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This paper presents a spacecraft relative navigation scheme based on a tracking 

technique. The augmented state estimation technique is a variable-dimension filtering 

approach, originally introduced by Bar-Shalom and Birmiwal [1]. In this technique, the state 

model for a target spacecraft is augmented by introducing, as extra state components, the 

target's control inputs. The maneuver, modeled as accelerations, is estimated recursively 

along with the other states associated with position and velocity, while a target maneuvers. 

By using the proposed navigation method, a chaser spacecraft can estimate the relative 

position, the attitude and the control inputs of a target spacecraft, flying in its proximity. It 

is assumed that the chaser spacecraft is equipped with on-board sensors able to measure the 

relative position and relative attitude of the target spacecraft. The available sensors would 

provide a measurement update sample time of the order of one second and be subject to 

random measurement interruption longer than one second. As preliminary analysis, this 

work introduces the technique applied to the planar, three-degree-of-freedom, spacecraft 
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relative motion. The proposed approach is validated via hardware-in-the-loop 

experimentation, using four autonomous three-degree-of-freedom robotic spacecraft 

simulators, floating on a flat floor. The proposed navigation method is proved to be more 

robust than a standard Kalman Filter estimating relative position and attitude only. 

Nomenclature 

 

ACRONYMS 

IE  =  Input Estimation 

LVLH  =  Local Vertical Local Horizontal Reference Frame centered on the Chaser Spacecraft 

NPS  =  Naval Postgraduate School 

SRL  =  Spacecraft Robotic Laboratory 

DoF  =  Degree of Freedom of the System 

STATE AND VARIABLES SYMBOLS 

a%           =        Estimated State or Variable 

 

k           =        Discrete Time Index 

m          =        Number of Control Inputs 

n           =       Dimension of the State vector  

h           =       Number of variable observed 

 

rel
X

     
=       Relative State vector between two S/C, (13,1)

 

 

j

i

C

T S     =        Complete i-th Target State vector ref to j-th Chaser S/C, (13,1)
 

j

i

C

T X      =       State vector of i–th Target S/C with respect to j-th Chaser S/C, 

 

                       6DoF:          [ ] ,
jj

i i

C TC

T T
x y z x y z= & & &X

 
                        

                       3DoF:          [ ]jj

i i

C TC

T T
x y x y= & &X

 
 

j

i

C

TΘ    =       Attitude State vector of i–th Target S/C with respect to j-th Chaser S/C, 
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                    6DoF:
 

1 2 3 4 ,
jj

i
i

C TC

T e e e e xT yT zTT
q q q q ω ω ω =  Θ  

                    3DoF:
 

j
j

i
i

C TC

T
T

θ θ =  
&ΘΘΘΘ  

j

j i

i

C

C T

T A

 
=  

  Tu

X
X      =       Augmented State vector of i–th Target S/C with respect  to j-th Chaser S/C 

                                         

 

j

j i

i

C

C T

T A

 
=  

  TM

ΘΘΘΘ
ΘΘΘΘ        =       Augmented Attitude State vector of i–th Target S/C with respect. to j-th Chaser S/C, 

 

j

i

C

T B       =      Control Matrix referred of i-th Target S/C with respect to j-th Chaser S/C, ( )nxm  

( )j

i

C

T B k      =      Discretized Control Matrix referred of i-th Target S/C with respect to j-th Chaser S/C, ( )nxm  

( )j

i

C

T AB k    =      Discretized Augmented Control Matrix referred of i-th Target S/C with respect to j-th Chaser S/C,  

                     (( ) )n m xm+  

j

i

C

T F      =       Dynamical Matrix of i-th Target S/C with respect to j-th Chaser S/C, ( )nxn  

j

i

C

T AF     =       Augmented  Dynamical Matrix of i-th Target S/C with respect to j-th Chaser S/C, (( ) 1)n m x+  

j

i

C

T Φ      =       Transition Matrix of the dynamics of the i-th Target S/C with respect to j-th Chaser S/C, ( )nxn  

j

i

C

T AΦ    =       Augmented Transition Matrix of the dynamics of the i-th Target S/C with respect to j-th Chaser S/C, 

