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Abstract A novel two-phase hybrid controller is proposed to optimize propellant consump-
tion during multiple spacecraft rendezvous maneuvers in Low Earth Orbit. This controller
exploits generated differentials in aerodynamic drag on each involved chaser spacecraft to
effect a propellant-free trajectory near to the target spacecraft during the first phase of the
maneuver, and then uses a fuel optimal control strategy via continuous low-thrust engines to
effect a precision dock during the second phase. In particular, by varying the imparted aero-
dynamic drag force on each of the chaser spacecraft, relative differential accelerations are
generated between each chaser and the target spacecraft along two of the three translational
degrees of freedom. In order to generate this required differential, each chaser spacecraft
is assumed to include a system of rotating flat panels. Additionally, each chaser spacecraft
is assumed to have continuous low-thrust capability along the three translational degrees
of freedom and full-axis attitude control. Sample simulations are presented to support the
validity and robustness of the proposed hybrid controller to variations in the atmospheric
density along with different spacecraft masses and ballistic coefficients. Furthermore, the
proposed hybrid controller is validated against a complete nonlinear orbital model to include
relative navigation errors typical of carrier-phase differential GPS (CDGPS). Limitations
of the proposed controller appear relative to the target spacecraft’s orbit eccentricity and a
general characterization of the atmospheric density. Bounds on these variables are included
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to provide a framework within which the proposed hybrid controller can effect an extremely
low propellant rendezvous of multiple chaser spacecraft to a desired target spacecraft.
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List of symbols
ar Target spacecraft semi-major axis
c Coefficient in Schweighart—Sedwick equations
Cp; Target spacecraft drag coefficient
Cpe, ith chaser spacecraft drag coefficient
Orc,. Relative position vector of the ith chaser spacecraft in LVLH orbital frame
¢, Relative velocity vector of the ith chaser spacecraft in LVLH orbital frame
ABC Ballistic coefficient differential
ABCc; max ith chaser spacecraft maximum ballistic coefficient differential
which corresponds to the maximum relative acceleration differential
ABCc; min ith chaser spacecraft minimum ballistic coefficient differential
which corresponds to the minimum relative acceleration differential
At Time interval used in fuel-optimal control solution
Atopt Waiting time between re-solving the fuel-optimal low-thrust control sequence
At* Switching time for the differential-drag controlled rendezvous phases
AV Metric for fuel consumption expressed in terms of total velocity variation
ECI Earth centered inertial coordinate frame
e Time-varying eccentricity of the Harmonic Oscillator Motion before
Rendezvous
er Target spacecraft orbit eccentricity
d(1) State transition matrix for relative motion equations
¢ Phase of forcing term in out-of-plane motion in Schweighart—Sedwick
equations
h(to) Target spacecraft initial altitude above the Earth surface
1 Metric for fuel consumption expressed in total impulse
Lixn nxn Identity Matrix
1SS International Space Station
iT Target spacecraft orbit inclination
J Second-order harmonic of Earth gravitational potential field
(Earth flattening) [108263 x 1078, cf. Vallado 2004]
J Cost function
LVLH Local Vertical Local Horizontal
I Coefficient in Schweighart—Sedwick equations (out-of-plane motion)
Ar Position co-state vector
Ay Velocity co-state vector
mr Target spacecraft mass
mc, ith chaser spacecraft mass
vr Target spacecraft orbit initial anomaly
w Target spacecraft orbital angular rate
T Target spacecraft orbit argument of perigee
Qr Target spacecraft orbit right ascension of ascending node (RAAN)
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(1) Convolution integral matrix for relative motion equations due to optimal
unbounded control

q Coefficient in Schweighart—Sedwick equations (out-of-plane motion)

