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Space debris accumulation is on the rise as commercial space applications become more affordable and existing

satellites near the end of their operational lifetimes. For geosynchronous equatorial orbits, solar radiation pressure

provides a unique solution for the removal of larger debris such as inoperable satellites. Given the current state of the

art in solar sailing technology, a CubeSat can be tasked to deorbit satellites on the order of 1000 kg using a high-

performance solar sail for propulsion. ThisCubeSat, called “TugSat,” is simulated in this study, virtually deorbiting a

satellite from geostationary orbit without the use of standard propulsion systems. This same TugSat can be reused

indefinitely, between the geosynchronous equatorial orbit belt and the retirement orbit, to continuously remove

debris from valuable geostationary orbit slots. The entire deorbit maneuver will demonstrate control of a satellite’s

semimajor axis, eccentricity, inclination, and geosynchronous equatorial orbit belt longitude: all using techniques to

optimize time rates of change in the satellite’s orbital elements. The TugSat concept provides a low-cost reusable

means for geosynchronous equatorial orbit belt cleanup or open-ended geosynchronous equatorial orbit belt mission

applications.

Nomenclature

A = surface area, km2

a = semimajor axis, km
e = eccentricity
i = inclination, rad
J = cost function
m = mass, kg
n̂ = sail surface normal unit vector
r = position magnitude, km
r = position vector, km
U = candidate error function
u = argument of latitude, rad
v = velocity magnitude, km∕s
v = velocity vector, km∕s
x = state column vector (matrix notation)
ζ = orbital element parameter vector
θ = angle between sail surface normal and sun position vectors,

rad
λ = longitude, rad
μ = gravitational parameter, km3∕s2
ν = true anomaly, rad
σ = state error
ϕ = phase angle, rad
ω = angular velocity rad∕s
� = Earth

= moon
⊙ = sun

I. Introduction

O RBITAL debris accumulation is a topic of growing interest as
the number of artificial satellites increases each year. Spent

rocket bodies and dead satellites litter Earth orbits, threatening
interference with operational satellites or increased fragmentation
due to debris-to-debris collision. At geosynchronous equatorial
orbits (GEOs), debris accumulation is not as severe as that present in
low Earth orbits (LEOs); however, the GEO is operationally more
restrictive due to its narrow dimensions. The Inter-Agency Space
Debris Coordination Committee (IADC) has defined the dimensions
of the GEO region as presented in Table 1 [1,2]. Satellites in this
region do not experience atmospheric drag, so abandonment of assets
in the GEO belt poses an indefinite problem for geostationary
operations. It is common practice to deorbit end-of-life satellites to
graveyard orbits above theGEO belt; however, orbital debris runs the
risk of reentering the GEO belt due to the effects of solar radiation
pressure (SRP). For these reasons, the IADC also establishes unique
deorbit guidelines for satellites in the GEO belt, which are presented
in Table 2 [1,2]. Unfortunately, only about one-third of end-of-life
GEO satellites have been able to meet these recommendations
because the vast majority of satellites experience subsystem failures
over their lifetimes [3,4]. The Galaxy 15 incident is a highly
publicized example of the orbital debris problem at GEO and the
potential impact of space congestion on satellite operations [5]. As
Galaxy 15 drifted through the GEO belt, multiple satellites were at
risk of collision, requiring some to perform avoidance maneuvers.
Although control was eventually regained for Galaxy 15, for many
satellites, this is not possible.
To address unresponsive satellites, active debris removal methods

have been developed to retrieve and deorbit unwanted bodies from
orbit. For example, “Space Sweeper” is designed to eject LEO debris
by harnessing the momentum exchange of plastic collisions to
effectively sling orbital debris into lower orbit for eventual
deorbit using atmospheric drag [6]. The Geosynchronous Large
Debris Reorbiter GEO debris through the attraction of charged
particles between a reorbiter spacecraft and the unwanted debris; by
willfully maintaining an attractive force between the two bodies,
GLiDeR can reorbit GEO debris to an acceptable graveyard orbit [7].
The focus of this paper also addresses maintenance of the GEO belt,
harnessing SRP as the primary means of propulsion to perform
repeated deorbit of orbital debris. The proposed satellite concept,
called TugSat,will use a large, highly reflective solar sail tomaneuver
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a deorbiter satellite, with captured payload, to a disposal orbit beyond
the GEO belt. TugSat can then be reorbited to GEO for rendezvous in
a desired GEO slot for capture of another drifting payload.
Using environmental forces to enhance satellite operation has been

the topic of many works, leading to interesting methods of satellite
control ranging from semimajor axis control using the Earth’s magnetic
field [8] to satellite formation control bymeans of atmospheric drag [9].
Control of spacecraft in thismanner can reducepropellant dependencies,
minimize control efforts, or extend satellite life spans. This paper is
concerned with the viability of orbital control of a satellite using the
momentumexchangeof sunlight.With the absenceof atmospheric drag,
the next most significant nonconservative perturbation is SRP. The
results presentedherewill proveorbital debris removal canbeperformed
using solar sails, providing free and near-infinite delta-V and allowing
for repeated characterization of a satellite’s orbit bymeans of semimajor
axis, eccentricity, inclination, and longitude control.
Solar radiation pressure has already been proven a capable means of