(( ) )n m xn+  

G          =        Input Noise matrix, ( )nxn : n is the dimension of the state vector 

H          =       Measurement matrix, ( )hxn  

0
A

mxn

G
G

 
=  

 
           =      Augmented Input Noise matrix 

 

[ ]0A hxmH H=      =      Augmented Measurement matrix 

Z       =       Measurement vector, ( 1)hx  
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10
A

mx

Z
Z

 
=  

 
   =       Augmented Measurement vector 

W       =       Input noise vector, assumed to be Gaussian white zero mean with covariance kQ , ( 1)mx  

 

V        =       Measurement noise vector, assumed to be Gaussian white zero mean with covariance kR , ( 1)hx   

 

kQ       =      Process noise covariance matrix, 
 
( )nxn  

 

kR       =      Measurement noise covariance matrix,
 
( 1)hx  

 

C
u       =      Chaser’s control vector, ( 1)mx  

 

T
u       =      Target’s control vector, ( 1)mx  

CM     =      Chaser spacecraft torque vector, ( 1)mx  

TM     =      Target spacecraft torque vector, ( 1)mx  

0P        =      Initial state error covariance matrix, ( )nxn  

sT        =      Sampling time 

axaI     =      Identity Matrix,  

0bxc
    =      Zeros Matrix 

C
i        =      Chaser Orbital Inclination 

 

e
R       =      Earth Radius 

 

[ ]c s k        =      Coefficients for the linearized J2 model for Satellite Formation Flight 

 

[ , , ]φ ϕ ψ             =       Euler Angles 

 

C
r           =       Chaser Altitude 

 

orbC
ω

     
=      Chaser Orbital Angular Velocity  

 

θ             =       Target Attitude angle in Chaser S/C body frame 

θ&             =       Target Angular velocity in Chaser S/C body frame 
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[ ]T
x y z           =      Target Cartesian Coordinates in Chaser S/C body frame 

[ ]T
x y z& & &           =      Target Linear Velocities in Chaser S/C body frame 

C C T C

rel T T C
R= −ω ω ωω ω ωω ω ωω ω ω        =      Relative Angular velocity between Target and Chaser S/C, in Chaser S/C body 

           frame 

 
T

T

T xT yT zT
ω ω ω =  ωωωω             =      Target S/C angular velocities in Target S/C body frame 

 
T

C

C xC yC zC
ω ω ω =  ωωωω             =      Chaser S/C angular velocities in Chaser S/C body frame 

 

[ ]1 2 3 4

jj

i i

C TC

T e e e e eT
q q q q=Q   =       Quaternion of the attitude of the i-th Target S/C with respect to the j-th  

                                                                       Chaser S/C 

 

[ ]1 2 3

T

e e e eq q q=q   =       Vectorial components of 
j

i

C

T eQ  

 

0 0

0 0

0 0

x

y

z

J

J J

J

 
 =  
  

       =       S/C Inertial matrix of each S/C 

 

()f       =       General Function  

 
C

T
R       =       Rotational matrix from Target S/C body frame to Chaser S/C body frame 

 
C

T
R       =       Rotational matrix from Chaser S/C body frame to Target S/C body frame 

 

I. Introduction 

any different filters for tracking a maneuvering target have been considered in the literature. Approaches 

based on Kalman filter include in the work of Singer [2], in which the target acceleration is modeled as a 

random process with known exponential autocorrelation. 

The input estimation approach for tracking a maneuvering target is proposed by Chan, et al. [4]. In this approach, the 

magnitude of the acceleration is identified by the least-squares estimation when a maneuver is detected. The 

estimated acceleration is then used in conjunction with a standard Kalman filter to compensate the state estimate of 

the target. The standard filter alone is used during periods when no maneuver takes place. The variable-dimension 

filtering approach is proposed by Bar-Shalom, et al. [2, 5]. In this approach, the state model for the target is changed 

M 
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by introducing extra state components, the target's accelerations. The maneuver, modeled as an acceleration, is 

estimated recursively along with other states associated with position and velocity while a target maneuvers. Bogler, 

et al. [3] used this method as an implementation on high maneuver target tracking with maneuver detection.  