Rg Earth mean radius (6378.1363 km, cf. Vallado 2004)

rrT Target spacecraft reference orbit radius

P Atmospheric density

St Target spacecraft cross-wind section area

S¢; min ith chaser spacecraft minimum cross-wind section area

Sc; max ith chaser spacecraft maximum cross-wind section area

Sc;0 ith chaser spacecraft cross-wind section area to achieve zero ballistic
coefficient differential

Sp Single drag plate cross-wind section area

Opos Variance of the relative position errors

Ovel Variance of the relative velocity errors

t Time

u Control vector

uy,uy,u, Control variables expressed as relative accelerations in the LVLH
orbital frame

Vi Spacecraft velocity vector magnitude with respect to the Earth’s atmosphere
X Spacecraft relative state vector

z Transformed spacecraft relative state vector

21,01, 22,101 Tolerances in reaching a stable orbit

1o Initial time

ty Final time

1 Introduction

The possibility of controlling spacecraft relative motion by exploiting the Earth’s atmo-
sphere has been studied for several years (Leonard 1986; Leonard et al. 1989; Humi and
Carter 2001; Palmerini et al. 2005) and is still an open topic of research (Kumar and
Ng 2008; Bevilacqua and Romano 2008). Growing interest in exploiting differential aero-
dynamic drag for real-world small spacecraft design is evidenced in the current JC2Sat
(De Ruiter et al. 2008) being developed by the Canadian Space Agency and the Japanese
Space Agency, and the InKlajn-1 being developed at the Israel Aerospace Industries (Wine-
traub and Tamir 2009). When atmospheric differential drag is used for spacecraft rendezvous,
an under-actuated controllable system exists in two of the three translational degrees of free-
dom, namely the target spacecraft’s orbital plane (Campbell 2003; Kumar et al. 2007; Starin
etal. 2001). With respect to the full relative motion system to include the out-of-plane motion,
several propellant optimized control methods have been proposed that involve long duration
low-thrust maneuvers (Bevilacqua and Romano 2007; Guelman and Aleshin 2001; Humi
and Carter 2001).

In this work, a novel two-phase hybrid approach is proposed that is based on a combination
of differential aerodynamic drag and continuous low-thrust optimal control to affect quasi
propellant-free rendezvous maneuvers for an arbitrary number of spacecraft. Both phases
are implemented in feedback with respect to the spacecraft relative states to account for
unmodeled dynamics and disturbances. The first phase, which involves the approach of the
chaser spacecraft from a far away initial condition to an orbit near to the target spacecraft, is
accomplished propellant-free by differential aerodynamic drag utilizing a system of paddles
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72 R. Bevilacqua et al.

on the chaser spacecraft. During the second phase, low-thrust engines are used to complete
the precise rendezvous using a fuel optimal control strategy.

The main contributions of this paper to the state of the art for multiple spacecraft rendez-
vous control can be summarized as follows:

1. Important analytical developments on previously obtained results on differential drag
precise rendezvous (Bevilacqua and Romano 2008).

2. Design of a differential drag-based feedback controller that requires no coasting phases
and thus can be implemented stand-alone on each chaser spacecraft. This new approach
provides the following key benefits

a. No waiting time is needed among different spacecraft to maneuver closer to the
target. This drastically reduces the maneuver overall required time;

b. The target does not modify its cross-wind section area, i.e. it does not increase its
natural orbit decay. This is in contrast to previous work in which the control of the
system of multiple spacecraft depended on a maneuvering target spacecraft with
similar drag plates (Bevilacqua and Romano 2008).

3. Introduction of a two-phase hybrid technique to obtain low propellant spacecraft rendez-
vous maneuvers by which a seamless integration between an existing rendezvous optimal
controller (Guelman and Aleshin 2001) and the proposed differential drag-based con-
troller is demonstrated.

4. Test of the proposed linear models-based feedback techniques against a complete non-

linear model that includes realistic relative navigation errors and uncertainties on the

atmospheric density.

Capability of maneuvering spacecraft with different masses and ballistic coefficients.

