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Abstract

Large structures in space do deform in a non negligible manner. The effect that
deformations have on the dynamic of a spacecraft might be captured by complex non
linear mathematical models. In a recent work the authors developed a non coupled set
of ordinary differential equations describing the full non linear dynamic of a flexible
spacecraft equipped with a system of next generation fly-wheels. These equations
are here exploited to test the robustness of a “Velocity Based” steering law to flexible
dynamic. As the “Velocity Based” steering law for a VSCMG device is designed
under the hypothesis of rigid dynamic, ”spill-over” effects are visible. Even though
vibrations are suppressed quite rapidly, the ”spill-over” introduces a tracking error
that has to be accounted for. As a result, a minimum attitude acquisition time is
found for a selected satellite configuration, faster manoeuvres are not possible as
flexible modes would be excited in such a way as to make the spacecraft lose the
required pointing accuracy.

Introduction

In recent years satellite platforms have increased their performances in attitude ma-
neuverability and precision. Among the attitude actuators flywheels are certainly
the most used for precision pointing. These wheels store angular momentum and
exchange it with the satellite platform causing the spacecraft to reorient. Control Mo-
ment Gyros (CMG) and Variable Speed Control Moment Gyros (VSCMG) are such
devices that have been recently given a fair attention due to their capability of exert-
ing greater torques. The problem of designing a control steering law for a spacecraft
equipped with these modern attitude actuators has been faced by several authors. A
VSCMG device is a wheel gimballed to the spacecraft main structure that has the
ability to rotate around the gimbal axis as well as chaniging its wheel speed. These
control devices allow to avoid the singular configurations that affect CMG. When a
singular configuration approaches, a properly chosen spin axis angular velocity vari-
ation may in-fact still generate the required torque. The problem of tracking a given
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attitude history using these devices has been faced and solved in some recent works
by Shaub et al. [1], Vadali et al. [2] and Tsiotras et al. [3] using a Lyapunov approach
and considering the gimbal and wheel speed as controls. In these articles a “Velocity
Based” steering law is developed that exploit in an optimal way the redundant degrees
of freedom available with CMG and VSCMG. In this work, the equations describing
the motion of a multi-flexible body, mainly taken from [4] and [5], are used to test
the robustness of this velocity based steering law to flexible dynamic.

The steering law

In the works [1, 3, 2] the problem of attitude and power tracking for satellites equipped
with Control Moment Gyros or variable Speed Control Moment Gyros is faced. By a
clever handling of Lyapunov theory the problem is there solved leading to a steering
law based upon the rigid body dynamic equations:
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where ω is the spacecraft angular velocity projected in body axes, γ j are the angular
positions of the n gimbal plus wheel devices and Ω j are the wheels spin velocities.
The above equations, equivalent to those used in [1, 3, 2], may be derived from [5, 4]
by neglecting the flexible terms. We here briefly recall the developments of the above
mentioned steering law.

Kinematics relations for the whole spacecraft given in terms of Modified Rodriguez
Parameters (MRP) have to be added to Eq. (1) in order to have a complete set of
motion equations. Let us introduce ωd and σd respectively as the tracking signal
for the angular velocity and for the MRP, equation (1) together with the kinematics
relation can be written in the compact form:

f(ẋ,x,u) = 0

where x = [ωe,σe], u = [γ̇ j,Ω̇ j], ωe = ω−ωd and σe is the MRP that overlaps the
actual body frame to the desired one. Following the development in [3] a Lyapunov
function V (ωe,σe) may be introduced and the following relation may be obtained by
imposing that V is negative definite during the spacecraft motion:

Bγ̈+Cγ̇+DΩ̇ = Lrm (2)

where Lrm, B, C and D are functions of the tracking signal, of the state and of the
gimbal angles and the wheels speed. Eq. (2) may be regarded to as a set of 3 relations
between the 2n unknown quantities γ̇ j,Ω̇ j. By neglecting the term in γ̈ (excessive
gimbal acceleration are carefully avoided as result in infeasible steering laws) Eq.(2)
can be rewritten as

Qu = Lrm. (3)



As these equations are not sufficient to determine all of our unknowns as soon as n >
1, a selection between all the controls time histories that make V negative definite has
to be made. This might be done in several ways reminding that gimbal accelerations
have to be kept small and that singular configurations have to be avoided. The result is
a “Velocity Based” steering law (the name reminds us that gimbal accelerations have
been neglected), capable (in theory) to perfectly track any given signal. It has however
to be noted that, as soon as the signal becomes too demanding, the spacecraft may
excite its flexible modes and its dynamic may therefore part from a rigid one. This
may lead to an inaccurate tracking and to undesirable effect. The rest of this paper
is focused on this last issue. Equation of flexible dynamic are taken from [5] and
[4], these equations have been developed by taking care to follow both the methods
dealing with multibody dynamic and those dealing with VSCMG dynamic. As some
structural invariants are involved in this general formulation, the following section
will select and define a test case and will evaluate such invariants.