The input estimation filter and the variable-dimension filter are commonly used in view of their computational 

efficiency and tracking performance. Among IE techniques, the Augmented State estimation approach yields 

reasonable performance without constant acceleration or small sampling time assumptions. Furthermore, it not only 

provides fast initial convergence rate, but it can also track a maneuvering target with fairly good accuracy as 

mentioned by Khaloozadeh and Karsaz [7]. Bahari, et al. [9, 12] proposed an intelligent error covariance matrix 

resetting, by a fuzzy logic, necessary for high maneuvering target tracking, to improve the estimation of the target 

state.  

In space applications, particularly in the spacecraft relative navigation for the autonomous rendezvous and 

assembly, each vehicle is both the target and the chaser for the other satellite/s. Here an additional challenge is 

considered: the frequent loss of communications for the data exchange when the application involves more than one 

spacecraft. If the data communication is not the way spacecraft to perform the relative navigation, a vision based 

system may be used. These types of sensors require the image processing and may result in low frequency 

measurement updates, especially for small spacecraft with limited computation capabilities. Such sensors suffer of 

problems such as limitations on the field of view and/or other spacecraft obstructing the view. Furthermore, in  the 

spacecraft relative maneuvering, each vehicle does not usually know the other vehicles inputs, i.e. it does not 

possess the information about the maneuvers performed by its fellow spacecraft. This missing information needs to 

be reconstructed in the estimation scheme that would otherwise diverge quickly. 

 We here focus on the utilization of low frequency update and low cost sensors, such as Commercial Off-The-

Shelve (COTS) devices. In particular, the spacecraft are envisioned to have the availability of range measurements 

and relative attitude measurements. 

This work presents the design of a spacecraft relative navigation system based on the augmented state estimation 

technique. Robustness to frequent signal loss and/or darkening of the sensors is achieved. Furthermore, the 

suggested approach reconstructs the information of the other vehicles' maneuvers. 
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The planar three-degree-of-freedom relative estimation approach is developed, and tested via hardware-in-the-

loop experimentation. The four spacecraft simulators of the Spacecraft Robotics Laboratory at the Naval 

Postgraduate School are used for the experimental testing. 

For the experimental part of this work, two dynamics models for the filter are here considered: 1) the classical 

Kalman filtering technique, [13], in which the unknown input (the maneuver command) is modeled as a random 

process, and 2) the augmented state estimation technique, where the maneuver is estimated, using a Kalman filter 

scheme [13], in real time, as an additional variable in an augmented state vector. 

Between the two approaches, the second one proves to be the most successful. It yields satisfactory 

performances without constant accelerations or small sampling time assumptions. Furthermore, it does not only 

provide fast initial convergence rate, but it can also track a maneuvering target with a good accuracy under casually 

loss of  the data link  and slow data rate, allowing the spacecraft to perform critical maneuvers such as the docking 

and the multi-vehicle assembly. 

The successful results of the preliminary study here presented, pave the way for further implementation of the 

augmented state vector approach for the full six degrees of freedom spacecraft relative motion. 

The paper is organized as follows. Section  II presents the equations of the six-degree-of-freedom motion for the 

spacecraft relative maneuvering. Section  III presents the equations of the motion for the spacecraft simulators (three 

degrees of freedom), and the augmented estimation approach for the planar case. Section  IV is dedicated to the 

experimental validation of the proposed approach, and also shows a failed assembly maneuver, when the classical 

Kalman filtering navigation method is used. Section  V concludes the paper. 

II. S/C Relative Motion Dynamics and Problem Statement 

In this section we provide the dynamics of spacecraft relative motion in the generic full six degrees of freedom 

case. In the end of the section the restriction of the state vector for the planar case is introduced.  