6. Robustness against poor characterization of the atmospheric density whereby the pro-
posed hybrid controller requires only an initial estimation of the atmospheric
density.

7. Delineation of boundaries for the target’s orbit eccentricity and for the initial guess on the
atmospheric density in order to successfully utilize the proposed hybrid
controller.

hd

It is worth mentioning that the use of drag plates for a single rendezvous between a target
and a chaser would probably add more onboard weight than using fuel alone. Nevertheless,
the proposed approach is envisioned for multiple rendezvous maneuvers, formation-keeping,
etc., where the trade-off between fuel saving and increased weight due to the installation of
drag plates may be very advantageous.

The paper is organized as follows. Section 2 introduces the dynamics model and con-
trol logic used for the differential drag controller design. Section 3 illustrates the optimal
low-thrust approach for the final phase of the rendezvous maneuver. Section 4 describes the
validation of the drag controller and the optimal low-thrust controller with a nonlinear orbital
propagator and a realistic spacecraft model. Section 5 is dedicated to numerical simulations.
For the presented simulations the target spacecraft is set at an orbit similar to that of the
International Space Station (ISS). The eccentricity is increased with respect to that of the
ISS, in order to test the approach capability of dealing with eccentric orbits. Furthermore, a
subsection of Sect. 5 lists the main boundaries for using the hybrid control here presented.
Section 6 concludes the paper.
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Multiple spacecraft rendezvous maneuvers 73

2 Dynamics model including J> and control via differential drag

In this section the analytical developments for the dynamics and control of the spacecraft rel-
ative motion via differential drag are presented. The differential drag control logic is used in
the first phase of the multi-spacecraft rendezvous maneuvers. The relative dynamics between
two generic spacecraft, considering the averaged effect of the J, perturbation over one orbit,
projected in the LVLH coordinate system with respect to the target spacecraft, is represented
by the Schweighart—Sedwick equations (Schweighart et al. 2002)

. 03x3 I3x3 033

X = X u 1
|:Al Az + I3x3 )

0 o

with state vector x(t) € RS, vx” =[x, y,z, %, y, 2] = [Pr¢,, Pv¢, ], control vector u(r) €

R3, vul = [ux, uy, uz; + 2lg cos (gt + qb)] and

5202 —=2w% 0 0 0 2wc¢ 0
Ar=10 00 , Ay=| —2wc 0 0 2)
0 0 —q? 0 0 0

The dynamics of Eq. 1 assumes:

1. circular reference orbit;
2. close separations between spacecraft (in comparison to their orbital radius);
3. the only acting forces are 2-body, J, gravity and control.

The Schweighart—-Sedwick LVLH coordinate system is defined as follows: the x axis is
collinear with the position vector of the target spacecraft, the y axis is in the direction of the
velocity vector along the orbital track and the z axis is normal to the orbital plane completing a
right-hand Cartesian coordinate system. /, g and ¢ are coefficients as defined in Schweighart
et al. (2002), w represents the current angular rate of the LVLH frame and c is defined as

3LRE )
c=_[1+ 5 [1+ 3 cos (2ir)] 3)
8rs
with J representing the second order harmonic of Earth’s gravitational potential field, Rg,
the Earth’s mean radius, r7 the magnitude of the position vector of the target spacecraft in the
Earth Centered Inertial (ECI) coordinate frame, and i7 the inclination of the target spacecraft.
Furthermore, the control vector u indicates the components of the relative acceleration
between the two spacecraft. When only differential aerodynamic drag is considered, the
control vector becomes

o =[0 —e2ECy2 o] @)

where p is the atmospheric density, V; is the magnitude of the spacecraft velocity vector with
respect to Earth’s atmosphere, and A BC is the ballistic coefficient differential given by

mrCpc, Sc; —mc,Cpy St

ABC = BC¢, — BCr = (%)

mrmc;
with m7, mc, representing the mass of the target and ith chaser spacecraft respectively,
Cpr. Cpe, representing the coefficient of drag of the target and ith chaser spacecraft respec-
tively, and St, Sc, representing the wind-cross section area of the target and ith chaser
spacecraft respectively. The ballistic coefficient differential accounts for different masses,
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74 R. Bevilacqua et al.

