMIDp,,

: (tan PAIP e ) -1 (COS UAIPps

+sign|————=)cos™ | —=

tani COS YarPp,,

) (42)

2The orbital flight path angle is indicated with the symbol § to not confuse it with the relative flight
path angle v, introduced in sec.3.1
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where ¢,;p,,, is the desired geocentric latitude for the AIP, computed as:
Qarpy,, = sin~! (sini sinuyp,, ) (43)

and ¢wuip,,, 1S the desired geocentric latitude of the safety box center. In this case,
Omipy, = —i = —51.9deg, @ap,,, = —51.41deg, and Aup,, = 219.30deg. If a specific
desired point is already available because other constraints are imposed (e.g. maxi-
mizing distance from a determined island, re-entry observation constraints, operational
constraints, etc.) this initial step of the procedure can be avoided.

2. First DEO correction

When the DEO latitude changes, it affects both the latitude and longitude of the AlP.
However, a longitude variation of the DEO point does not affect significantly the latitude
of the AIP. Therefore, an efficient way to converge to the desired AIP is to correct for
the latitude first. When the convergence is achieved, the remaining longitude error can
be corrected, too. Let us describe this first convergence scheme. At the k-th step,
the high fidelity model is propagated in time starting from the k-th DEO point having
argument of latitude uj,,, up to ground impact. The geocentric latitude ¢}, , longitude
A and sidereal time Oﬁidlmp are computed at the impact point. Thus, the argument of

Imp
latitude is obtained as:

k . Sir“pllcmp . k
u,mp=7r—sm_ m |f7T/2<m0d(/11mp—Q+0k.

Sldlmp ’

am)<3m/2  (44)

: k

sing) _

= sin_]( , 1,”) otherwise (45)
sin 1

where Q is the orbital right ascension of the ascending node. The error is estimated
with respect to the desired argument of latitude. So, at the k-th step it is:

k _ k
Erru = UAIPpes — Upmp (46)

The new iteration is initiated calculating the argument of latitude at the DEO point as:

Upgo = Upgo + Err (47)
This introduces the assumption that the variation of the argument of latitude between
impact and DEO point remains the same when the DEO point is changed. Again, this
is not completely true, but is a reasonable assumption that verifies at convergence.
The new geocentric latitude at the DEO point is:

sin i
k+1  _ . —1
YpEo = sin (— k+1) (48)
sin upz,

and the new longitude is:
tan ¢! cos k! ~ (tan¢X cos u¥
Ao = A5 po + sign (—('%Eo)cos_1 ( DEO) - sign (—(’DDEO)COS_1 (—DEO) (49)

tan i cos gt tan i cos ¢k

These two inputs fully define the new DEO point that occurs at the same geodetic

altitude as the previous DEO point. The associated state vector can be defined as
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described in the sec.7.2. The convergence is reached when the absolute value of
Errt becomes smaller than a given tolerance, set here to 1deg. After that, the DEO
latitude is kept constant (¢4}, = ¢%.,) and a second convergence scheme is set up to
eliminate the remaining longitude error. The longitude error is computed as:

and the new longitude at the DEO point is:
Ao = Apgo + Erry (51)

The procedure is stopped when |Errt| < 0.5deg. The final obtained ¢4}, and A%},
locate the optimal DEO point, in this case ¢z, = —5.69 deg and A%, = 150.03 deg. The
convergence rate is rather fast. In this case, a total of 4 steps were necessary: 2 for the
argument of latitude convergence and 2 for the longitude convergence. The re-entry
trajectories obtained at each step are plotted in fig.22(a). In fig.22(b), the decreases
of the absolute values of the errors along the iteration steps are given.
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x  DEO point
A AIP
Initial traj.
1% step
2 step
34 step
4™ step
Shifted SafetyBox

Geodetic latitude ¢ [deg]
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Longitude X\ [deg]

(a) Re-entry trajectories from DEO point to impact point

—o—Errk
—o— ET')"I)‘:

Error [deg]

0 1 2 3 4
Step k

(b) Errors convergence.