propulsion, especially in the formationof exoticnon-Keplerian orbits or
interplanetary transfer orbits [10,11]. Many works focus on sail
applications in a heliocentric sense, determining optimal guidance,
solutions to orbit transfers within the solar system, or even thrust
vector control strategies using sail orientation [12–14]. Unfortunately,
heliocentric solutions do not directly translate to planetocentric
environments; therefore, it is necessary to derive separate techniques for
more practical applications. Earth-orbiting solar sailing applications
have been proposed for assistance in satellite disposal for low Earth
orbits [15] or medium Earth orbits [16], as well as escape from
geosynchronous orbits [17]. Thesemaneuvers are achieved by aligning
a solar sail to alter a satellite’s orbital velocity to raise or lower the
satellite’s altitude. Specific strategies for changes in semimajor axis and
eccentricity were given in [18], illustrating appropriate satellite
orientations throughout the orbit, based on the relative position between
the spacecraft and the sun. It is clear from these findings that
acceleration and velocity vector geometries play a key role in
controlling the effect of applied SRP forces. In an effort to address the
orbital debris problem, this research presents a geometrical method for
optimizing the rates of change in the orbital elements that are necessary
to successfully deorbit a defunct satellite. To address the challenge of
satellite placement into orbital slots in the GEO belt, the control
techniques will also be used to perform targeting of GEO belt
longitudes. Unlike heliocentric applications, the methods presented
here do not benefit from fixed sun locations; therefore, solutions are
inherently nonlinear and do not lend themselves to the same analytical
elegance presented in the plethora of heliocentric works.
The current state of the art in solar sailing technology is

demonstrated with such examples as the Japan Aerospace Exploration
Agency’s (JAXA’s) InterplanetaryKite-craft Accelerated byRadiation
Of the Sun (IKAROS) [19], the Planetary Society’s LightSail-1 [20],
andNASA’s Sunjammer [21]. JAXA’s IKAROS inparticular is the first

satellite to use solar radiation pressure as its primary means of
propulsion and is capable of attitude and orbit control using a high-
performance solar sail. LightSail-1 was a 10 × 10 × 34 cm, or 3U,
CubeSat that successfully deployed a highly reflective, 32 m2 solar
sail in LEO before tumbling back into Earth’s atmosphere after seven
days of orbit. Sunjammer boasts the largest solar sail ever constructed,
weighing 32 kg with a 38 × 38 m solar sail and a surface area of over
1200 m2. With these satellites in mind, other ambitious uses for solar
sailing satellites are presented in the body of this study.
The TugSat concept introduces a sail-propelled deorbit method using

a nonlinear controller. This controller produces sail orientations capable
of tracking desired semimajor axis, eccentricity, inclination, and
longitude values as necessary to achieve satellite deorbit and GEO slot
rendezvous. This is achieved by optimizing time derivatives for the
satellite’s orbital elements based on the satellite’s SRP exposure
using the Gaussian variation of parameters (VOPs) equations. Key
geometric relationships between the satellite’s acceleration and orbital
velocity vectors will dictate the implementation of these optimized
sail orientations. These orientations are validated using Monte
Carlo simulations. Ultimately, through a combination of sail-based
maneuvers, the TugSat simulation will demonstrate deorbit of defunct
satellites from the GEO belt, as well as placement of the deorbiter
satellite into desired slots within the GEO belt. Throughout these
maneuvers, thrusters are only assumed necessary to dump momentum
during attitude control of the solar sail [22]. The entire mission is
considered successful once the deorbiter reenters the GEO belt, as
defined by the IADC, at the correct longitude. Fromhere, an appropriate
relative motion model using Clohessy–Wiltshire equations or relative
orbital elements can be employed to address the challenge of satellite
docking and rendezvous with another defunct satellite. The satellite
rendezvous problem is not addressed in this body of work.
The remainder of the paper is organized as follows: Sec. II

introduces the dynamics of a satellite operating at geosynchronous
altitudes, Sec. III addresses the control techniques employed to
manipulate key orbital elements, Sec. IVoutlines the TugSat mission
concept, and Sec. V provides a summary of the findings presented in
the previous sections.

II. Satellite Dynamics Model

A. Force Model

The dynamics model for the GEO orbit includes three gravitational
contributions and one nongravitational perturbation. Gravitational
influences come from the Earth’s gravity, which includes the C2;0 and
C2;2 gravitational harmonic coefficients, and third-body perturbations
from the moon and sun. Acceleration from the solar radiation pressure
is the only nongravitational perturbation and acts as the control input
for the maneuvers presented in Secs. III and IV.
The total acceleration acting on the satellite can then be

described as

As illustrated by Montenbruck and Gill ([23] p. 55), the Earth’s
gravitational acceleration at GEO is on the order of 10−2 km∕s2,
with oblateness contributions on the order of 10−6 km∕s2 and
10−10 km∕s2 for C2;0 and C2;2, respectively. The effects of the sun
and moon exhibit accelerations on the order of 10−8 km∕s2.
Geostationary satellites, with typical area-to-mass ratios on the
order of 0.01 m2∕kg, experience SRP perturbations on the order of
10−10 km∕s2. This magnitude poorly competes with the gravitational
accelerations; however, by increasing the area-to-mass ratio of the
satellite, the magnitude of the experienced SRP acceleration can
increase to match or even overcome the effects of the sun and moon.
The Earth-based accelerations expressed in an Earth-centered

Earth-fixed (ECEF) principal axis coordinate system are

�r� � 2ω�

2
664

_y

− _x

0

3
775� ω2�

2
64
x

y

0

3
75 − ∇Ψ (2)

Table 1 ProtectedGEObelt region

Property Value

GEO altitude 35,786 km
Lower altitude GEO − 200 km
Upper altitude GEO� 200 km
Inclination �15 deg

Table 2 GEO region disposal guidelines

Property Requirements

Perigee
altitude ≤GEO� 235 km� �1000 ⋅ CR ⋅ �A∕m��

235 km: sumof the upper altitude of theGEOprotected region
(200 km) and the maximum descent of a reorbited
spacecraft due to lunisolar and geopotential
perturbations (35 km)

CR: solar radiation pressure coefficient, 1 ∼ 1.5
A∕m: aspect area to dry mass (m2∕kg)

