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Abstract: The rise of small satellites has led to many missions with simple attitude and orbit control re-

quirements. For example, a small Earth imaging satellite may require keeping one face nadir pointing within 

10 degrees while maintaining a slot in a low Earth orbit within ±100 km. However, legacy attitude and 

orbit control techniques including reactions wheels and thrusters can easily cost hundreds of thousands of 

dollars and provide more control capability than is needed for such a mission.  

 This paper introduces the Drag Maneuvering Device (DMD) that could replace such systems on 

many missions and consists of four retractable tape spring booms deployed in a dart configuration. The 

DMD can actively modulate the drag area of the host satellite for orbital maneuvering and post-mission 

disposal while providing passive 3-axis attitude stability using aerodynamic and gravity gradient torques. 

Magnetorquers integrated into the DMD damp attitude oscillations and help ensure the satellite stabilizes 

with the correct face nadir pointing. An overview of the DMD design is provided in this paper and the 

results of the attitude and orbit simulations used to characterize the DMD performance and devise a control 

and operations methodology are detailed.  

1. INTRODUCTION  

Attitude and orbit control have been important considerations since the early days of 

space exploration [1]. Traditionally, attitude control has been performed using reaction 

wheels, control moment gyros, and thrusters, and orbit control has been performed using 

thrusters [2], [3]. These legacy attitude and orbit control systems have been complicated 

and expensive, but highly accurate and rapidly responding, making them well suited to 

large, high-budget satellite missions. Alternative attitude and orbit control methodologies 

using environmental forces and torques have been proposed [4] and have become partic-

ularly valuable in recent years with the introduction of small satellites such as CubeSats 

[5] that lack the volume, power, or budget for the legacy systems. Aerodynamic drag 

force is a naturally occurring effect that is dependent on the satellite’s orientation, geom-

etry, and orbital regime [4]. Aerodynamic drag has been utilized for orbital maneuvering, 

and methods for using aerodynamic torques for attitude control have been investigated in 

prior literature [6]. Gravity gradient torques are dependent on the spacecraft moments of 

inertia and can be harnessed for attitude stabilization through the use of a gravity gradient 

boom [3], [7]. In low Earth orbits, electromagnets (called magnetorquers) embedded in 

the satellite can interact with the Earth’s magnetic field to impart torques on the satellite. 

Magnetorquers have commonly been used for detumble and for reaction wheel de-satu-

ration [8]. These effects have been investigated for attitude control in prior literature, but 

prior solutions either do not provide 3-axis attitude control or require actuators like thrust-

ers or wheels to provide complete control that is robust and reliable. Methods that do 

investigate 3-axis attitude control would require costly sensors to provide 3-axis attitude 

determinations. Techniques that use aerodynamic torques for ram-alignment [6], gravity 

gradient torques for zenith alignment [7], or magnetic torques for magnetic field align-

ment [9] all leave one axis of rotation unconstrained.  To date, there is no device or control 



solution to the authors’ knowledge that facilitates aerodynamically based orbital maneu-

vering while enabling 3-axis attitude stabilization without the need for attitude determi-

nation.  

This paper introduces the Drag Maneuvering Device (DMD) which provides such 

an attitude and orbit control solution. The theory, operations, and control methodology 

behind the DMD are discussed and a 6DOF high fidelity attitude and orbit model is in-

troduced to validate the semi-passive 3-axis attitude stabilization of the DMD. 

2. DRAG MANEUVERING DEVICE DESIGN 

The Drag Maneuvering Device (DMD), formerly called the Drag DeOrbit Device 

(D3) [10], consists of four tape spring booms, each 3.7 m long and 4 cm wide, inclined at 

a 20 degree angle relative to the face of the satellite to which the DMD is attached as 

shown in Figure 1. The booms are deployed in this shuttlecock configuration to provide 

passive aerodynamic attitude stability. Additionally, one pair of opposing booms can be 

partially retracted while the other pair is fully deployed to create a clear minimum mo-

ment of inertia axis along the direction of the deployed booms. Gravity gradient torques 