drag coefficients and wind-cross section areas between the chaser spacecraft and target space-
craft. The atmospheric density and the magnitude of the spacecraft velocity vector are in first
approximation retained constant between them. The possibility of non homogenous space-
craft was not taken into account by the original approach described in Bevilacqua and Romano
(2008) and presents one of the key benefits to the presented approach.

By disregarding the out-of-plane motion, which cannot be controlled by considering only
differential aerodynamic drag, the relative dynamics of two generic spacecraft given by Eq.

1 become linear in
. 02x2 Iox2 0212
X = X u 6
|:A1 Az ] +|:12x21| ©

with state vector x(r) € R®, vx” = [x, y, %, y], control vector u(r) € R? vul = [, uy]
and

5020 = 2w 0 0 2wc
A= |:O 0o |’ Az = —2wc 0 )

Equation 6 can further be decomposed into a double integrator and a harmonic oscillator
via the following state vector transformation

0 1 —a/d*> 0

—ab/d®> 0 0 —b/d? g
1o 0 a%/@2d% 0 ®)

a®b/(2d?) 0 0 a’/(2d?)

where z(t) € R*, V2! = [z, 22, 23, z4] and a = 2we, b = (5¢ —2)w?,d = Va? —b.

The dynamics in the new state vector (see also Bevilacqua et al. 2009; Bevilacqua and
Romano 2008) have the following closed form solution for constant control acceleration u,,
with u, =0

_ b2
71 = 21p + 1229 — 5 alty
bt
2 =220 — pply

| i ©
23 = cos (dt) 23 + sm;dt) 24y + a’[1 2Zyoss(dt)]l/ty
. 3.
74 = —d sin (dt) z3, + cos (dt) 74y + & Szlsidt) iy

The two aspects of the relative motion dynamics can be represented in two different phase
planes. Figure la represents the double integrator motion, Fig. 1b the harmonic oscillator
part.

When using differential aerodynamic drag for control of the linear dynamics given by
Eq. 6, a system of drag plates are imagined to be mounted on each spacecraft so that direc-
tion of relative acceleration can be controlled (see Eq. 4 given Eq. 5: ABC can be either
zero, negative or positive). Furthermore, some assumptions are made in order to exploit the
analytical solution in Eq. 9 for designing the control logic (Bevilacqua and Romano 2008).
These are only used for the analytical developments of the drag control logic and include

1. The angle of attack of the drag plates of each spacecraft can be instantaneously either O or
90°, thus generating a minimum (Fig. 2, CASE 1), zero (Fig. 2, CASE 2) or a maximum
(Fig. 2, CASE 3) relative drag acceleration. This assumption is removed in simulations
by providing a linear rotation. Furthermore, the drag plates are considered to rotate in
couples, as depicted in Fig. 2, CASE 2.
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Fig. 1 Qualitative shape of the curves representing the relative motion of a chaser spacecraft with respect to
the target in the z-phase plane. a Curves in z1z», b curves in z3(z4/d) (modified from Bevilacqua and Romano
2008)

2. Attitude dynamics are not considered. Attitude is assumed to be stabilized in the LVLH
coordinate system.

3. The atmospheric density p is constant for all of the spacecraft and equal to that of the
target’s altitude at the initial time (%(#p)). This assumption is removed in simulations to
include a modeled atmospheric density with a bias offset.

4. The problem is confined to the xy plane with the final condition for each chaser being
the equilibrium point where x = 0. The dynamics along the z-axis, which is oscilla-
tory and independent from the dynamics in the xy plane, is left uncontrolled during the
differential aerodynamic drag phase.