Figure 22: Convergence procedure to achieve a desired AIP location

3. Verification of the safety box location

The assumption that the A-range magnitude remains constant when the DEO point is
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changed is now verified. To do this, a modified Single Step algorithm of the Inputs’
Statistics method is utilized with the new optimal DEO point. The Single Step algo-
rithm requires determining the probability outside the contour lines (e.g. ellipsoids) of
the input pdf and computing the output interval as min/max inside the contour asso-
ciated with the prescribed probability. In the basic version of the Single Step method,
the decided probability coincides with the probability of interest and this guarantees a
conservative result [51, 54]. However, if a more accurate estimation of this probability
is already available, it can be used to get a more accurate result. The idea is to exploit
the convergence information of the Multistep algorithm for a given DEO point for any
other DEQ point. The o value computed with the Multistep iterations (see fig.20(a))
provides exactly what we are looking for: the probability outside the pdf contours at
the k-step. The value of o* at convergence is therefore used as the probability to be
constrained in the Single Step algorithm. Thus, only two optimization processes are
necessary to estimate the safety box associated with a new DEO point. This implies
that once a safety box is computed for a given probability, it can be used to compute
the safety box for any other DEO point reasonably close to the initial one and with the
same geodetic altitude with only a few minutes of computational time. The assump-
tion of a constant o* at convergence is justified by the idea at the basis of the Inputs’
Statistics method of using the pdf contours to approximate the contours of the transfer
function. The error due to this approximation depends on the contours shape and so
on the problem under analysis rather than on the specific initial condition used. In
fig.23, we show in light blue the safety box shifted to the optimal AIP estimated from
the initial DEO point. The safety box plotted in black is estimated instead with this
modified Single Step approach, with o* = 0.1453 and starting from the optimal DEO
point. Finally, we restarted the full statistical characterization of the optimal DEO point
through an MC analysis of both the targeting algorithm (as seen in sec.3.1) and of the
high fidelity model (in sec.3.2), and we ran the Multistep algorithm using the reduced
order model as described in sec.6. The resulting safety box is plotted in green. We
can draw the following conclusions:

« comparing the safety boxes in light blue and in black proves the quality of the
assumption that the A-range remains constant when the DEO point is changed.
If instead a significant difference existed, the entire procedure could be repeated
with the new A-range estimation. It is expected that at most at the second iter-
ation the two safety boxes will be very close to each other and the procedure
will have converged. Note that re-running the procedure again does not require
significant computational time since the MC analysis is not required and the Mul-
tistep algorithm is not necessary with the modified Single Step approach.

« comparing the safety boxes in black and green proves the accuracy of the modi-
fied Single Step approach and confirms that there is no need to re-run the Multi-
step algorithm. In addition, the small difference between the optimal AIP and the
corrected AIP shows that the linear fittings of the mean values of the GNC errors
given by eqg.32 and eq.33 are good approximations and that it is not necessary
to re-characterize the new DEO point through an MC analysis of the targeting
algorithm.
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Figure 23: Re-entry trajectories from DEO point to impact point.

8. Maximum probability of failure

Inverting eq.21 for the mission casualty risk introduced in sec.5, the maximum ad-
missible probability of control failure can be computed as function of the probability
associated with the safety box as:

1077/E, — «
l-a

Py < (52)
P depends on DEO point altitude, because a higher altitude results in a greater dis-
persion of the fragments as they fall through the atmosphere and hence a larger safety
box. Looking at the problem in a reversed sense, for the largest safety box that still
fits inside the SPOUA, the probability « that some fragments will fall outside the box
will increase as the DEO altitude increases. Therefore, for a given DEO altitude, there
will be a maximum admissible probability of control failure to be compliant with the
safety requirement. In this section, we describe a 5 steps procedure to obtain a reli-
able estimate of this maximum probability. The procedure takes advantage of both the
Single Step and the Multistep algorithms of the Inputs’ Statistics method to speed up
the computation and utilizes the convergence procedure described in sec.7 to fit the
safety box within the SPOUA. The procedure has to be repeated for any DEO altitude
for which the computation of the maximum admissible probability of control failure is
required.

