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Abstract— In this paper the possibility to obtain natural periodic motion 
of formation flying is investigated through the use of a numerical global 
optimizer such as Genetic Algorithms. the methodology introduced has 
been initially verified on a case where a solution is known to exist, i.e. an 
unperturbed case, where the period matching condition is necessary and 
sufficient to have invariant relative trajectories. In the perturbed case, the 
conditions to obtain an invariant relative motion are known only in 
approximated closed forms, which, in some cases, guaranties the 
minimum drift, but not the relative motion periodicity. Using Genetic 
Algorithm we find periodic relative orbits for satellites on a J2 perturbed 
orbit with two particular inclinations (63.4° for all eccentricities and 49° 
for nearly circular orbits); in all the other cases our method is able to 
supply initial conditions for minimum drift, or, in the case of orbits 
subjected to drag, for formations which get close after a predetermined 
time span. 

1. INTRODUCTION 

In recent years, a number of missions involving satellites in formation have been 
planned: a short list includes ESA missions Proba, LISA, XEUS, Darwin and SMART-
3, NASA mission ST5, Air Force Research Laboratory mission TechSat21. In order to 
keep the satellites of the formation in the designed close configuration, and therefore to 
achieve mission goals, control actions are needed. The cost of this orbital control in 
terms of V∆  limits both the mission duration and the expected performances. A way to 
reduce such an amount of control action is to investigate if a suitable, natural periodic 
relative motion of satellites, equal or close to the desired motion, could be exploited. In 
such a way, drift could be almost cancelled, and a great amount of V∆ would be saved. 
Many works in literatures deal with this problem under different hypotheses. Inalhan, 
Tillerson and How (Ref. 1) find the analytical form for the initial conditions of the 
classical Tshauner-Hempel equations (Ref 2); Kasdin. and Koleman (Ref. 3) use the 
epicyclic orbital elements theory to derive bounded, periodic orbits in presence of 
various perturbations; Vaddi, Vadali, and Alfriend (Ref. 4) study a Hill-Clohessy-
Wiltshire (HCW, Ref. 5) system modified to include second order terms; finally, 
Schaub and Alfriend (Ref. 6) formulate the conditions for invariant J2 relative motion 
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basing on relations between mean orbit elements of the two satellites. In all these 
papers, the analytical approach leads to two kinds of results: either initial conditions 
which ensure perfect periodicity in approximated dynamical models, or initial 
conditions resulting in bounded (i.e. with minimum drift, but not periodic) relative 
motion of more detailed dynamical models. 
A numerical approach, though lacking a physical insight, guarantees a definite answer 
about the possibility to have periodic trajectories for satellites in a fully non linear, 
perturbed environment. While some results are easily predictable, like the disruptive 
effect of non conservative forces as atmospheric drag, some others are quite surprising 
and interesting. In particular, the possibility to have periodic motion is negated, as we 
shall see, even for a conservative, symmetric perturbation like the J2 effect with two 
remarkable exceptions: in fact when the formation reference orbit is inclined at the so-
called critical values (63.4° and 116.6°) and, for nearly circular orbits, at 49° and 131°, 
the relative motion can be considered really periodic. While the physical reasons of this 
behaviour are still under study, a simple conclusion can be drawn: if two satellites have 
to remain in close formation, the proper choice of the parameters of the reference orbit 
is of capital importance, and it results in a great amount of control cost saving. 

2. NOTES ON GENETIC ALGORITHMS 

In their simplest incarnation, genetic algorithms (GA) make use of the following 
reduced version of the biological evolutionary process; the gene pool - and its 
associated phenotypic population - evolves in response to three drivers: differential 
reproductive success in the population, genetic recombination (crossover) occurring at 
breeding and random mutations affecting a subset of breeding events. 
Consider then the following generic optimization problem. Given a model (in the 
present case, the relative dynamics of satellites flying in formation) that depends on a 
set of parameters a, a functional relation f(a) returns a measure of quality for the 
corresponding model; this will be called fitness function. The optimization task consists 
in finding the point a* defining the parameters of a model that maximizes the quality 
measure f(a). The main software architecture is based on (Ref. 7).  
An individual is characterized by a single chromosome, described by the unknowns of 
the problem: 
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The unknowns considered in our problem are the initial relative spatial coordinates (xi) 
and the initial relative velocities ( ix� ), which determine the formation motion. In 



