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Abstract

The optimal control problem of the spin axis of a gyrostat is studied and solved via a
direct transcription method. Dynamical equations suitable for the problem considered
are presented together with Pontryagin necessary conditions. The optimal control
problem is then transcribed into a highly sparse non linear programming problem.
A technique is presented to generate first guess solutions that are suitable for various
objective functions. Time optimal control is then compared to a mixed minimum time
minimum control effort strategy in a particular case. The technique, relevant to New
Earth Object deflection strategies, is then applied to ESA Pluto Orbiter Probe concept
study and optimal and sub-optimal solutions are compared.

Introduction

Axis control of spinning bodies has recently become a very relevant issue in the op-
timal deflection of Near Earth Objects (NEOs). A number of concepts have been
developed, that require some control on the asteroid spin axis in order to optimally
orient the thrust provided by an engine placed in the pole. Large spinning structures,
such as those that might serve as interplanetary gateways (not at all science fiction as
the recent improvements [7] on the three body problem have shown), would also be
affected by the spin axis control capabilities of the station. A more classical exam-
ple in which spin axis control is needed is, of course, that of the attitude control of
spinning spacecrafts (many interplanetary missions have a spinning phase that pro-
vide accurate orientation during engines burns as well as other benefits), even if in
this case optimality is rarely an issue. In mathematical terms, the problem of opti-
mal attitude control does not admit an analytical solution if not in simplified cases.
One of these is that of a gyroscope, when the sole component of the angular veloc-
ity perpendicular to the spin axis is controlled. In the vast majority of the practical
problems no analytical solution is available and one has to try solving the problem
numerically. A fairly good number of computational techniques [8] already exist that

1Professor Chiara Valente died before she could see the final release of this work . We would like to
dedicate our work in this paper to her, being a little thank to her unvaluable support.



solve optimal control problems. Direct transcription methods, based on transforming
the continuous optimal problem into a Non Linear Programming problem, are surely
quite promising, being the most simple and powerful ones. In fact they are able to
solve all kind of optimal problems with the possibility of implementing both state
and control constrains and both equality and inequality constrains. The computa-
tional efficiency of the Non Linear Programming solver is, of course, of the greatest
importance as well as the accuracy of the first guess solution. This is why particular
attention is here paid to these issues.

Model choice and problem statement

It has been widely recognized that quaternion algebra is an invaluable tool to effi-
ciently write the vast majority of attitude dynamic related softwares. Singular sets of
parameters, though, may still have some advantages over the quaternion. Such is the
case of the Lyapunov based control of Euler Equations that may be done in compli-
cated cases such as that of spacecrafts mounting new generation fly-wheels, with the
aid of the Modified Rodriguez Parameters (singular for rotations of π) (see for exam-
ple [6, 5]). In this work we make use of a rather classical set of singular parameters
defining the spacecraft attitude, the Yaw Pitch and Roll angles, also called Euler 321
angles. For an exhaustive definition of these angles see Hughes [1]. The great advan-
tage of this choice, in developing the optimization algorithm for the reorientation of
a spinning gyrostat, stems from the fact that it makes easier to write the final desired
conditions in terms of the state. This may be shown with the following simple calcu-
lation. Let us find the desired final quaternion in a spin axis reorientation manoeuvre.
This is a case in which there is not a single value of the quaternion to be targeted but
a whole set, as a degree of freedom is left free (i.e. the rotation about the final spin
axes). The set of all quaternions [ε1,ε2,ε3,η] describing the desired final state may
then be evaluated by observing that it will be generated by integrating the kinematic
equations:

2ε̇1 = Ωη
2ε̇2 = Ωε3
2ε̇3 = −Ωε2
2η̇ = −Ωε1

with initial conditions:

ε1 = 0 ε2 = 0 ε3 = sin Ψ
2 η = cos Ψ

2

being Ω the spin velocity of the spacecraft and Ψ̂ the amplitude of the reorientation.
We get the solution:

ε1 = cos Ψ̂
2 sin Ω

2 t
ε2 = sin Ψ̂

2 sin Ω
2 t

ε3 = sin Ψ̂
2 cos Ω

2 t
η = cos Ψ̂

2 cos Ω
2 t



The final set of the desired quaternions may therefore be defined as follows:

ε2
1 f

+η2
f = cos2 Ψ̂

2

ε2
2 f

+ ε2
3 f

= sin2 Ψ̂
2

ε1 f ε2 f + ε3 f η f = 1
2 sinΨ̂

On the other hand, the 321 Euler angles (see figure 1) defined as:

ψ : precession angle (yaw)
µ : nutation angle (pitch)
ϕ : rotation angle (roll)

lead to a final state defined by:
Ψ f = Ψ̂
µ f = 0
ϕ f = any

From a numerical point of view the advantages of using Euler Angles for our purposes
are then obvious. We are able to easily write the final state and to use three kinematic
equations rather than four. Besides the singularity problem of Euler Angles will not
be encountered as the nutation angle is unlikely to grow high. If the component of a
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Figure 1: Euler angles used

vector~v are known in the inertial frame Fi then its component in the body frame Fb
will be vb = Cbivi. The rotation matrix Cbi has the following expression:

Cbi =





cosµcosψ cosµsinψ −sinµ
sinϕsinµcosψ− cosϕsinψ sinϕsinµsinψ+ cosϕcosψ sinϕcosµ
cosϕsinµcosψ+ sinϕsinψ cosϕsinµsinψ− sinϕcosψ cosϕcosµ





This rotation matrix is part of the dynamic equations whenever the inertial compo-
nents of the torque are considered as controls rather than the body axes components.
The complete set of differential equations that is here considered to solve the optimal
spin axis reorientation problem is:

















Jω̇+ω×Jω = ub = Cbiui
ψ̇ = 1

cosµ (qsinϕ+ r cosϕ)

µ̇ = qcosϕ− r sinϕ
ϕ̇ = sinµ

cosµ (qsinϕ+ r cosϕ)+ p

that, for a gyroscopic satellite become:



































ṗ = 1
A ubx

q̇ = 1
B [(B−A)pr +uby ]

ṙ = 1
B [(A−B)pq+ubz ]

ψ̇ = 1
cosµ (qsinϕ+ r cosϕ)

µ̇ = qcosϕ− r sinϕ
ϕ̇ = sinµ

cosµ (qsinϕ+ r cosϕ)+ p

being A,B,C the three principal inertia moments with B = C. We will consider as
state vector x = (p,q,r,ψ,µ,ϕ)T and as control vector ui = (uix,uiy,uiz)

T or ub =
(ubx,uby,ubz)

T . Having chosen the dynamic we may now define our problem, that in
the Bolza form, has the form:

min
ub=Cbiui∈U

J[x(t),u(t), t] = ϕ[x(t f ),u(t f ), t f ]+
∫ t f

t0
L [x(t),u(t), t]dt

subject to the following dynamical constraints and border conditions:

p(0) = Ω
q(0) = 0
r(0) = 0

,

ψ(0) = 0
µ(0) = 0
ϕ(0) = 0

,

p(t f ) = Ω
q(t f ) = 0
r(t f ) = 0

,

ψ(t f ) = Ψ̂
µ(t f ) = 0
ϕ(t f ) = any

,

The domain U ∈ R3 is typically a cube or a cuboid, but may be of a more general
form.

In order to show the difficulties we would encounter trying an analytical approach,
we briefly write the necessary optimality conditions given by the Pontryagin maxi-
mum principle, see ([4]). In the simplest case of minimum time optimal control the
Hamiltonian H is:

H = ψ0 +ψ1[
1
A (ubx)]+ψ2[

1
B ((B−A)pr +uby)]+ψ3[

1
B ((A−B)pq+ubz)]+

+ψ4[
1

cosµ (qsinϕ+ r cosϕ)]+ψ5[qcosϕ− r sinϕ]+ψ6[
sinµ
cosµ (qsinϕ+ r cosϕ)+ p]

where ψi are the auxiliary functions. The complete Differential Algebraic Equations



we have to solve are therefore:
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





















ṗ = 1
A (ubx)

q̇ = 1
B ((B−A)pr +uby)

ṙ = 1
B ((A−B)pq+ubz)

ψ̇ = 1
cosµ (qsinϕ+ r cosϕ)

µ̇ = qcosϕ− r sinϕ
ϕ̇ = sinµ

cosµ (qsinϕ+ r cosϕ)+ p

ψ̇1 = ψ2[
1
B (B−A)r]+ψ3[

1
B (A−B)q]+ψ6

sin(µ)
cos(µ)

ψ̇2 = ψ3[
1
B (A−B)p]+ψ4

1
cos(µ) sin(ϕ)+ψ5 cos(ϕ)+ψ6

sin(µ)
cos(µ) sin(ϕ)