Figure 1. Drag Maneuvering Device (DMD) CAD model and Prototype 
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Figure 2. DMD Deployer Expanded View 



will then work to passively align this axis with the nadir 

or zenith vector. Running the B-Dot de-tumble law [7] 

using magnetorquers embedded in the DMD serves to 

damp initial satellite rotation rates and the attitude os-

cillations that will persist after boom deployment. The 

combination of aerodynamic, gravity gradient, and 

magnetic torques generated by the DMD provide 3-axis 

attitude stabilization and ensure that a single face of the 

satellite is pointing toward Earth with negligible power 

usage after the initial detumble and stabilization. As a 

bonus, the DMD booms can be collectively deployed or 

retracted to vary the cumulative aerodynamic drag ex-

perienced by the satellite which can be utilized for or-

bital maneuvering, constellation phasing, collision 

avoidance, and controlled re-entry [11]. Each DMD de-

ployer (Figure 2) contains a brushed DC motor (Faulha-

ber 1516-006SR with 262:1 spur gearbox) that drives a 

drum to which the boom is connected. As the motor ro-

tates, the boom deploys and drives a rotary encoder that 

precisely measures the amount of boom deployment.  

The DMD attaches to a host CubeSat via a struc-

tural interface adapter that also contains the magnetorquers wrapped around 3D printed 

Ultem brackets, increasing its size by 1U and increases the drag area by up to .5 m2. DMD 

mass is approximately 1.3 kg. Figure 3 shows a DMD prototype attached to a 1U CubeSat 

structure to make a 2U CubeSat form factor. 

 3. ATTITUDE AND ORBIT SIMULATION FRAMEWORK 

To simulate the attitude and orbital dynamics of the satellite, a 6 degree of freedom nu-

merical attitude and orbit propagator was created. The satellite state vector was 𝒙 =
[𝒓𝑻 𝒗𝑻 𝒒𝑻 𝝎𝑻]𝑇 where 𝒓 is the satellite position vector in the ECI (Earth Centered 

Inertial) frame, 𝒗 is the ECI velocity vector, 𝝎 is the angular velocity of the satellite body 

frame with respect to the ECI frame, and 𝒒 is the quaternion defining the rotation from 

the ECI frame to the satellite body frame. 𝒒 is defined as [12] 

 
𝒒 = [

�̂� sin(𝜃/2)

cos(𝜃/2)
] = [𝑞1 𝑞2 𝑞3 𝑞4]𝑇  (1) 

Such that a rotation of the ECI frame by angle 𝜃 about axis �̂� would align it with the 

spacecraft body frame. At each time step the state derivative is computed and numerically 

integrated using the RK78 numerical integration method [13]. 

 �̇� = [𝒗𝑻 �̇�𝑻 �̇�𝑻 �̇�𝑻]𝑇  (2) 

Where [12] 
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 �̇� = 𝑰−𝟏(𝑻𝒏𝒆𝒕 −𝝎× (𝑰𝝎))  (4) 
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Figure 3. Prototype of DMD with CubeSat 

Structure 



Where 𝑰 is the satellite moment of inertia about the center of mass, 𝑻𝒏𝒆𝒕 is the net torque, 

𝑭𝒏𝒆𝒕 is the net force, and 𝑚 is the satellite mass. The effects of Earth’s non-uniform grav-

itational field on the orbit are modeled using the EMG2008 gravitational model with 

spherical harmonics through degree and order ten [14]. The gravitational force including 

the most significant perturbation (𝐽2) can be computed by [15] 
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𝑟3

𝒓 + (
3𝐽2𝜇𝑒𝑅𝑒

2

2𝑟5
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Where 𝑅𝑒 is the equatorial radius of the Earth, 𝜇𝑒 is earth’s gravitational parameter, and 

𝐽2 is a constant related to the oblateness of the Earth. To compute the aerodynamic drag 

force and torque acting on the spacecraft, the satellite is discretized into a collection of 

rectangular panels. The aerodynamic force acting at the centroid of each panel is calcu-

lated by 

 
𝑭𝒑 = −

1

2
𝐶𝑑𝐴𝜌𝑣⊥𝒗⊥  (7) 