Eccentricity ≤0.003
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with

Ψ � −
μ

r

�
1�

�
�α

r

�
2
�
3C2;2

x2 − y2

r2
−
1

2
C2;0

�
1 − 3

z2

r2

���
(3)

where ω� is the angular velocity of the Earth; x, y, and z are the
satellite’s position coordinates in the principal axis coordinate
system; and Ψ is the gravitational potential from the Earth, with the
gravitational parameter μ, mean radius of the Earth �α, gravitational
harmonic coefficientsC2;0 and C2;2, and satellite position magnitude
r. The principal axis coordinate system is the standard ECEF
coordinate system rotated −14.93 deg about its ẑ axis [24]. The
behavior of a satellite under the influence of these Earth dynamics
was examined by Lara and Elipe [25]. From Vallado ([26] p. 575),
third-body perturbations can be modeled as

�rk � −
μk
r3�k

"
r −

�
3
r ⋅ r�k

r2�k

−
15

2

�
r ⋅ r�k

r2�k

�
2
�
r�k

#
(4)

where μk is the gravitational parameter for third-body k, and r�k is the
position vector of third-body k (with magnitude r�k) as measured
from an Earth-centered inertial (ECI) coordinate system. The ECI
expression for acceleration due to SRP is modeled by Montenbruck
and Gill ([23] p. 81) as

�rSRP�−κP⊙

AU2

r2⊙

A

m
cosθ��1−ε�r̂⊙�2εcosθn̂	; θ∈

�
0;
π

2

�
(5)

with the solar radiation pressure magnitude P⊙, the satellite distance
from the sun r, the astronomical unit (AU), the shadow coefficient κ
(from themoon and theEarth), the reflectivity coefficient ε, the area-to-
mass ratioA∕m, and the angle θ between the sundirectionvector r̂⊙ (as
measured from the satellite) and the sail surface normal n̂. Because the
sail normal direction is measured from the surface facing the sun, θ is
restricted to values between zero and π∕2. For Earth orbits, the solar

radiation pressureP⊙ is approximately 4:57 × 10−6 N∕m2 and can be
scaled basedon the instantaneous distance between the satellite and the

sun (AU2∕r2⊙).Under a few assumptions,AU2∕r2⊙ ≈ 1, κ � 1, ε � 1,
a characteristic acceleration can be defined as

ac � 2P⊙

A

m
(6)

and Eq. (5) takes the approximate form

�rSRP ≈ −accos2θn̂; θ ∈
�
0;
π

2

�
(7)

From Eq. (7), it is clear that the magnitude of the experienced SRP
acceleration directly depends on the orientation of the sail surface
normal. The direction of the SRP acceleration can be determined as a
result of assuming perfect reflectivity (ε � 1). Due to the specular
reflection of incident photons, the satellite will experience an SRP force
acting in the direction opposite that of the sail surface normal, thrusting
in the −n̂ direction. In this way, the SRP force can be directed in any
direction negatively aligned with the sun position vector. Sail alignment
at θ � 0 (surface normal in line with the sun position vector) will
produce maximum SRP magnitudes, directed away from the sun.
Orientations with θ � �π∕2� (sail perpendicular to the sun) experience
minimal accelerations, making it possible to “turn off” SRP, assuming
negligible accelerations acting on the satellite bus structure. Intermediate
orientations will result in SRP accelerations acting in the direction
opposite the sail surface normal with decreasing magnitudes as θ
approaches π∕2. Figure 1 illustrates the relationship between the
experienced SRP force and the sun direction vector.
In the upcoming sections, simulations are based off a 50 kg satellite

equipped with a perfectly reflective, 800 m2 (approximately
28 × 28 m) solar sail. This area is based on attainable sail sizes and
desirable area-to-mass ratios, given the current state of the art for solar

sailing satellites. With the additional mass of a 1000 kg payload, the

area-to-mass ratio of the total system is 0.76 m2∕kg, resulting in a

characteristic acceleration of approximately 6:95 × 10−9 km∕s2
at GEO.

B. Gaussian Variation of Parameters

The satellite control logic will make use of time derivatives for the

satellite’s orbital elements to characterize the response of the

semimajor axis, eccentricity, and inclination to solar radiation

pressure. Expressions for these rates of change can be determined

using the Gaussian variation of parameters formulas as detailed in

([26] p. 636). The VOP equations of interest are expressed in the

following manner:

da

dt
� 2

n
�������������
1 − e2

p
�
e sin�ν�FR � p

r
FS

�

de

dt
�

�������������
1 − e2

p

na

�
sin�ν�FR �

�
cos�ν� � e� cos�ν�

1� e cos�ν�
�
FS

�
di

dt
� r cos�u�

na2
�������������
1 − e2

p FW (8)

where n is the mean motion, p is the semiparameter, and u is the

argument of latitude. The perturbing forces, FR, FS, and FW are

components of the specific force vector F in the local vertical, local

horizontal coordinate system with R̂ pointing along the position

vector of the satellite, Ŝ in the orbit plane perpendicular to R̂
and in the direction of satellite motion, and Ŵ � R̂ × Ŝ.
Equation (8) can be written in matrix form as the product of

two matrices Z and F defined as

Z�

2
666666664

2

n
�����������
1−e2

p esin�ν� 2

n
�����������
1−e2

p p

r
0

�����������
1−e2

p

na
sin�ν�

�����������
1−e2

p

na

�
cos�ν�� e�cos�ν�

1�ecos�ν�
�

0

0 0
rcos�u�

na2
�����������
1−e2

p

3
777777775

(9)
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Fig. 1 Two-dimensional polar representation of the SRP force envelope
based on sun direction. Radial magnitudes are fractions of the maximum
available SRP force.
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and

F � �FR FS FW 	T (10)

resulting in

_q � ZF (11)

where

q � � a e i 	T (12)

The rows of the Z matrix can be thought of as row vectors ζq
corresponding to a specific orbital element q ∈ fa; e; ig:

ζq � � ζq;R ζq;S ζq;W 	 (13)

Z � � ζTa ζTe ζTi 	T (14)

These expressions will be used to determine sail orientations
that help achieve desired semimajor axis, eccentricity, and
inclination values for a solar sailing satellite. Note the state
dependence of Z.