The spacecraft relative motion in full six degrees of freedom encompasses both the relative translation and 

rotation. The dynamics of such motion can be represented in the compact form as: 

 ( ) ( )rel rel relf B= +& & &X X X u
 (1) 

where  
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 1 2 3 4 ( ) ( ) ( )
T

rel e e e e xT xC yT yC zT zC
x y z q q q q x y z ω ω ω ω ω ω = − − − & & &X

 (2)   

We are referring to a Local Vertical Local Horizontal (LVLH) reference frame that rotates with the orbital 

angular velocity
orbC

ω . The origin of LVLH moves on a virtual orbit, conveniently chosen to remain in the vicinity 

of the maneuvering spacecraft. This point can also be chosen as coincident with one of the spacecraft .The x  - axis 

points from the center of the Earth to the center of LVLH, while the y-axis
 
is in the orbital plane in the direction of 

the motion along the orbit and perpendicular to the x-axis. The z-axis completes the right-handed LVLH frame.  

The linearized J2 model for the satellite formation flight equations, proposed by Schweighart, S. A., and 

Sedgwick, J. R. in [6], that include the J2 perturbation, is used in this work for representing the relative dynamics, 

                                                   

2 2

2

2( ) (5 2)

2( )

x

y

z

x c y c x u

y c x u

z k z u

ω ω
ω

− − − =
− =

+ =

&& &

&& &

&&

                                                      (3) 

with 

                                                   

2

2

2

2

2

2

(1 ),

2
[1 3cos(2 )],

8

3
(1 ) [cos( )]

2

e
c

c

orbC e
orbC C

c

c s

J R
s i

r

J R
k s i

r

ω
ω

= +

= +

= + +
                                         (4) 

 

For the attitude, the well known Euler’s dynamics govern each spacecraft orientation. In the following equation, T 

stands for the target and it can be replaced with C for the chaser, remembering that each vehicle is both target and 

chaser in the assembly scenario we are envisioning.     
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;

;

.

z y xi
xi yi zi

x x

yiT T T x z
i i i i yi xi zi

y y

y x zi

zi xi yi

z z

J J M

J J

MJ J
J J

J J

J J M

J J

ω ω ω

ω ω ω

ω ω ω

×

 − 
= − +  

 
  −

+ = → = − + 
   

 −  = − +   

&

& &

&

ω ω ωω ω ωω ω ωω ω ω M       
with  or i T i C= =

            (5) 

The equations of the relative quaternion kinematics are 

                                                            

( )4

4

1
,

2

1
,

2

C C

e e rel rel e

C

e rel e

q

q

×= −

= − ⋅&

ω ωω ωω ωω ω

ωωωω

q q

q

                                                             (6) 

where 

                                               

0

0

0

zrel yrel

C

rel zrel xrel

yrel xrel

ω ω
ω ω
ω ω

×

 −
 

= − 
 − 

ωωωω                                                                   (7) 

 The goal of this work is to preliminarily provide a robust estimation scheme for the relative navigation of n 

spacecraft (with 2n > ), in the planar, three degrees of freedom case. The limitation to the three-degree-of-freedom 

case addresses the orbital in-plane motion, when attitude is maneuvered only along the cross-track direction. In 

particular each j-th S/C of the system should be able to estimate, at a minimum, the following state vector: 

                       [ ]jj

i i

CC

T zTT
x y x yϑ ω= & &S

                           (8) 

Natural extension of this preliminary work will be the implementation of the augmented state vector estimation 

approach to the full six degrees of freedom case. 

III. The Augmented State Estimation Method for a 3DOF Laboratory Experimentation 

In this section, the theory for the NPS's three-degree-of-freedom S/C simulators is presented. The limitations to 

three degrees of freedom (two for the planar translation, and one for the rotation about the vertical axis) addresses 

the case of relative maneuvering when the cross-track motion is not considered and the attitude is constrained to one 
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axis. The relative dynamics is here chosen as a double integrator for the center of masses relative motion and for the 

orientation about the vertical axis, representing the reality of the NPS spacecraft simulators. 