addition, a seventh unknown is considered: the epoch Tend of the fitness function 
evaluation. This is necessary as to allow the optimizer to search also for the unknown 
periodicity of the relative orbit. The chosen fitness function, which establish how good 
an individual is, is then calculated by: 
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A large value of the fitness function stands to indicate that after the period Tend (also 
part of the optimisation vector), the spacecrafts have a relative state which is close to 
the initial relative state. To the limit, for infinite values of f(a) the mechanical 
deterministic principle assures us that the relative motion will repeat itself thus being 
invariant. 
The N individuals of the population are initialized at random. After mating, the 
chromosomes of the off-springs differ from the chromosomes of the parents, because of 
crossover and mutation processes. The best individuals have a greater probability to 
mate, and so its chromosomes have a greater probability to pass their good 
characteristics to the off-springs. The chromosomes of the best individual after a 
number M of generations represent the solution provided by the GA.  
In this kind of heuristic methods, the tuning of the algorithm is an essential and very 
time-demanding part of the work. The number N of individuals in the population, the 
number M of generations, the minimum and maximum mutation rate, the crossover 
probability and many other parameters can influence the results obtainable by the GA. 

3. UNPERTURBED CASE 

In this paragraph we analyse the unperturbed case. Here the period matching condition 
is the constraint that must be met in order to have a periodic motion. According to the 
hypotheses on the model studied, many works established the conditions for invariance; 
results obtained in Ref. 4 and Ref. 3 are introduced in this paper as they are used as a 
test case to assess GA performances. 
As a first step we applied GA to the well known Hill-Clohessy-Wiltshire (HCW) 
equations, valid for circular unperturbed orbits: 
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Here the condition for invariance is analytically expressed by what we call the HCW 
condition: 

00 2nxy −=�  (4) 

In this case GA have proved to work properly, as shown in one of our previous works 
(Ref. 8). Unfortunately, the condition of eq. (4) is valid for the linearized model alone. 



In fact, even without considering the effects of perturbations, non linear terms 
neglected are more and more important as the formation dimensions grow. 
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Figure 1 Relative trajectories descending from HCW condition for a small formation (left) and a 

large formation (right) 
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Figure 2 Field of validity of the HCW condition 

Vaddi, Vadali and Alfriend (Ref. 4) have developed a model that takes into account the 
effects of non linearities, both for circular and for elliptic orbits. 
Following the same approach of Taylor series expansion of the HCW equations, but 
retaining also quadratic terms, leads to the following model: 
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where 4

3
a
µε = .  

A condition for periodic relative orbits is then reached: 
 
                         [ ] ( ) ( ) ( )[ ]000000 sin,cos,sin2/,, αραραρ +++= ntntntzyx           (6) 

                             [ ] ( ) ( )[ ]00000 cos,,cos2/,, αραρ ++= ntnyntnzyx ����  
where ρ is the relative distance and 0α the initial phase angle. The only variable that 
influence the boundedness of the relative orbit is y� , which can be written as: 
 

)0()0()0( cnh yyy ��� ε+=   (7) 

where hy� is the initial condition from HCW (eq. (4)) while cny� is the correction for the 
non linearity. 

( )( )0
2 2cos61248/)0( αρ +−= nycn�  (8) 

This is not only way to face the problem in an analytical way: in Ref. 3, Kasdin and 
Koleman use a Hamiltonian approach to derive the equations of motions for an object 
relative to a circular or slightly elliptical reference orbit. By solving the Hamilton-
Jacobi equation in terms of the epicyclic elements they are able to provide analytical 
approximations of the invariance condition. By means of this formalism, they derive 
bounded, periodic orbits in the presence of various perturbations. Non-linear effects are 
among this perturbing actions. Here we only report the conditions found for the circular 
reference orbit case. Two formulas are given: one considering second-order terms in the 
series expansion for the initial conditions, and one considering also third-order terms. 
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In both cases, it is: 
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i and βα i  are the initial canonical momenta and coordinates, which can be written as 
functions of the initial conditions (in the following expressions, distances are 



normalized by the reference orbit semi-major axis a, and the rates normalized by the 
angular velocity n): 
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We can substitute eq. (12) in eq. (11); imposing the conditions in eq. (9) or in eq. (10) 
(according to the order of approximation chosen), and find y� for bounded orbits. 
The difference between the semi-major axes of the spacecrafts in the formation is a 
good index of how near the approximation of the proposed analytical conditions is to 
the physical one (i.e. period matching); a link between the measure of the drift per orbit 
and the difference in semi-major axis can be in fact expressed (Ref. 9) by: 

a∆− π3   (13) 
The difference a∆  resulting by using condition (7), condition (9) or condition (10) can 
be plotted for various formation dimensions; as shown by Figure 3, the third-order 
epicyclic conditions are a very good approximation of the period matching conditions, 
and indeed the use of a numerical approach such as GA seems not really necessary in 
this case. 
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Figure 3 Difference of the semi major axis vs. initial dimensions 



The comparison between analytical (third-order epicyclic) and numerical (GA) 
solutions is performed in Figure 4. 
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Figure 4 Comparison between GA and third-order condition 

From Figure 4 it is possible to say that the main difference between analytical and 
numerical approach is that a∆ due to genetic algorithm conditions is oscillating as it is 
due just to numerical errors and to the stochastic process which characterizes the 
optimizator; instead, a∆  due to third-order conditions grows as the formation is larger. 
However, even for very large formations, the results of the analytical condition are 
quite good and the use of GA is not really necessary, but it has been now proved that 
when a solution exists, GA is able to find it with great accuracy. 
Without any variation, the same results can be obtained for elliptical unperturbed 
reference orbits. 