III. Optimized Sail Orientation

As described in the previous section, the exerted SRP force can only
oppose the sun position vector ��rSRP ⋅ r̂⊙ < 0�. This adds a significant
performance constraint by removing any solutions requiring a control
input with a positive SRP force component along the sun position
vector. To add further complications, the force magnitude is not
uniform across all sail angles: θ ∈ �0; �π∕2�	. These constraints
result in underactuated low-thrust satellite maneuvering. Given
these complex, nonlinear equations and stringent constraints, the
formulation and solution as a direct optimal control problem are
considered infeasible. Additionally, a formal Lyapunov-based control
scheme is unattainable due to the irregular availability of SRP and the
inability to continuously overcomegravitational disturbances from the
Earth, moon, and sun. As a result, the developed method will address
control of a satellite’s orbital elements sequentially, accepting any
coupled effects on the remaining orbital elements as well as
disturbances from the third bodies and Earth’s oblateness. Controlling
the satellite’s orbit in this manner requires careful consideration of the
order in which to address each orbital element, and it does not result in
precise tracking of a desired state. For the TugSatmission in particular,
it is onlynecessary todeorbit, reorbit, and target specificGEObelt slots
using SRP. These tasks have broad requirements for a, e, i, and
longitude values; and they have no restriction on Ω, ω, and ν values.
A new coordinate system will now be introduced to optimize _q

based on the sun direction unit vector r̂⊙ and aVOP vector ζ made up
of the components of ζTq . New basis vectors are defined as follows:

ê1 � r̂⊙ (15)

ê2 �
ζ − �ζ ⋅ r̂⊙�r̂⊙
kζ − �ζ ⋅ r̂⊙�r̂⊙k

(16)

ê3 � ê1 × ê2 (17)

In this coordinate system, an angle α is formed between ê1 and the
projection of n̂ in the ê1–ê2 plane, an angle β is formed between ê1
and ζ, and an angle δ is formed between the ê1–ê2 plane and n̂. These
relationships are illustrated in Fig. 2. With this new basis, the
following vector relationships can be determined:

n̂ � cos α cos δê1 � sin α cos δê2 � sin δê3 (18)

r̂⊙ ⋅ n̂ � cos α cos δ (19)

ζ ⋅ n̂ � kζk�cos β cos α cos δ� sin β sin α cos δ	 (20)

where kζk is the magnitude of the parameter vector ζ.
Recall, fromEq. (11), that the change in an orbital element q due to

SRP is

_q � ζqFSRP (21)

Using Eq. (7) to model the specific force due to SRP results in

_q � −�accos2θ�ζqn̂ (22)

where n̂ is the matrix equivalent to n̂. From Eqs. (18–20), Eq. (22)
can be expressed in terms of angles α, β, and δ:

_q � −ac
		ζ		cos3δ�cos2α�cos α cos β� sinα sin β�	

� −ρcos3δ�cos2�α� cos�α − β�	 (23)

where ρ is the product of the characteristic acceleration ac and the
VOP vector magnitude ζ. To calculate the extrema of Eq. (23), it is
required that cos δ � 1 → δ � 0, restricting n̂ to the ê1–ê2 plane and
resulting in

n̂ � cos αê1 � sin αê2 (24)

Because r̂⊙ ⋅ n̂ ≥ 0, it follows that α ∈ �−π∕2; π∕2	. A cost
function J can now be defined as

J � cos2�α� cos�α − β� (25)

which can be used to optimize Eq. (23) and yield instantaneous
maximum rates of change in q. With β determined by the sun position
vector ê1 and the parameter vector ζ, α is the only controllable angle in
J. As a result, the solution space for potential control inputs varies as
the satellite orbits the Earth. The desired α angle can be determined
over the range �−π∕2; π∕2	, which either minimizes or maximizes J.
Equation (24) will give the desired sail orientation using the optimized
α angle. Using Eq. (25), instantaneous maximum or minimum rates of
change can be attained for the satellite’s orbital elements.
To achieve a desired orbital element value qd, Eq. (25) can be

augmented. First, define the element error σq as the difference
between the actual and desired orbital element values:

σq � q − qd (26)

To reduce this error, a nonnegative scalar functionU is developed as

U � 1

2
σ2q (27)

Fig. 2 Illustration of vector relationships for optimized sail orientation.
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with derivative

_U � σq _σq (28)

The control input can be determined through _σq and should be

designed tomake _U negative. This can be achieved by setting _σq equal
to a scaled negative of σq

_σq � −kσq (29)

with scaling constant k > 0, resulting in

_U � −kσ2q (30)

which is a nonpositive derivative. In the development that follows, the

sail orientation angle θ will be determined such that Eq. (29) is

achieved, thereby proving convergence of the error σq toward zero.
Recall, from Eq. (8), that the orbital element error time derivative

can be expressed in the following form:

_σq � ζq;RFR � ζq;SFS � ζq;WFW � ζqF (31)

The specific force F contains contributions from the gravitational

harmonic coefficients, third bodies, and solar radiation pressure.