The acceleration is treated as an additional term in the corresponding state equation, so that the model will 

provide an augmentation in the state space, with the relative acceleration to be part of the estimation.  

Assuming separate control for the attitude and the position allows for considering uncoupled dynamics, so that 

we can proceed as follows. We assume the target moving in a plane and that the state vector can be written as, 

 [ ]jj

i i

C TC

T T
x y x y= & &X

 (9) 

The discrete dynamics for the problem is the following.                                            

     
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 ( ( ) ( )) ,

,

j j j j

i i i i

j

i

C C C C

T T T T T C

C

T

k k k B k k k G k

Z k H k k

+ = Ψ + − +

= +

X X u u W

X V
                    (10)

 

The expressions of the matrices: G , H , ( )j

i

C

T B k , and Φ  as functions of the measurement update time 
s

T  for 

this planar case can be written as,  

 

( ) ( ) ( )( )

( ) ( )

2

2

4 4 2 2 2 2

0

2

4 4

0
2

,  H 0 , / ,0
2

0

0

1 0 0

0 1 0
... ,

0 0 1 02

0 0 0 1

s

j j j

i i i

C j
STj j j ji

i i i i

s

T

C C C s
x x x T T T sc

s

s

s

FTC C C C ss

T T s x T s T

T

T
G I I B k t B dt m

T

T

T

TT
k T e I FT F

 
 
 
 

= = = Φ ⋅ =  
 
 
 
 

 
 
 Ψ = Φ = = + + + =
 
 
 

∫

   (11) 

being  

                                               2 2

2 2

1 0 0 0

0 1 0 0
, / .

00 0 0 0

0 0 0 0

x

sc

x

I
B m

 
    = =     
 
 

F                                                  (12) 

The augmented dynamics and related state equation matrices can be written as, 
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( )
( )

( )
( )
( )

( ) ( ) ( )

( )
( )
( )

( )

( )

( )
( )

2 2 2 4

2 4

0 0

0 0

1 0
, 0 , / , ,

0 0 1

0 0

0 0

1
,

1

,

j

i i

j j

j j ji i

i i i

j

i

j

i

C

T Tj

i

C C

C C CT T

T A T A A T C C

T T

C

T

A A

T

CxC

A A x x T C SC C

Cyx

A

C

T

uG
G H I B m

u

k
k

k k
k G k B k k

k k

k
Z k H k

k

−
= = = =

−

=

   +
= = Ψ + +   

+      

 
= + 

  

 
 
 
    
    

    
 
 
 

Ψ
Ψ

u

X X
X W u

u u

X
V

u

( )

( ) ( )( )

2

2

2 4 2 2

2

2

0

1 0 0 0
2

0 1 0 0
2

,  0 0 1 0 0
0

0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

  .

0
2

0
2

/
0

0

0 0

0 0

j

SC

SC

C

SC

SC

s

j j j

i i i

S
S

S

S

S

x x

S

s

s
T

C C C

scT T TC A C
S

S

T
T

m

T
T

m

k T

m

T

m

B

I

B B

T

T

k t dt m
T

T

=

 
 
 
 
 
 
  
      
 
 
 
 
  
 

 
 
 
 
 
 Φ
 
 
 
 
 
 

−

−
= ⋅ = −

−

∫

                           (13) 

The same algorithm is implemented for target’s attitude and control torque estimation. Assuming the target 

rotating only around the vertical axis (z-axis), the i-th Target attitude state vector, with respect to the j-th Chaser 

spacecraft, is chosen to be, 

 
,

j
j

i
i

C TC

T
T

θ θ =  
&ΘΘΘΘ

 (14) 

The discrete dynamics for the attitude problem is 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 ( ( ) ) ,

,

j j j j

i i i i

j

i

C C C C

T T T T T C

C

T

k k k B k k k G k

Z k H k k

+ = Ψ + − +

= +

M M W

V

Θ ΘΘ ΘΘ ΘΘ Θ

ΘΘΘΘ
 (15) 

and the principal dynamics matrices, as function of the time sampling 
S

T , are 

                                   