1. Boundaries for «/,

Since the A-range is much larger than the C-range as proven in sec.6, the largest ad-
missible safety box is computed by determining when the A-range exceeds the SPOUA
width. Therefore, the probability of interest in the following computations is the proba-
bility outside the A-range, indicated with «,,. In sec.6.3, «,, was related (conservatively)
to the overall probability outside the safety box as a,, = 0.1a. The largest ¢/, that is nec-
essary to consider is the one that makes P, equal to zero, that is a%‘” = 0.1(1077/E,).
The DEO altitude that corresponds to this «/, limit is the theoretical maximum altitude
that can be targeted (if P, = 0) while still respecting the safety requirement. In a real

43



case, the maximum DEO altitude will be less according to the minimum probability of
control failure that the mission can guarantee. In contrast, there is no well defined limit
for the smallest «/,, but very small @/, values have almost no influence on the P, com-
putation. This is because when ¢/, is small, the casualty risk associated with fragments
falling outside the SPOUA is not significant compared to the risk associated with a po-
tential of control failure. This is true when 1077/E, >> @, so we set a}]" = 107(1077/E,).

2. Computation of a safety box exceeding the SPOUA through the Single Step algo-
rithm

Starting from an initial guess of the optimal DEO point, the Single Step algorithm is
applied iteratively to obtain an initial estimate for the probability outside the pdf con-
tours o’ that provides a safety box exceeding the SPOUA. Starting with o° = o¥** and

o : 1/
decreasing it progressively as: '
a.]

- = (53)

the A-range is computed at each iteration j. If o/ < /" and A-range’ is still smaller
than the maximum A-range admissible for the SPOUA, than the probability of a frag-
ment landing outside the maximum admissible safety box is so small compared to
(1077/E,) that it can be neglected and the iterative procedure can be stopped. In this
case Py ~ (1077/E,). If o/ > /™ and A-range’ is greater than A-range™*, o/ is a con-
servative estimate for a;, and can be used in the next step.

aj+1

3. First estimation of «;, through the Multistep algorithm

The value of o/ estimated at the last step of the previous iterative process guaran-
tees an A-range larger than the A-range™**. Therefore, using it as initial value for the
Multistep algorithm, the A-range is progressively decreased at each iteration k£ and the
probability of debris falling outside the A-range* is estimated. Let us call this probability
P’S* in accordance with the nomenclature in ref.[45]. The process will eventually con-
verge to an estimate of the A-range such that P/s* ~ a/. However, it is forced to stop
prematurely as soon as the A-range becomes smaller than the A-range”**. Thus,
A-ranget is the largest one that can fit within the SPOUA and the associated P'" is
a good initial estimate of a;,. If P’ < ay/", we can approximate «,, as zero and P
as (107/E,). If o/ = o} and PIs* < /™ without satisfying the condition A-range* <A-
range™®, then a;, > o™* and P, can be approximated as 0. In all cases where the
algorithm terminates prematurely and o} < Ps* < a)y/*, the probability outside the
current pdf contour o* as well as the U-range* and the D-range* associated with the
A-range* are stored and used in the following steps.

4. Computation of the optimal DEO point

In the previous steps, the safety box associated with A-range* is obtained from a DEO
point which may not be the optimal one, so it is likely that the D-range exceeds the
SPOUA. An example of the safety box corresponding to such a DEO point is shown
in red in fig.24 for the case of hpro = 124 km. Using the convergence procedure
described in sec.7 and the new values of U-range* and D-range*, the optimal DEO
point can be computed such that the safety box fits within the SPOUA as shown in
yellow in fig.24. Subsequently, the values of U-range* and D-range* can be corrected
as shown in green in fig.24 through the modified Single Step algorithm starting from
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the previously estimated o*.
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Figure 24: Correction of the maximum safety box that can be fitted within the
SPOUA starting from 124 km DEO altitude.

5. Final estimation of «;, through MC simulation

A MC simulation can be performed to precisely estimate P’S* with the prescribed con-
fidence level and relative error. The number of required sample trajectories N is com-
puted through eq.18 using the previous estimate of P*S*. Only those samples that fall

outside the pdf contour g" associated with o* are actually simulated. In addition, if the
N* samples previously simulated with the Multistep algorithm are stored, it is only nec-
essary to simulate another N — N* samples. After the simulations, P’S* is computed
by counting the number of samples that fall after D-range* or before U-range* and di-
viding by N. Thus P’ is a reliable estimate of «;,. The final estimate of the probability
a of debris falling outside the largest safety box that can be fit within the SPOUA for
a given DEO altitude is then simply computed as: a = 10 P/5*. Finally, eq.52 provides
the maximum permissible probability of failure P, that yields a casualty risk less than
1077 for that specific DEO altitude.