Grouping the gravitational contributions together in Fgrav, the specific

force can be rewritten as

F � Fgrav � FSRP (32)

resulting in

_σq � ζq�Fgrav � FSRP�
� ζqFgrav � ζqFSRP (33)

IntroducingD as the product of ζq and Fgrav, and once again using

Eqs. (22) and (23), the error derivative becomes

_σq � D − �accos2θ�ζqn̂ (34)

From Eqs. (23) and (29), the error derivative can be expressed in

terms of σq and angles α, β, and δ:

−kσq � D − ρcos3�δ�cos2�α� cos�α − β� (35)

Isolating the α terms, Eq. (35) produces

D� kσq
ρ

� cos3�δ�cos2�α� cos�α − β� (36)

with cos3�δ�cos2�α� cos�α − β� bounded between �−1; 1	. Recalling
thatD, ρ, and β are dictated by geometry, values for k, δ, and αmust be

determined to achieve Eq. (36). Notice that, regardless of the design of

the scaling constant k, no guarantees can be made to bound the left side

of Eq. (36) between �−1; 1	 due to the uncertainty (in both sign and

relative magnitude) of the disturbance D. Orientations that isolate

beneficial components of the available solar radiation force vector often

do not produce strong enough SRP accelerations to continuously

overcome the gravitational disturbances. Ultimately, without the use of

unrealistic, very large solar sails, the experienced solar radiationpressure

is not guaranteed tobe thedominant perturbation. For this reason,Monte

Carlo simulations are employed to prove the effectiveness of this control

strategy. The determination of an analytic stability proof for this

controller is ongoing, and is a separate research topic beyond the scope

of this paper. To best achieve Eq. (36), n̂will once again be restricted to

the ê1–ê2 plane by choosing δ � 0. The scaling constant k is a flexible
design choice, chosen toweight control of the error against the effects of

D. The augmented cost function becomes

Jq �




D� kσq

ρ
− cos2�α� cos�α − β�





 (37)

to be minimized numerically across the interval

α ∈
�
−
π

2
;
π

2

�

because no analytical solution exists for Eq. (37).
Toggling control between the orbital elements in this manner results

in switched system-like behavior. The state evolution can be interpreted
to switch between two sets of dynamics: a system under the influence of
SRP, and a system free of SRP. A nested layer of switching exists within
the SRP dynamics, where the sail orientations work to enhance changes
in a specific orbital element. In a general sense, the orientations utilize
only the desirable effects of the solar radiation pressure. When no
desirable SRP contributions exist within a given SRP solution space
(e.g., all possible sail orientations result in an increase in semimajor axis
when attempting to decrease the satellite’s semimajor axis), the solar sail
is oriented perpendicular to the incoming sunlight, minimizing the
contribution from the SRP force.

IV. TugSat

The TugSat simulation will demonstrate the potential to remove
orbital debris from theGEObelt using a solar sailing satellite.Recall that
TugSat is simulated as a 50 kg satellite equipped with an 800 m2 solar
sail, resulting in an area-to-mass ratio of 16 m2∕kg. In simulation, the
satellite will be deorbiting a 1000 kg payload, decreasing the area-to-
mass ratio of the total system to 0.76 m2∕kg. Initialized in equatorial
orbit within the GEO belt, TugSat will begin by raising the semimajor
axis of its orbit by 350 km. Once the semimajor axis target is achieved,
TugSat will begin reducing the eccentricity of its new orbit while
maintaining an altitude above the IADC guidelines for graveyard orbits.
Next, TugSatwill release the 1000 kg payload and begin descent back to
the GEO belt, targeting a desired GEO belt longitude for rendezvous
with another payload. These maneuvers will be executed using the
optimized sail orientations and implemented under the full dynamics
model as described in Sec. II. The following simulations will expand
upon theTugSatmaneuverswhile demonstrating switched control of the
semimajor axis, eccentricity, inclination, and longitude.

A. Semimajor Axis

The first goal for deorbit using TugSat is to increase the semimajor
axis of the payload. An increase in the semimajor axis will result in an
increase in the satellite’s apogee and a net increase in the satellite’s
average orbital altitude. For tracking of a desired semimajor axis ad,
the error function is written as

U � 1

2
σ2a

� 1

2
�a − ad�2 (38)

with

_U � σa _σa

� �a − ad� _a (39)

The expression for _a is known from Eq. (8), and the semimajor axis
error canbe foundusing themethodsdescribed inSec. III. Implementing
the semimajor axis orientations results in the behaviors illustrated
in Fig. 3.
To verify the reliability of these orientations, 1000 simulations were

performed to target a desired semimajor axis. These simulations were
configured using uniformly randomized initial conditions as detailed
in Table 3. These initial conditions place the satellite within 200 km of
the GEO altitude and 1° latitude of theGEO slot. All simulations result
in successful error convergence as illustrated in Fig. 4.
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B. Eccentricity

Once the desired semimajor axis is attained, the eccentricity must

be reduced so that both perigee and apogee values remain above the

graveyard orbit threshold. Two methods are now presented.

1. Greedy Approach

The error function corresponding to eccentricity control is

U � 1

2
σ2e

� 1

2
�e − ed�2 (40)

with

_U � σe _σe

� �e − ed� _e (41)

whereed is the desired eccentricity. The expression for _e is knownfrom
Eq. (8), and the sail orientations to minimize the eccentricity error can

be found using the methods described in Sec. III. Implementing these

orientations can reduce the eccentricity as illustrated in Fig. 5.
To validate these orientations, 1000 simulations were executed

with initial conditions described in Table 4. As displayed in Fig. 6,
eccentricity values can be reduced to steady-state values of around
e � 1.75 × 10−3, corresponding to a difference of 160 km between
apogee and perigee values, using these orientations.

2. Velocity Monitoring

For smaller A∕m, eccentricity reduction using SRP can be
improved through a partnering with the existing gravitational
accelerations. Recall that the satellite dynamics are dominated by
these gravitational effects. These accelerations persist and cannot be
controlled; however, their effects on the satellite orbit can be
enhanced using SRP. In simulations, it was noted that, if the
eccentricity control was modified as follows, a lower transient
response resulted.

Fig. 3 Sail orientations to increase the semimajor axis. Position and semimajor axis values are zeroed at the GEO belt.