Where 𝐶𝑑 is the drag coefficient, 𝜌 is ambient density, 𝐴 is the surface area of the panel, 

and 𝒗⊥ is the projection of the velocity vector relative to the atmosphere (𝒗∞) along the 

panel normal vector �̂�𝒑. If 𝒗∞ and �̂�𝒑 are more than 90 degrees apart, the panel does not 

experience any drag force and 𝒗⊥ is set to zero. 𝒗∞ and 𝒗⊥ are computed by 

 𝒗∞ = 𝒗 −𝝎𝒆 × 𝒓 (8) 

 𝒗⊥ = max(𝒗∞ ∙ �̂�𝒑, 0)  (9) 

Where 𝝎𝒆 is the rotation rate of the Earth. If 𝒓𝒑 is the vector from the satellite center of 

mass to the panel centroid, the aerodynamic torque resulting from the panel is 

 𝝉𝒑 = 𝒓𝒑 × 𝑭𝒑  (10) 

The aerodynamic forces and torques generated by each panel are summed to get the net 

aerodynamic force and torque. The spacecraft’s attitude, position, and moment of inertia 

tensor are utilized to compute the gravity gradient torques with Eq. 3.155 in [2].   

 
𝝉𝒈𝒈 =

3𝜇𝑒
𝑟3

�̂� × (𝑱�̂�)  (11) 

Where 𝑟 is the distance from the center of the Earth to the satellite center of mass, �̂� is 

the nadir vector expressed in the spacecraft body frame, and 𝑱 is the satellite moment of 

inertia tensor about the center of mass. Finally, the magnetic torques acting on the satellite 

are given by [2] 

 𝝉𝒎𝒂𝒈 = 𝝁 × 𝑩  (12) 

Where 𝝁 is the spacecraft magnetic moment vector and 𝑩 is the Earth’s magnetic field 

vector.  

4. CONTROL METHODOLOGY 

The satellite will begin in a tumbling state after deployment into space with the DMD 

booms retracted. At this point, the BDot de-tumble controller will be activated and the 

magnetorquers will be used to set the spacecraft magnetic moment to [16] 

 
𝝁𝒃𝒅𝒐𝒕 = −𝐾�̇̂� = −𝐾(�̂� × 𝝎) ≈ −𝐾

�̂�2 − �̂�1

𝛥𝑡
  (13) 



Where 𝐾 is a user defined, positive gain 

and �̇̂� is the rate of change of the unit 

Earth magnetic field vector in the space-

craft body frame as measured by a mag-

netometer. As shown in Figure 4, this 

ensures that the direction of the resulting 

magnetic torque vector given by Eq. 

(12) will be as close as possible to –𝝎 

and thus will reduce spacecraft angular 

velocity to the extent possible. This can 

be proven more formally as follows. 

Substituting Eq. (13) into Eq. (12) gives the magnetic torque vector from the BDot law 

 𝝉𝒃𝒅𝒐𝒕 = −𝐾(�̂� × 𝝎) × 𝑩  (14) 

The triple vector product rule states that for any three vectors 𝑨,𝑩, and 𝑪 [17] 

 (𝑨 × 𝑩) × 𝑪 = −𝑨(𝑩 ∙ 𝑪) + 𝑩(𝑨 ∙ 𝑪)  (15) 

Applying this to Eq. (14) yields 

 𝝉𝒃𝒅𝒐𝒕 = 𝐾�̂�(𝜔𝐵cos(𝜃)) − 𝐾𝝎𝐵  (16) 

Where 𝜃 is the angle between 𝝎 and 𝑩. Taking the dot product of Eq. (16) and �̂� gives 

the component of 𝝉𝒃𝒅𝒐𝒕 along the 𝝎 direction. If this component is negative, then 𝝎 will 

be reduced in magnitude. 

 𝝉𝒃𝒅𝒐𝒕 ∙ 𝝎 = 𝐾 cos(𝜃) (𝜔𝐵cos(𝜃)) − 𝐾𝜔𝐵

= −𝐾𝐵𝜔(1 − cos2(𝜃)) ≤ 0 
 (17) 

Eq. (17) will be less than zero in all cases except for when 𝜃 equals zero. This occurs 

when the magnetic field is aligned with angular velocity vector and will result in zero 

magnetic torque (no reduction in angular velocity). However, because the direction of the 

magnetic field vector changes along the orbit, a condition with 𝜃 = 0 will not persist for 

any significant time. This ensures that the BDot law will be able to reliably reduce the 

angular velocity of the satellite.  