4. J2 PERTURBED CASE  

In the perturbed case the approach itself is different. The aim is not to benchmark the 
performances of the GA with respect to a well known closed solution, but to search if 
such a solution does exist or not. It is clear that a numerical approach can supply 
precious information that must be understood. 
For low and mid height orbits J2 effect and air drag are by far the most important 
perturbations. 
In this paragraph J2 perturbation is considered; the results here exposed are the most 
interesting that the GA approach has returned. In fact, while in the Kepler case of 
paragraph 3 the solution was very well known, and in the drag perturbed case of 
paragraph 5 the solution is easily predictable not to exist, in the J2 perturbed case the 
question is open. 



An analytic method is presented by Schaub and Alfriend (Ref. 6) to establish J2 
invariant relative orbits. Working with mean orbit elements, the secular drift of the 
longitude of the ascending node and the sum of the argument of perigee and mean 
anomaly are set equal between two neighbouring orbits. By having both orbits drift at 
equal angular rates on the average, they will not separate over time due to the J2 
influence. Two first order conditions are established between the differences in 
momenta elements (semi-major axis, eccentricity and inclination angle): 
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and D is a parameter depending on η,,ai . Combined, eq. (14) and eq. (15) provide the 
two necessary conditions on the mean element differences between neighbouring orbits 
to yield a J2-invariant relative orbit. When designing a relative orbit using the mean 
orbit element differences, either ai δδδ or e ,  is chosen, and the other two elements 
differences are then prescribed through the two constraints. The remaining mean orbit 
element differences M and  , δδωδΩ  can be chosen at will without affecting the J2-
invariant conditions. Further, note that these two conditions are not precise answers to 
the nonlinear problem but are only valid up to a first order approximation. Thus, 
relative orbits designed with these two conditions will still exhibit some small relative 
drift, as Figure 5 shows. 
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Figure 5 XY and YZ projections of relative orbits generated with analytical J2 invariant conditions 

(i=35°) 



The conditions (14) and (15) supply two powerful means to find relative orbits which 
are not properly periodic but bounded, with minimum drift per orbit. 
GA can be then used to verify if there is an actual physical limit for the existence of 
really periodic orbits, or if the residual drift is just due to the approximations 
accomplished when searching for analytical formulas.  
A run of GA at i=35° does not improve in a remarkable way the analytical results: the 
drift is minimum but the periodicity is not reached. Instead, if the simulation is repeated 
for the entire range of inclinations, the results vary sensibly disclosing a previously 
overlooked feature of the invariant relative motion. Figure 6 reports the fitness function 
values for inclinations from 0 to 180 degrees: as told in paragraph 1, in fact, the fitness 
function can be seen as an index of how close to the goal the optimization has reached. 

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

Inclination (degree)

Fi
tn

es
s 

Fu
nc

tio
n 

V
al

ue

 
Figure 6 Fitness function values for the whole range of inclinations (nearly circular orbit) 

Figure 6 shows that a value of the fitness function of the best individual ranges from 35 
to 200 for formation orbiting at almost all inclinations, resulting in relative trajectories 
as the one illustrated in Figure 5, with two remarkable exceptions: 49° and 63.4°, and 
their symmetric counterparts (with respect to 90°) 131° and 116.6°. 
When using GA there is always a stochastic component, so it can happen then in some 
simulations the fitness function for these exceptional cases is of some tens of 
thousands, just like in the unperturbed case (in Figure 5 y axis is limited to one 
thousands for clarity sake), while in some other it is much lower, depending on how 
lucky the initial random population is. It is anyway much higher than for ordinary 
inclinations. 
For the critical inclinations 63.4° and 116.6°, the reason of this behaviour has to be 
searched in the cancellation of the mean secular drift of argument of perigee, following 
eq. (16). 