5. The target orbital rate w is constant during the maneuver. This assumption is removed in
simulations.

The drag plates concept illustrated in Fig. 2 represents an evolution and significant enhance-
ment of the ideas previously introduced by Bevilacqua and Romano (2008). In particular,
with respect to the herein proposed two-phase hybrid controller, the target spacecraft’s bal-
listic coefficient is taken to be constant while each individual chaser spacecraft is capable
of changing its ballistic coefficient such that a negative, zero or positive control is generated
with respect to the target. By this new assumption, the algorithm presented in Bevilacqua
and Romano (2008) is simplified in that any mutual constraints among the control signs of
the chasers are removed.

The control during the differential drag phase of the hybrid controller involves closed loop
orbit stabilization of each chaser spacecraft with respect to the target equivalent to what is pre-
sented in Bevilacqua and Romano (2008) when considering only one chaser spacecraft. This
occurs in the ideal case when z; = zo = 0 but can be readily modified to accept a near-stable
orbit by considering a tolerance on each phase plane parameter. The stable motion can be
either a leader-follower configuration or a closed relative orbit described by the chaser around
the target (For more details, see Bevilacqua and Romano 2008; Leonard 1986; Leonard et al.
1989). After stabilization, precise rendezvous in the orbital plane is attempted by an analyti-
cally determined switching control sequence as shown in Fig. 3. In this open loop switching
control sequence, a series of four switching times (nAt*, n = 1, 2, 3, 4) are calculated that
include a waiting phase with u, = 0, a positive or negative generated u,, two sign changes
in uy and then a final u, = 0. The goal of this sequence is to affect a smooth rendezvous
trajectory with the target spacecraft. In fact, in the ideal case where the target and chaser have
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Drag plates couple 1

chaser

chaser .

—~ chaser
i
CASE1
Ak . CASE3
A X

Drag plates couple 2

Direction of motion |

Fig. 2 Illustration of the proposed drag plates concept
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Fig. 3 Qualitative examples of rendezvous maneuver in the phase planes. b The plus symbol indicates the
initial state, and the star symbol indicates the final condition. a Rendezvous trajectory in the z1zp plane;
b rendezvous trajectory in the z3(z4/d) plane (modified from Bevilacqua and Romano 2008)

identical characteristics, the atmospheric density is precisely modeled, the target spacecraft
is in a perfectly circular orbit and there is no out-of-plane motion, this control sequence will
affect a precise rendezvous of the chaser with the target.
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In particular, the value of At* used in the control sequence in Fig. 3 is represented by

At* fam [Uz(h+vh—d3—h 2/ )} (10)

where

h=1+JF/6g —e5/e/T

f = —54gej + 63/3e},/2¢% +27g2 (1D
2a3|u‘|
§="72 45

The following represent important new developments with respect to the selection of At*
and allow for specific implementation in a real-world environment with biased atmospheric
density and other perturbations. In order for the argument of the inverse cosine in Eq. 10 to
not exceed the unit value, the following condition must be satisfied

13
= /22 + (za/d)? < aﬁ” (12)

with z3 and z4/d corresponding to the appropriate transformed coordinates following Eq. 8
at the beginning of the rendezvous trajectory starting from the nearly stable orbit.
If this condition is not satisfied at the beginning of the switching control sequence, the eg

is adjusted to
13 a® |u,‘
60—60—099(5 PE ) (13)

and substituted into Eq. 11 to find the switching times A¢* given by Eq. 10. Upon executing
this control sequence, the chaser spacecraft will be at a new, smaller, stable orbit from which
Eq. 13 can be re-applied, if necessary, until the condition of Eq. 12 is satisfied.

3 Optimal low-thrust close proximity maneuvers

Using the differential drag control described in the previous section against a true nonlinear
model complete with varying atmospheric density, errors arise in matching the final desired
state vectors of the chaser spacecraft. Furthermore, the differential drag control presented
does not deal with the out of plane motion. For these reasons, a fuel optimal controller based
on continuous low-thrust engines is proposed for the final precision rendezvous maneuver.
This controller builds upon the results of Guelman and Aleshin (2001).