In conclusion the computational time required by this procedure to compute P, for
a specific DEO altitude is equal to the time that would be required by the Multistep
algorithm to estimate a probability on the order of P/5* for a specified confidence level
and relative error. Since P8 is quite small for low DEO altitudes, this procedure is
significantly more efficient than the CMC. We have repeated this computation for sev-
eral values of DEO altitudes and the resulting P, values are shown in fig.25. Given a
specific mission with a predetermined P/, fig.25 provides the maximum DEO altitude
that can be targeted to meet the safety requirement.

Conclusion

This paper presents a safety analysis framework, based on the geometrical con-
cept of safety boxes, for the estimation of the casualty risk resulting from a small satel-

lite performing a controlled destructive atmospheric re-entry. A high fidelity model
45



0.014

0.012:

0.01 -

0.008 -~

0.006

0.004

0.002

0 | | | |
123 124 125 126 127 128
DEO altitude hpgo [km]

Figure 25: Maximum probability of control failure admissible to meet the safety
requirement.

is developed to estimate the aerodynamic and aerothermodynamic interaction of the
spacecraft with the airflow. Several uncertainties exist in this model, though, which are
captured by 50 uncertain variables. These uncertainties can be condensed in a set
of 12 high level variables that are able to fully describe the fragmentation process and
the re-entry dynamics. These variables are used in a reduced order model that can be
simulated with a computational time one order of magnitude smaller (0.7 seconds com-
pared to 30 seconds evaluated on the same standard desktop computer) than the time
required by the high fidelity model. The average location of the ground impact point
predicted by the reduced order model differed from that predicted by the high fidelity
model by only 50 km in the down track direction. Through a low budget (3460 samples)
Monte Carlo analysis of the high fidelity model, the high level variables can be statisti-
cally characterized. Simple linear fittings are utilized to generalize their errors for any
de-orbit (DEQO) point with the same geodetic altitude without needing to re-perform the
Monte Carlo analysis of the high fidelity model. The reduced order model is coupled
with the Inputs’ Statistics method to obtain the estimate of very low probabilities within
a reasonable computational time. Considering a confidence level of 95% with 10% rel-
ative error, only about 15% — 4% of the samples of a Crude Monte Carlo method will be
required when using the Inputs’ Statistic method to compute probabilities on the order
of 10 - 10~°. The computational time required to estimate a probability of 10> for this
problem is thus reduced from a hypothetical 10 months for the Crude Monte Carlo to
12 days, with the possibility of parallelizing the computation.

In addition, a convergence procedure is suggested to target an optimal Aimed Im-
pact Point in order to place the safety box perfectly in the middle of the South Pacific
Ocean Uninhabited Area (SPOUA). This convergence procedure exploits a modified
version of Single Step algorithm of the Inputs’ Statistics method and is computation-
ally inexpensive (few minutes). The procedure is therefore able to compute the latitude
and longitude of the optimal DEO point that can be provided as an input to the de-orbit
point targeting algorithm to minimize the casualty risk for a specific re-entry scenario.
Finally, using this convergence procedure and the Multistep algorithm of the Inputs’
Statistics method, it is possible to set up an iterative procedure to estimate the prob-
ability of a debris fragment landing outside the largest possible safety box that can

46



fit within the SPOUA. This probability is related with an inequality constraint to 1) the
casualty risk of uncontrolled re-entry estimated to be 8.3x10~7 in this 2U CubeSat case
study, 2) the maximum allowable casualty probability for the mission, considered to be
1077, and 3) the maximum probability of failure to control the spacecraft to the desired
DEO point. The maximum probability of failure is estimated for different DEO altitudes.
The maximum theoretical DEO altitude that could be targeted such that the casualty
risk is below 1077 if the mission is able to guarantee a zero probability of failure is
128 km. With a reasonable value of 0.01 probability of failure, the mission will be com-
pliant with the safety requirement as long as the optimal DEO location at an altitude
below 125 km is targeted.
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