( )1cos5
2
3 2

2

2

2 −=∆ ⊕ i
p

R
Jπϖ  (16) 

Analyzing the Gauss’ equations (17): 
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it is clear that the argument of perigee is entering through the inclination i in all the 
equations: a growing with time of ϖ  is forcing the orbital elements to have different 
periods: this means that the absolute motion of the single satellite is not periodic and 
neither can be the relative motion between the spacecrafts of the formation. Instead, at 
critical inclinations, a periodic absolute motion is possible, and so is a relative 
trajectory. 
Figure 7, referring to a 100 orbits propagation, shows that at this inclination the orbit is 
not simply bounded, but really periodic: 
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Figure 7 100 relative orbits for a J2 perturbed case at 63.4° inclination 



Though the result is very similar to the unperturbed case, here the condition is no more 
of period matching; in fact a difference in all the six orbital elements is kept: 
 

 chief deputy Difference  

a (km) 6678 km 6677.7091 km -0.291 km 

e 0.00118 0.01573 0.01455 

I (degree) 63.435° 63.391° -0.044° 

ϖ (degree) 90° 50.126° -39.87° 

Ω  (degree) 270° -89.123° 0.877° 

θ  (degree) 0° 40.333° 40.33° 

ϖ +θ  (degree) 90° 90.46° 0.46° 

Table 1 

Table 1 refers to the case of a very large formation (that’s why the differences are quite 
evident) and it shows how in a J2 perturbed orbit equality of semi-major axis is not a 
valid condition anymore. 
The second critical inclination (49°) is not yet fully understood; a further study by the 
same authors (Ref. 10) deals in more detail with the phenomenon. A particular 
interaction of the complex behaviour of the whole system seems to be at the base of it. 
What it seems to be the case is that this inclination is not universally valid as the critical 
inclinations are. In fact their validity is limited to the case of circular and nearly circular 
orbits, as confirmed by Figure 8, while the critical case is valid at all eccentricities. 
Moreover, 49° is of interest for small and middle formations, while is quite like all the 
other inclinations for very large formation (see Figure 9) 
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Figure 8 Fitness function values for the whole range of inclinations (elliptic reference orbit) 
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Figure 9 Fitness value as a function of the formation dimensions 

Notwithstanding these limitations, the remaining field of validity is of great interest: in 
fact, this inclination falls in the range of inclinations of interest in the Walker’s model.  

5. APPLICATION OF GA ON J2 AND DRAG PERTURBED CASE  

When the orbit altitude is very low, air drag becomes of paramount importance. All the 
simulations performed have shown (Figure 11) what was obvious from the beginning: a 
dissipative perturbation such as air drag cannot allow periodic motion, even if the 
physical properties of the satellites (mass, area, CD) are exactly the same, minimizing in 
that way the differential drag. 
A different approach can be implemented in this case. Renouncing to the possibility of 
periodic motion, one can set GA in order to have a close formation after a 
predetermined number of orbits, not necessarily just 1: in this way the behaviour of the 
satellites between time zero and final time is considered of no interest; and the fitness 
function is evaluated at final time, which is the time when mission requirements ask the 
formation to be close. 
Let’s introduce an adimensional relative distance as a measure of the closeness of the 
formation: 

( ))orbitfirst (max dist
dist

 (18) 
If the relative motion is periodic, the adimensional distance is oscillating between a 
minimum distance and 1. Performing the optimization with the fitness function 
evaluated after 1 (case A) , 50 (case B), or 100 orbits (case C), one obtains the initial 
conditions which, once propagated for 100 orbits, result in different dynamics: 
respectively, a formation which is much closer at the beginning, but then diverging 



(case A), or formations which seem to break apart in the first orbits, but then 
recomposing after at the desired time (case B and C: see Figure 11) 
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Figure 10  Best "periodic" trajectory as found by GA for a J2 and drag perturbed orbit
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Figure 11 Comparison among adimensional relative distance for Case A (N=1), Case B (N=50) and 

Case C (N=100) 

As an example, Figure 12 shows the behaviour in the case C: the formation seems to be 
breaking, but then it recomposes around the 100th orbit. 
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Figure 12 Projection on XY and YZ plane of the proposed strategy for the atmospheric drag effect 

Other perturbations (moon-sun attraction, solar pressure) have also been analyzed, but 
their effect is hidden by J2 and drag effects at low altitude, while even for high orbits 
like GEO, the time scale of their action is too long to be taken into account by the 
presented method. 

6. CONCLUSIONS 

The possibility to obtain natural periodic motion of formation flying satellites has been 
investigated through the use of a numerical global optimization technique such as 
Genetic Algorithms. After validating the approach by comparison to a well known test 
case, the unperturbed one, the attention is focused on the perturbed case. For a J2 
perturbed reference orbit GA has proved the existence of periodic relative orbits for 
satellites with two particular inclinations (63.4° for all eccentricities and 50° for nearly 
circular orbits); for drag perturbed orbits, GA supply the initial condition for a close 
formation after a predetermined time span (but without guarantees for the trajectory 
evolution before or after this time span). 
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