If the chaser spacecraft are in the vicinity of the target, the linear dynamics expressed
in Eq. 1 given Eq. 2 can be used with no major issues caused by the linear approximation
and by neglecting un-modeled disturbances. However, in order to significantly reduce the
effects of the nonlinearity and un-modeled disturbances, the fuel-optimal solution of Guelman
and Aleshin (2001), modified to include the Schweighart—-Sedwick equations of Eq. 1 as a
substitute for the Hill-Clohessy—Wiltshire (Clohessy—Wiltshire 1960) equations of motion,
is implemented in such a way that it can be repetitively computed at fixed time steps. This is
accomplished in a feedback fashion with respect to the spacecraft relative state vector.

By assuming continuous thrust capability in all three translational degrees of freedom,
the fuel optimal control problem of Guelman and Aleshin (2001) can be applied to the
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relative motion equations of Eq. 1. Given the initial and final conditions for the state vec-
tor xI = [x, ¥, 2,%,5,z] = [Orcl., OVCI.] and a time interval to perform the maneuver
At =ty — 1y, the goal of the fuel optimal controller is to minimize the cost function
o)
1 T
J=— [ u udt (14)
2
1

subject to the constraints
|uk|§Fmax/mC,-’ k=x,y,z, i=12,...,n (15)

With respect to the proposed two-phase hybrid controller, the initial state vector of the
generic chaser spacecraft is taken to be its state at the end of phase one, the differential drag
control phase, and the final desired state vector is the 6-by-1 null vector.

The Hamiltonian of the problem is

1
H:EuTu+err+lf(A1r+A2v+u) (16)
where A, (1) € R¥*! VAT = [A, A2, A3] and A, (1) € R, VAT = [A4, A5, A6] are the co-

state vectors. By applying the minimum principle (Pontryagin et al. 1969) and considering
the constraints in Eq. 15, the optimal control law is given by

ukz_)"Vk lf ‘)Lkameax/mC,w k=xvyaza i=1,2,...,l’l
ug = —sign (Ay,) Fmax/me; if |Avi| > Fmax/me,, k=x,y,z, i=12,....,n
a7
Moreover, the time evolution of the co-state needed in Eq. 17 is described by
T
i | O3x3 I3x3
v = |:A1 A, A (18)

where A(7) € RO*L VAT = [A,, A,]. We consider each thrust component to be generated
by an independent continuously operated engine. The optimal control problem is efficiently
solved by iteratively searching for the values of the initial condition of the co-state vector
A (7o) that minimizes the norm of the error between the desired and actual final states using
the MATLAB® fminsearch routine. This error is found by propagating Eq. 1, with the control
policy of Eq. 17. The initial time co-state vector guess for the first iteration is chosen to be
equivalent to the unconstrained continuous control case such that

Atg) = =¥ (A [® (A x(to) — x (t7)] (19)

where W(¢) is the convolution integral for the state vector due to the optimal unbounded
control and ®(¢) is the state transition matrix associated with the relative motion equations
in Eq. 1.

4 Implementation of the two-phase hybrid controller
Having formulated the mathematical background for both phases of the proposed hybrid

controller, namely the differential drag-based and optimal low-thrust portions, this section
details the practical implementation of the algorithms. The block diagram of an integrated