In addition to 𝝁𝒃𝒅𝒐𝒕, a fixed magnetic moment vector along the desired zenith-

pointing satellite axis (in this case the 𝑥-axis in Figure 1), will be superimposed on 𝝁𝒃𝒅𝒐𝒕 
after de-tumble and partial boom deployment. This fixed magnetic moment will work to 

align the 𝑥-axis with the Earth’s magnetic field. At the point in the orbit when the mag-

netic field (and hence the satellite 𝑥-axis) is most-zenith pointing (as determined in ad-

vance through orbit propagation), the two DMD booms along the 𝑥-axis will be fully 

deployed and the two booms along the 𝑦-axis will be partially deployed. This creates a 

minimum moment of inertia about the 𝑥-axis which gravity gradient torques will naturally 

align with the zenith vector. Aerodynamic torques will simultaneously align the DMD z-

axis (Figure 1) with the velocity vector, resulting in passive 3-axis attitude stabilization. 

All booms can be simultaneously deployed or retracted to facilitate orbital maneuvering 

while maintaining this attitude stability.  

5. SIMULATIONS RESULTS 

Figure 5 displays the attitude in the Local-Vertical-Local-Horizontal (LVLH) [3] frame 

of a 2U, DMD-equipped CubeSat initially deployed from the International Space Station 

(circular orbit with inclination of 52 degrees and semi major axis of 6778 km). Note that 

the LVLH 𝑥-axis is aligned with the zenith vector and the 𝑧-axis is aligned with the orbit 

angular momentum vector. In the first 10,000 seconds of the simulation, only the B-Dot 

Figure 4. BDot Detumble Controller 



controller is run (retracted booms) with a BDot gain of -5 to de-tumble the satellite. Be-

tween t=10,000 and t=20,000 seconds, all booms are deployed to 1 m and a fixed magnetic 

moment of .015 A*m2 along the satellite body frame 𝑥-axis is superimposed on the B-Dot 

magnetic moment. The +𝑦 and −𝑦 booms are then deployed to 1.85 m and the +𝑥 and 

−𝑥 booms are deployed to 3.7 m at the point in the next orbit when the magnetic field is   

most zenith pointing (t=20,800 s). After this, the fixed magnetic moment is removed and 

only the B-Dot controller continues 

running to damp attitude oscillations. 

Note that the attitude oscillations are 

never completely removed due to the 

movement of the zenith and velocity 

vectors in inertial space over the course 

of each orbit. The satellite eventually 

stabilizes with the 𝑧-axis aligned with 

the velocity vector and the 𝑥-axis 

aligned with the zenith vector with a 

steady state pointing error of less than 

five degrees. Figure 6 shows the error 

angle between the actual and desired 

orientation over time. 

Figure 5. Satellite Orientation in LVLH Frame for 400 km Circular ISS Orbit 

Figure 6. Angle Between Actual and Desired Attitude over Time 



6. CONCLUSIONS 

The drag maneuvering device is a unique actuator capable of providing simultaneous or-

bital maneuvering capabilities and semi-passive attitude stabilization. By independently 

actuating four tape-spring booms, the DMD can leverage naturally occurring aerody-

namic and gravity gradient torques for attitude stability. Embedded magnetorquers are 

actuated based on magnetometer measurements to damp attitude oscillations and to en-

sure gravity gradient stabilization in the proper orientation. A control methodology for 

the DMD is developed in this paper and numerical attitude and orbit simulations verify 

the capabilities of the DMD. For many Low Earth Orbit satellite missions, particularly 

for Earth observation, the DMD could be used to entirely replace conventional attitude 

control and propulsion systems. For example, the DMD could maintain a camera or an-

tenna pointed at the Earth while modulating aerodynamic drag to maintain an orbit slot.  
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