Spacecraft’s test configuration

A simple geometrical configuration has been used in order to obtain the necessary
structural invariants by means of analytical formulas (a preliminary FEM analysis is
otherwise necessary whenever the structure considered is complex). Let us consider
a spacecraft with a 6m long flexible boom mounted as shown in figure 1. A tip mass
is also considered. The body frame Fb is centered in the center of mass G of the
undeformed satellite and has the x axis aligned with the undeformed boom. The
boom root has a distance of .6 meters from the point G. Considering the standard
modal analysis for a cantilever beam with tip mass the following normal modes may
be evaluated:
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with

Bi =
sinh(λiL)− sin(λiL)

cosh(λiL)+ cos(λiL)

The eigenvalues λi are the solutions of the equation:

1+ cos(λiL)cosh(λiL)−
mtip

mbeam
λiL(sin(λiL)cosh(λiL)− cos(λiL)sinh(λiL)) = 0

For a selected ratio of the tip mass to the beam mass of .75 the first eigenvalue is
λ1 = 1.32 corresponding to a normalization constant c1 = .47. Hence we may derive
the first two shape functions (one for each direction) in our case:

φ1 = [0,φ1,0]T

φ2 = [0,0,φ1]
T

By assuming as flexible stiffness EI = 12Nm2, the translational and rotational par-
ticipation factors may be evaluated, together with the matrices Gi, Hi j, K and the
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Figure 1: Geometrical configuration considered

vectors Pi j that appear in the equations used (see [4]). The linear density of the
boom has been set as ρ = .3667kg/m. The natural frequency of the system re-
sulted to be ω1 = ω2 = .65rad/sec. The damping matrix C has been set to be
C = diag[.13, .13]10−3N ·m · s2.

The matrix J comprehensive of the VSCMG point masses inertias has been set to be

J =





22.9 6.4 7.6
6.4 128.6 5.1
7.6 5.1 128.6





As a final remark we underline that, from a numerical point of view, there is no
difference between the simple geometry here analyzed and a more complex case, as
the sole numerical values of the structural invariants would be different.

Numerical results

An angular acquisition manoeuvre is here simulated. A satellite platform is required
to change its orientation acquiring the desired final attitude in a given time . Two
different cases will be simulated in order to verify the “Velocity Based” control law
robustness during maneuvers in which actuators have to generate torques of different
magnitude. The desired MRP profiles are given in figure (2) for both maneuvers. The



rotation is performed with respect to an axis of coordinates [ 1√
3
, 1√

3
, 1√

3
]T in the body

axis reference frame.

125 130 135 140 145 150 155 160 165 170
0

0.05

0.1

0.15

M
R

P(
1)

de
si

re
d

125 130 135 140 145 150 155 160 165 170
0

0.05

0.1

0.15

M
R

P(
2)

de
si

re
d

125 130 135 140 145 150 155 160 165 170
0

0.05

0.1

0.15

Simulation Time (sec)

M
R

P(
3)

de
si

re
d

Figure 2: Desired MRP for an angular acquisition maneuver.
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Figure 3: Flexible coordinates for the first simulation.

Both manoeuvres acquire the same attitude but with different speed. The flexible
coordinates during these manoeuvre are shown in figures (3) and (4). As it is easily



seen from these figures, the control law succeeds in reducing the structural vibrations
acting on ω and σ. In both the graphs a main oscillation is present due to the system
reply to the signal angular acceleration. When the signal angular acceleration dis-
appear, residual vibrations with a decreasing amplitude may be noted. The damping
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Figure 4: Flexible coordinates for the second simulation.

rate of these vibrations is greater than the natural one and it is due to the steering law
detecting tracking errors and trying to correct them. During the first simulation the
maximum tip deflection was of about 6cm, while the second simulation returned a
maximum tip bending of about 30cm. The errors related to the two different maneu-
vers have been compared in terms of the MRP. As shown in figure (5) for the first
maneuver (the dotted one in figure 2) the difference between the spacecraft MRP and
the desired one is of an order of (10−4) after 200sec. In this simulation the tracking
signal does not excite structural vibrations and the errors displayed in figure (5) are
not due to residual oscillations. On the other hand the tracking signal in the second
maneuver is able to excite vibrations as can be seen in figure (6). The effect due to
structural dynamic causes the acquisition to be slower even if the tracking signal is
faster. Thus, after 200sec, the difference between MRP and MRP desired is still about
10−3, one order of magnitude greater than in the previous simulation. An accurate
pointing budget has to take into account this coupling between flexible vibrations and
attitude dynamic. In order to accomplish the acquisition in the shortest possible time
the tracking signal has therefore to be carefully selected. If an angular tolerance of
0.1◦ is required, the acquisition time may be evaluated for increasingly faster signals.
In figure (7) real angular acquisition times against the nominal tracking signal acqui-
sition time are plotted for several input guidance shapes. The figure clearly shows
how, by taking into account flexible dynamic, fast tracking signals lead to increasing
flexible dynamic effects so that the required pointing accuracy is reached in a greater



time.
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Figure 5: σe for the first angular acquisition maneuver between 200sec and 300sec.
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Figure 6: σe for the second angular acquisition maneuver between 200sec and 300sec.
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Figure 7: Acquisition desired time against acquisition real time.

Conclusions

A control steering law designed for a rigid spacecraft equipped with Variable Speed
Control Moment Gyros is simulated in a flexible dynamic case. The influence of
structural vibrations on the steering law performance has been verified in increasingly
more demanding cases. Two different maneuvers of angular acquisition have reported
as an example. The two maneuvers realize the same angular acquisition in different
times. Even though the control law manages to reduce the vibration amplitude by
acting on ω and q, flexible dynamics influence the final acquisition time. For each
acquisition manoeuvre an optimal tracking signal that realizes the acquisition within
the required precision and in a minimum time is found.
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