( ) ( ) ( )( )

( ) ( )

2

/

2 2

0

/

2

2 2

2
, 1 0 , / ,

1
... ,

0 12

s

j j j

i i i

C j
STj j j ji

i i i i

s
T

C C C z sc

x T T T sc

s

z sc

FTC C C C s
T T s x T s T

T

J
G I H B k t B dt J

T

J

TsT
k T e I FT F

 
 
 = = = Φ ⋅ =
 
 
 

 
Ψ = Φ = = + + + =  

 

∫
 (16) 

being  

 /

0 1 0
, / .

0 0 1

j j

i i

C C

T T z sc
F B J

   
= =   
   

 (17) 

The formulation of the augmented state dynamics can be written as, 
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( )
( )

( )
( )
( )

( ) ( )

( )
( )

( )

( ) [ ]

( ) ( )( )

/

2 2

2

0

1
( ) ,

1

( ) ,

0

, 1 0 0 , 1 / ,
0

0

2

0

j j

j j ji i

i i i

j

i

j

i

s

j j j

i i i

C C

C C CT T

T A T A T C c A

T T

C

T

A A

T

C

A A T C z sc c z

x

s

T

C C C s
T C T T C
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  (18) 

IV. Experimental Results: Augmented State Estimation employed for Multi-Spacecraft Assembly 

In this section, assembly maneuvers are employed to experimentally test the suggested relative navigation 

scheme. In particular, the guidance and control parts of the experiments are the same presented by Bevilacqua et al. 

in the AIAA GNC 2009 ( [11]). 

For our simulation we do not implement collision avoidance algorithm, however the control has been previously 

successfully tested [14]. 

The four spacecraft simulators available at NPS are three-degree-of-freedom robots, moving frictionless on a 

very flat epoxy floor, using linear air bearings (see Fig. 1). They are powered by eight body fixed compressed air 

thrusters, and equipped with sensors and on board computer of similar dynamics and performances of what found on 

a real small spacecraft. In particular, the onboard actuators are on/off thrusters, capable of producing a single force 

value when on. Schmitt Trigger and Pulse Width Modulation are used, in order to accurately track continuous 

control signals with on/off devices. The continuous controls are generated by the onboard control system, based on 

the approach of Ref.  [11]. For details on the hardware, refer to  [10]. 
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At this stage the simulators do not have hardware dedicated to relative measurements. Relative measurement is 

obtained by exploiting the ad-hoc wireless communication ( [10]). This feature has the benefit of flexibility in 

imposing the desired frequency of measurement update, by simple modification of the software. 

 

Fig. 1 Spacecraft Simulators and Docking Interfaces, Spacecraft Robotics Laboratory, Naval Postgraduate 

School. 

 

  Two experimental runs are presented. The first one demonstrates the unsuccessful relative navigation when 

classical Kalman Filtering is employed, considering the other S/C's maneuvers as a random process. Only two 

simulators are involved. The second experiment involves the four vehicles, showing how augmented state estimation 

can handle low measurement updates and unpredictable interruptions of updates, and still perform correct relative 

navigation, driving the mission to success. 

 In particular, we are here imposing, via the wireless network, an update of 2 seconds.  

 For the first part of the simulation each vehicle is chaser and target, there is complete symmetry, and each one 

knows, every two seconds the relative state vector of its target. 

 Once the two couple of robots are docked, each of the assembled structure is considered to be a new vehicle with  

new mass and geometry. For this reason the augmented state estimator is re-inizalized for the new structure with 

different mass and inertia as in Tab. 1. For this part of the simulation the software is running only on board the 

master S/C that is one for each couple.   
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Experimental Parameters 
Mass of each S/C 10,5 Kg 
Inertia of Simulator  0.063 Kg m

2

  
Inertia of the two S/C assembled structure 0.18 Kg m

2

 

Single Thruster Estimated Force  [17] 0.16 N 
Docking Cone Semi-aperture  0.75 Degrees 
Force arms (for torque generation)  5, 10, 21 Cm 
Limit distance for switching off the thrusters  0.7 M 
iGPS Accuracy 1 Mm 

Gyroscope  Accuracy 0.003 deg/sec 

Tab.1 Main simulation parameters. 