Table 3 Simulation properties for semimajor axis control testsa

Orbital
elements Range

a0 Semimajor axis 42,164 km
e0 Eccentricity ∈ �0; 0.005	
i0 Inclination ∈ �−0.0175; 0.0175	 rad
Ω0 Right ascension of the ascending node ∈ �0; 2π	 rad
ω0 Argument of perigee ∈ �0; 2π	 rad
ν0 True anomaly ∈ �0; 2π	 rad
ad —— a0 � 500 km

aSimulation durations of one year, initialized between the years 2000 and 2020.

Fig. 4 Performance results of 1000 simulations to target desired

semimajor axis.

442 KELLY ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
FL

O
R

ID
A

 o
n 

A
pr

il 
9,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

33
87

2 

https://arc.aiaa.org/action/showImage?doi=10.2514/1.A33872&iName=master.img-002.jpg&w=351&h=287
https://arc.aiaa.org/action/showImage?doi=10.2514/1.A33872&iName=master.img-003.jpg&w=237&h=193


To begin, note the characteristic velocity of a circular orbit
(neglecting perturbations) in terms of semimajor axis and gravitational
parameter:

vcircular �
���
μ

a

r
(42)

By polling the orbital velocity, it can be determined whether to
accelerate or decelerate the satellite by comparing the velocity to the
value givenbyEq. (42). Solar radiation pressure can be used to amplify
the desirable effects from the gravitational accelerations, accelerating
or decelerating the satellite as necessary. A velocity-monitoring
algorithm is now presented to determine when to implement the
eccentricity orientations for improved reduction of eccentricity:

if

v ⋅ agravity > 0 and v ⋅ r̂⊙ < 0 and v < vcircular

or

v ⋅ agravity < 0 and v ⋅ r̂⊙ > 0 and v > vcircular

then

n̂ � cos αê1 � sin αê2 (43) where α is determined using the techniques from Sec. II, and the total
gravitational acceleration vector is defined as

This algorithm states that the total gravitational acceleration vector

must be in positive alignment with the orbital velocity vector to
increase thevelocitywithSRP, or innegative alignmentwith the orbital
velocity vector to decrease the velocity with SRP. If neither of the

conditions of Eq. (43) are met, the sail normal must be oriented
perpendicular to the sun position vector, minimizing the undesirable
effects of SRP. The results of this velocity monitoring technique are

illustrated in Fig. 7. The Monte Carlo analysis for the velocity
monitoring technique is displayed in Fig. 8 using the same initial
conditions fromTable 4.Using thismethod, annualmaximumchanges

in eccentricity of approximately 0.012 are possible. These sharp drops
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Fig. 5 Sail orientations to minimize eccentricity after raising semimajor axis. Position and semimajor axis values are zeroed at the GEO belt.

Fig. 6 Performance results of 1000 simulations to reduce eccentricity.

Table 4 Simulation properties for

eccentricity reduction testsa

Parameter Range

a0 42;164� 500 km
e0 ∈ �0; 0.015	
i0 ∈ �−0.0175; 0.0175	 rad
Ω0 ∈ �0; 2π	 rad
ω0 ∈ �0; 2π	 rad
ν0 ∈ �0; 2π	 rad
ed 0

aSimulation durations of two years, initialized

between the years 2000 and 2020.
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in eccentricity exist in periods of the orbit where beneficial vector
alignments exist as outlined in Eq. (43). The performance plateaus
indicate periods of poor alignment between the eccentricity and
gravitational acceleration vectors. Steady-state error convergence is
achieved at eccentricity values of approximately 0.001.

C. Inclination

Throughout the orbit, TugSat is exposed to out-of-plane
accelerations, which create an increase in inclination, leading to
oscillations of thousands of kilometers about the equator. Although
these inclinations are inconsequential during the removal of orbital
debris, they can pose problems for rendezvous with a desired orbital
slot. To address these drifts, an error function can be written as

U � 1

2
σ2i

� 1

2
�i − id�2 (45)

with

_U � σi _σi

� �i − id�
di

dt
(46)

to determine a control input to achieve the desired inclination id. As
before, the expression for di∕dt is known from Eq. (8), and sail
orientations to minimize the inclination error can be found using the
methods described in Sec. III.
To verify the utility of these orientations, 1000 simulations were

executed with initial conditions given in Table 5. For these
simulations, the satellite is without payload, characterized by anA∕m
ratio of 16 m2∕kg. The satellite is initialized to drift throughout the
GEO belt for 180 days, accumulating inclination changes due to
perturbations from Earth’s oblateness and third-body accelerations.
Results of these simulations can be found in Fig. 9, indicating
effective reduction of planar oscillations and return of the satellite to
the equatorial plane.
It is important to note that the inclination is only affected by out-of-

plane accelerations (those acting along the Ŵ direction). Solutions
producing the desired Ŵ acceleration may, however, include
components in the R̂ and Ŝ directions, potentially affecting the
semimajor axis and eccentricity behaviors in an undesirable manner.
A geometric workaround is to orient the satellite to only produce
accelerations in the Ŵ direction. This approach may not achieve the
desired control input fromEq. (46); however, the resulting orientation
will still produce the desired effect as confirmed in simulation.
Figure 10 illustrates the return to the equatorial plane using these
inclination tracking orientations. Geometries during the spring and
fall equinoxes account for the smaller oscillation events on the order
of 30 km. Orbits occurring near the equinoxes exhibit oscillations

Fig. 7 Sail orientations to minimize eccentricity, using velocity monitoring technique, after raising semimajor axis. Position and semimajor axis values
are zeroed at the GEO belt.

Fig. 8 Performance results of 1000 simulations to reduce eccentricity
with velocity monitoring.
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about the equatorial plane due to the geometries of the orbit

inclination and the sun direction vector. Favorable geometries simply

do not exist for long enough durations during these periods to allow

for continuous dampening using only Ŵ accelerations.