ψ̇3 = ψ2[
1
B (B−A)p]+ψ4

1
cos(µ) cos(ϕ)−ψ5 sin(ϕ)+ψ6

sin(µ)
cos(µ) cos(ϕ)

ψ̇4 = 0
ψ̇5 = ψ4(qsin(ϕ)+ r cos(ϕ)) sin(µ)

cos2(µ)
+ψ6(qsin(ϕ)+ r cos(ϕ)) 1

cos2(µ)

ψ̇6 = ψ4[
1

cosµ (qcosϕ− r sinϕ)]+ψ5[−qsinϕ− r cosϕ]+

+ψ6[
sinµ
cosµ (qcosϕ− r sinϕ)]

maxH,∀t

subject to boundary conditions at the initial time and at the final time (transversality
conditions have to accounted for in this case). Even in the simplest case, such as the
one of an inertially symmetric satellite, the problem of minimum time brings to an
analytically unsolvable system (see [2]).

Solving the optimal problem

We here describe the numerical method used to solve this problem. The method is
a standard direct transcription method, see for example [9], excepts in the defects
definition. Let the time scale be divided into N points tk, k = 1..N. The variables
considered in the Non Linear Programming (NLP) problem are:

z = [xk,uk,umk,xN ,uN , t f ], k = 1..N −1

where xk is the state at time tk, uk is the control at time tk and umk is the control at
time tk+tk+1

2 . The continuous constrains of the Optimal Control Problem (OCP) have
now to be transcribed into some algebraic constrains. This is done by using a fourth
order Runge Kutta formula exploiting the states at the points tk and the controls at the
point tk and tk+tk+1

2 . The defects have been written as:

ζk = xk+1 −xk −
hk

6
[k1 +2k2 +2k3 +k4]

where:
k1 = f(xk,uk)

k2 = f(xk + k1
2 ,umk)

k3 = f(xk + k2
2 ,umk)

k4 = f(xk +k3,uk+1)



This method, if compared to an Hemite-Simpson collocation, retains the NLP sparsity
and increases the integration accuracy. To complete the transcription of the OCP into
a NLP the objective function in the Bolza form has to be transcribed too with some
quadrature formula. Newton-Cotes formula have here been implemented.

The initial guess

In the numerical solution of an optimal problem the initial guess plays a fundamental
part. The initial guess used here is the following precession:

ψ(t) = Ψ(t)
µ(t) = 0
ϕ(t) = Ωt

where the unknown function Ψ(t) is determined by means of variational calculus in
the functional space defined by the constrains:

Ψ(0) = 0 Ψ̇(0) = 0 Ψ(T ) = Ψ̂ Ψ̇(T ) = 0

Inverting the kinematic relations, the following holds for the body axis components
of the angular velocity:

p(t) = Ω
q(t) = Ψ̇sinϕ
r(t) = Ψ̇cosϕ

The corresponding control variables can be found by plugging the initial guess solu-
tion into the equation of motions, obtaining:

uix = −AΩsinΨΨ̇
uiy = AΩcosΨΨ̇
uiz = BΨ̈

or,
ubx = 0
uby = BsinϕΨ̈+AΩcosΩtΨ̇
ubz = BcosϕΨ̈−AΩsinΩtΨ̇

Note that if Ω = 0, that is if the spacecraft is not spinning, we would have to apply a
torque BΨ̈ along the z axes in order to achieve the desired precession. The effect of the
spin on our manoeuvre is, as we expected, all in the torque component perpendicular
to the spin axis, and is directly proportional to the spin velocity. To find Ψ(t) we
consider the following variational problem: find Ψ that minimizes the control effort
defined by the quantity:

P =
∫ t f

0
u ·udt =

∫ t f

0
A2Ω2Ψ̈2 +B2Ψ̇2dt



Note that this will lead to the exact solution of an optimal control problem, that is the
fixed time optimal reorientation of a gyrostat with one degree of freedom (precession
angle) and with no limitations on the control. The solution to this problem may be
obtained in closed form:

Ψ(t) = c1eλt + c2e−λt + c3t + c4

where λ = A
B Ω and

c1 = −
Ψ̂e−λt f

R
c2 = Ψ̂

R

c3 = Ψ̂λ(1+e−λt f )
R

c4 = Ψ̂(e−λt f −1)
R

R = 2e−λt f +λt f (e−λt f +1)−2

In this problem the time t f is considered fixed. In a practical optimization this is
not an intersecting case and t f has to be optimized as well. If, though, one tries to
minimize the control effort, this would results in an infinite t f . One has therefore to
consider either a time minimal problem or, as suggested here, a mixed time-power
optimization problem, in which case the following cost function can be used:

J(u, t f ) = t f + k0

∫ t f

0
u ·udt

Having solved the fixed t f optimal problem we may easily evaluate, for each t f , the
above cost function and therefore determine the optimal t f (the fixed t f optimal so-
lutions represent Pareto-optimal solutions in the simple multi-objective optimization
where both mass and time has to be minimized). We might also choose our t f by
taking care that the limits on the control values are satisfied (in this case J is not
minimum, but the resulting initial guess may speed up the NLP solver convergence).

Results

Some results are shown for a selected case. A satellite with A = 5Kgm2 and B =
20Kgm2 is considered. The satellite is supposed to be 3-axis stabilized and the max-
imum torque around each of the axis is set to be 1Nm. The spin velocity Ω around
the x inertia axis is supposed to be equal to 2.8 rpm and the final reorientation angle
Ψ̂ = π

4 . With these parameters a time optimal control is first obtained.

J(t f ) = t f

In figure 2 the optimal control, both in body axis and in inertial axis, is shown together
with the resulting state. The optimal control shows to be bang-bang in all the three
components of the torque. This, as known, is not a general rule ([2], p.400) in attitude
optimal control problems. The optimization returns a minimum time of tm = 7.82sec..
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Figure 2: Optimal trajectory (minimum time)

The control effort, measured by the integral P =
∫ t f

0 u · udt has is 22.82N2m2sec.
The mixed time-power optimal problem is then considered, the result being shown
in figure 3. The manoeuvre time is slightly increased, so that t f = 9.6sec., but the
control effort drops dramatically being P = 3.27N2m2sec. This result is quite general,
as other simulations confirmed, leading to think to the consideration of this mixed
problem as a good multi-objective optimization solution.

POP mission

The Pluto Orbiter Probe is a feasibility study performed by the ACT in ESTEC ad-
dressing the possibility of a Pluto exploration mission that may assess the nature of
the so-called Pioneer Anomaly (see Rathke[3]) during its long (28 yeras) journey.
In order to perform its mission, POP has to be spin stabilized (during a coast arc of
8.22 years) and it has to reorient its spin axis by an amplitude of the order of π

180
several times. As a consequence, its hollow-cathode thrusters, capable of exerting
a maximum torque of .01Nm have to be fired. The model here developed has been
applied to this mission that is characterized by the following parameters Ω = .52 rad

sec. ,
A = 700Kgm2, B =C = 500Kgm2. The low value of the thrust combined with a fairly
good engines specific impulse of 500s makes the need for optimizing this manoeuvre
quite irrelevant from a mass consumption point of view, it was anyway important for
this case to demonstrate that the reorientation could be achieved in a relatively short
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Figure 3: Optimal trajectory (minimum time/energy)

strategy time requested
∫

u ·u
despin-rotate-spin 2276sec. 0.2122N2m2sec

initial guess 400sec. 0.03399N2m2sec
time optimal 304.3sec. 0.04262N2m2sec

time-power optimal 304.5sec. 0.0285N2m2sec

Table 1: Comparison between the different strategies for the POP case.

time.
Different results are reported in table 1 for four different strategies: time optimal,
time-power optimal, initial guess, despin-rotate-spin. We conclude by showing (fig-
ure 4), in a case in which the maximum torque was set to .1Nm, how the consideration
of the mixed optimal problem leads to a non bang-bang control. It is of interest to
note that two of the control components remain unaltered.

Conclusions

A direct transcription method has been proposed to solve the optimal problem of
large reorientations of a spinning gyrostat. The defects have been written by using
a Runge-Kutta formula that still allows to consider a finer mesh for the controls and
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Figure 4: Comparison between time optimal strategy and time-power optimal strategy
in a POP-like case

to obtain a sparse Non Linear Programming problem. An initial guess is proposed
together with the consideration of a mixed time-power cost function. The results
show how the mixed time-power cost function returns good solutions both in terms
of time and of power representing therefore a viable multi-objective optimization
technique. Results are also presented in the case of a mission concept under study by
the Advanced Concept Team in ESTEC.
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