 

Q 6

6 6(1 10 )
x

x I
− ⋅  Process Covariance Matrix, for the Adapted augmented state filter 

R 4

2 2(1 10 )
x

x I
− ⋅  Measurements Covariance Matrix, for the Adapted augmented state filter 

Po
 

6 6k x
R I⋅  Initial Covariance Matrix, for the Adapted augmented state filter 

Ts 0.02 sec Simulation Sampling Time 

Tab.2 Position, Augmented State Filter parameters. 

 

Q 12

3 3(1 10 )
x

x I
− ⋅  Process Covariance Matrix, for the Adapted augmented state filter 

R 2
(1 10 )x

−
 Measurements Covariance Matrix, for the Adapted augmented state filter 

Po
 

3 3k x
R I⋅  Initial Covariance Matrix, for the Adapted augmented state filter 

Ts 0.02 sec Simulation Sampling Time 

Tab.3 Attitude, Augmented State Filter parameters. 

 

A. The classical Kalman filter technique 

Fig. 2 is the bird’s eye view of the experiment, demonstrating the unfeasibility of classical Kalman filter for 

spacecraft relative navigation. Two spacecraft simulators start maneuvering, with the goal of docking, from a short 

distance. The sides opposite to the bolded lines are the designated docking sides. After approximately 1 minute of 

maneuver, the accumulated error in relative state vector (position) exceeds the tolerance of the docking interfaces 

(Fig. 1), driving the vehicles into a failed docking maneuver. A video of the experiment can be found online at  [16]. 
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Fig. 2 Experimental Result: bird’s eye view for two spacecraft simulator failed assembly maneuver. The 

relative navigation is performed via classical Kalman Filtering, no Input Estimation. The bolded lines are 

employed to help visualize the simulator’s orientation. 

B. The augmented state estimation technique 

Fig. 3 is the bird’s eye view of the experiment, demonstrating the feasibility of the augmented state estimation 

for spacecraft relative navigation. The main data for the filters are presented in Tab. 2, and 3. Four spacecraft 

simulators start maneuvering, with the goal of assembling into a line-shaped structure, from short distances. The 

sides opposite to the bolded lines are the designated docking sides. After less than 3 minutes of maneuver, the four 

vehicles successfully complete the given mission. The rectangular black and blue vehicles represent two spacecraft 

simulators docked and maneuvering as a single bigger unit. A video of the experiment can be found online at  [17]. 
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Fig. 3 Experimental Result: bird’s eye view for four spacecraft simulator assembly maneuver. The relative 

navigation is performed via augmented state estimation. The bolded lines are employed to help visualize the 

simulator’s orientation. 

Once the simulators are assembled in couples, they maneuver as a single bigger unit, as described in  [11]. In 

particular, the augmented state estimation is re-initialized in order to switch to a new target vehicle in terms of 

relative navigation.  

V. Conclusion 

In this work we are suggesting the employment of the augmented state estimation technique as the scheme for 

multiple spacecraft relative navigation. Theoretical developments are presented for the three-degree-of-freedom 

case, considering a planar motion for the relative position and a single axis of rotation for the laboratory 

implementation. 

The experimental validation of the proposed methodology is presented, via floating spacecraft simulators, using 

an assembly maneuver as baseline. Experiments show how the augmented state estimation can cope with low 

frequency measurement updates, correctly performing the relative navigation, driving the mission to success. On the 
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other hand, Classical Kalman Estimation [13], is not accurate for close distances with low frequency measurement 

updates as demonstrated in the three-degree-of-freedom experimental section. 

Following work will include extension of the proposed methodology to the six degrees of freedom full motion. 
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