D. Longitude Targeting

Once TugSat has released its payload with an acceptable

semimajor axis and eccentricity, return to the GEO belt commences.

The return orbit requires controlled descent for placement into a

desired slot within the GEO belt for rendezvous with another

payload. A novel method for longitude targeting using SRP is now

presented, using semimajor axis changes and their resulting effects

on the satellite’s angular velocity.
To begin, the orbital longitude is now defined as

λ � ωt (47)

where λ is the longitude of interest, ω is angular velocity of the GEO

slot, and t is the time since a reference epoch. For circular orbits, the

angular velocity is equivalent to the mean motion n as follows:

ω � n �
�����
μ

a3

r
(48)

The phase angleϕ between the satellite’s longitude and the desired

GEO slot longitude will be defined as

ϕ � λsatellite − λslot (49)

From Eq. (48), it is clear that the angular velocity of a satellite in

circular orbit has an inverse relationship with the semimajor axis.

With this information, a satellite can speed up to a leading GEO slot
by decreasing its semimajor axis or slow down to a trailing GEO slot
by increasing its semimajor axis.
To derive the optimized orientations for longitude targeting, the

time derivative of the longitude error ϕ must be expressed as

_ϕ � d

dt
�λsatellite − λslot� (50)

The angular velocity of the GEO slot is constant, so the time
derivative of λslot is simply the mean motion of the slot nslot. Due to
the small eccentricity of the satellite orbit, the longitude derivative of
the satellite will be defined as

_λsatellite � nsatellite (51)

resulting in

_ϕ � nsatellite − nslot (52)

For longitude control, an _a term is desired, which can be found by
taking one more derivative:

�ϕ � _nsatellite � −
3

2

�����
μ

a5

r
_a (53)

From these dynamics equations, a controller can be designed to
reduce the longitude error using the time derivative of the satellite’s
mean motion.
The candidate error function will be defined as

U � 1

2
ϕ2 � 1

2
η2 (54)

with error derivative

_U � ϕ _ϕ� η_η (55)

The η term is a backstepping error defined as the difference
between the satellite’s mean motion and the satellite’s desired mean
motion nd:

η � nsatellite − nd (56)

_η � _nsatellite − _nd (57)

This error will be used to drive ϕ to zero using an unmatched
control input. To introduce the backstepping error into the dynamics,
Eq. (52) is rewritten as

_ϕ � nsatellite − nslot � nd − nd

� η − nslot � nd (58)

Next, Eq. (53) will be used with Eq. (57), resulting in

_η � −
3

2

�����
μ

a5

r
_a − _nd (59)

Inserting these expressions into Eq. (55), the error derivative can
now be rewritten as

_U � ϕ�η − nslot � nd� � η

�
−
3

2

�����
μ

a5

r
_a − _nd

�
(60)

Equation (60) can be made nonpositive through the appropriate
design of nd and _a. A suitable design is presented as follows:

nd � nslot − kϕ (61)
Fig. 9 Performance results of 1000 simulations to reduce eccentricity
with velocity monitoring.

Table 5 Simulation properties
for inclination control testsa

Parameter Range

a0 42,164 km
e0 0
i0 0 rad
Ω0 ∈ �0; 2π	 rad
ω0 ∈ �0; 2π	 rad
ν0 ∈ �0; 2π	 rad
rz 0 km (inclination of 0 rad)

aSimulation durations of two years,

initialized between the years 2000 and 2020.
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_a � −
2

3

�����
a5

μ

s
� _nd − kϕ − kη� (62)

Combining Eqs. (60–62) results in

_U � ϕ�kη − nslot � nslot − kϕ�

� η

�
−
3

2

�����
μ

a5

r �
−
2

3

�����
a5

μ

s
� _nd − kϕ − kη�

�
− _nd

�

� −kϕ2 � kϕη� η� _nd − kϕ − kη − _nd�
� −kϕ2 � kϕη − kηϕ − kη2 (63)

ultimately yielding the nonpositive error derivative:

_U � −kϕ2 − kη2 (64)

Sail orientation angles can be determined by equating Eqs. (23)

and (62):

−
2

3

�����
a5

μ

s
� _nd − kϕ − kη� � ζa ⋅ ΓSRP

� −ackζakcos3δ�cos2α�cos α cos β
� sin α sin β�	 (65)

Choosing δ � 0 and recalling the definition of ρa as the product of
ac and kζak, Eq. (65) becomes

2� _nd − kϕ − kη�
3ρa

�����
a5

μ

s
� cos2�α� cos�α − β� (66)

Note that, for longitude targeting, nd is a constant ( _nd � 0) equal
to nslot. The constants on the left-hand side of Eq. (66) can be

combined to form ρϕ:

ρϕ � −
2k�ϕ� η�

3ρa

�����
a5

μ

s
(67)

A cost function Jϕ can be expressed as

Jϕ � jρϕ − cos2�α� cos�α − β�j (68)

As before, the desired orientations can be found by minimizing Jϕ
across the interval

α ∈
�
−
π

2
;
π

2

�

With α determined, an algorithm to implement the longitude
tracking orientations is presented as

if

ϕ > 0 and a < ad

or

ϕ < 0 and a > ad

then

n̂ � cos αê1 � sin αê2 (69)

This algorithm addresses positive phase angles by raising the
semimajor axis and negative phase angles by lowering the semimajor
axis using the optimized orientations. Figure 11 illustrates longitude
targeting using this algorithm.
To gauge the performance of the longitude targeting method, 1000

simulations were run to analyze error convergence and targeting
times. Initial semimajor axis values ranged within GEO� 500 km
and launch dates fell between the years 2000 and 2020. Longitude
valueswere randomized across all angles∈ �0; 2π	. Steady-state error
convergence was obtained within 2 deg in 10 years for 92.8% of the
simulations. The results of these simulations are contained in Fig. 12.
To explain the convergence behaviors, targeting scenarios are divided
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Fig. 10 Sail orientations to minimize inclination deorbit and release of payload. Position and semimajor axis values are zeroed at the GEO belt.
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into two cases as described in Table 6. It is observed that targeting

maneuvers initialized with longitude and semimajor axis errors

corresponding to case A are capable of error convergencewithin two

years. Initial conditions falling under case B can take significantly

longer to achieve error convergence. Figure 13 displays targeting

times based on initial phase angles for each case. From these results, it

is apparent that successful longitude targeting times depend upon the

initial relationship between the phase angle and semimajor axis error.

E. Deorbit Simulation

With the primarymaneuvers outlined, the entire TugSat simulation

can be presented. The simulation will begin with TugSat and the

payload in a perfectly circular, equatorial orbit. Specifically, TugSat

will deorbit the payload by increasing the apogee and raising the
semimajor axis 350 km above the GEO altitude. Once the desired

semimajor axis is achieved, TugSat will reduce the eccentricity of the
orbit before releasing the payload to drift in a disposal orbit as

outlined in Table 2. After releasing the payload, Tugsat will return to

the GEO belt, targeting its initial longitude from the start of the
simulation. This longitude has been chosen arbitrarily in order to

demonstrate successful targeting of a desired GEO slot. During
rendezvous with the GEO slot, TugSat will reduce its inclination,

returning to an equatorial orbit with increased performance due to the

increase in the A∕m ratio without payload. TugSat will successfully
complete its mission upon rendezvous with the targeted GEO slot

within the bounds defined in Table 1. Figure 14 displays the TugSat
simulation.
TugSat successfully deorbits and releases its payload in less than a

year. In under a year and a half, TugSat successfully returns to the
GEO slot as defined by the IADC. The simulation continues to allow

TugSat to further reduce eccentricity and inclination errors. In under

two years from the start of the deorbit maneuver, TugSat reduces the
out-of-plane motion to within 5 km while maintaining steady-state

semimajor axis, eccentricity, and phase error values. This terminal
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Fig. 11 Sail orientations to target desired GEO belt longitude using control of semimajor axis. Semimajor axis values are zeroed at the GEO belt.

Fig. 12 Convergence times for 1000 longitude targeting simulations. Simulations requiring 10 years or longer for convergence are collected in the final
bin.

Table 6 Longitude targeting cases

Case

A sgnϕ ⋅ sgn�a − ad� > 0
B sgnϕ ⋅ sgn�a − ad� < 0
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Fig. 13 Target times for favorable phase angle and semimajor axis
relationships (case A) and unfavorable phase angle and semimajor axis
relationships (case B).
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placement is well suited for the spacecraft to begin proximity
operations using relative motion equations for rendezvous with the
new payload.
Figures 15 and 16 plot the error functions for the TugSat simulation

to gauge the performance of the optimized sail orientations. These
figures analyze the performance during the deorbit and reorbit
phases of the simulation. Recall that satellite deorbit does not
have inclination or longitude requirements. The error functions
decrease nonmonotonically due to the switching between control of
semimajor axis, eccentricity, inclination, and longitude and the
presence of the gravitational perturbations. From Figs. 15 and 16, the
optimized sail orientations prove effective, even under the influence
of the full dynamics model.
For this simulation, deorbit and reorbit maneuverswere completed

with a delta-Vof 0.3 and 0.17 km∕s, respectively, without the use of
conventional thrusters for propulsion. Although the satellite was able
to return to the desired GEO location, actual rendezvous with a
second payload would require assistance from thrusters for fine
maneuvering and successful docking with the payload. By repeating
these maneuvers, multiple GEO slots can be made available for reuse
using a single solar sailing satellite.

V. Conclusions

Solar radiation pressure serves as a powerful resource for satellites
in high-altitude orbits, particularly geosynchronous equatorial orbit
(GEO), providing an avenue for low-precision indefinite satellite
maneuvering with virtually infinite delta-V. Solar sailing can help to
reduce propellant dependencies, allowing for the allocation of
resources on larger payloads, more sensors, or the elongation of a
satellite’s operational lifespan. With the continued trend toward
miniaturization, solar radiation pressure (SRP) may become a viable
means of propulsion for many future satellites.
Inspired by the present capabilities of solar sailing technology, the

TugSat simulation outlines one potential solar sailing application. Using
a spacecraft on the scale of a 6U CubeSat (30 × 20 × 10 × cm),
sufficient delta-V can be provided to deorbit space debris many times
more massive than the solar sailing satellite itself. Control techniques
determined using optimized vector geometries, alongwith the Gaussian
variation of parameters equations, have been proven to produce sail
orientations that obtain desired orbital element values. Through
intelligent switching between control of the orbital elements, the TugSat
simulation allows for orbital debris removal and subsequent GEO slot
rendezvous in under twoyearswithout relianceon traditional propulsion

systems. Although stability could not be proven analytically, the
Monte Carlo results validated the effectiveness of these orientations.
Supplementing these maneuvers with thrusters for time-sensitive fine
maneuvering would greatly enhance the capabilities of a solar sailing
mission and open the door for precision rendezvous and docking using
solar sailing satellites.
This work provides methods that may prove useful for orbit on other

celestial bodies where SRP is capable of combating accelerations in a
local environment. As a follow up to this research, the challenge of
satellite rendezvous with orbital debris using sail-assisted propulsion
can be investigated. Additionally, these findings can be used to
investigate time-optimal trajectories that effectively leverage gravita-
tional perturbations with SRP to achieve desired orbits. Using SRP, any
number of solar sailing missions can be performed using tactful
combinations of these presented maneuvers.
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