@ Springer



Multiple spacecraft rendezvous maneuvers 79

Drag Plate
Differential Drag Based [ Actuator

Feedback Controller

A\

Optimal Low-Thrust || Thrusters

Feedback Controller

Fig. 4 Block diagram depiction of the two-phase hybrid controller

spacecraft control system with the hybrid controller is presented in Fig. 4. The inputs to the
differential drag portion of the controller are the current position and velocity of the space-
craft in the Schweighart—Sedwick LVLH. Additionally, the maximum ballistic coefficient
differential, the atmospheric density at the target’s altitude at start time, and a tolerance on
the final condition of stabilization are pre-computed prior to the start of the maneuver and
made available as constants throughout the first phase of the maneuver. In particular, by
maintaining a constant atmospheric density as a substitute for a varying real-world density in
the control logic, a more satisfactory behavior is presented in the obtained trajectories. This
can readily be seen by observing that the curves in the phase planes on which the differen-
tial drag-based portion of the hybrid controller is based (Fig. 1) must be kept constant. By
continuously changing the atmospheric density, the controller’s performance is significantly
degraded as it seeks to continuously modify such curves.

During the first phase of the hybrid controller, the differential drag algorithm as presented
in Sect. 2 is implemented on each chaser spacecraft with relaxation of the noted assumptions.
At each time step, the differential drag algorithm determines a desired u , for the given chaser
spacecraft in the LVLH coordinate frame. This desired control is then translated to the corre-
sponding rotation command for each set of drag plates as depicted in the three Cases in Fig. 2
such that the chaser cross-wind section area S, affects the ballistic coefficient differential
in Eq. 5. It is important to note that this is only a desired control and that the true effect of
the change in S, appears after interaction with the other parameters in Eqs. 4 and 5 as will
be discussed in Sect. 5. Furthermore, in order to account for different ballistic coefficients
between the chaser and target, the chaser’s ballistic coefficient can be adjusted to match the
target in the case when the commanded u, = 0 by simple rotation of the panels. The required
zero-state cross-wind section area for each chaser Sc;( can be found by solving

(20)

In particular, the following procedure is followed for implementing the differential drag
portion of the hybrid controller in order to cope with nonlinear dynamics, biased atmospheric
density, different ballistic coefficients and sensor noise:

1. From the generic chaser’s initial conditions the feedback stabilizing algorithm is run
until a nearly stable orbit around the target is reached. As the ideal case 71 = 2 = 0
can not be obtained under the effects of varying atmospheric density and sensor noise,
this occurs when a predetermined tolerance on both parameters is obtained such that
21 < 21,101 and 22 < 22 101 The criteria to establish this tolerance is presented in Sect. 5.

2. The open loop analytical solution described in Sect. 2 is run until the distance between
chaser and target starts increasing instead of decreasing.
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80 R. Bevilacqua et al.

Table 1 Simulation parameters

my (kg) 10
mc, (kg) 11
mc, (kg) 9

Sp (m?) 0.25
St (m?) 0.75
Sy, min> SCy,min (m?) 0.25
Sy .max> SCp,max (mZ) 1.25
Scy0 (m?) 0.7857
Sc,0 (m?) 0.7105
Cpy 22
Cpc, 231
Cpc, 2.09
ABC¢, max (m*/kg) 0.0975
ABC¢, max (m*/kg) 0.1253
ABCe| min (m?/kg) —0.1125
ABCcy min (m*/kg) ~0.107
h(tp) (km) 356
Fmax (mN) 5

Atopt (s) 100

The rotation of the system of drag plates is not instantaneous in simulation in order to
model the movement of drag plates on an actual spacecraft. The drag plates react to each new
command by rotating between an open and a closed configuration (and vice versa) linearly,
with ten seconds required to complete a full rotation. This implies the possibility of not full
rotations in case the command is faster than 0.1 Hz.

Upon completion of the first phase of the hybrid controller, the drag plates on the chaser
spacecraft are rotated to correspond to CASE 2 in Fig. 2 to make its cross-wind section area
as near to that of the target spacecraft as possible and a flag is set to transfer translational
control of the spacecraft to the optimal low-thrust portion of the controller. The inputs to this
portion of the controller are again the position and velocity of the chaser spacecraft in the
LVLH frame but also include the position of the target spacecraft in the inertial frame and a
parameter to select the period of re-computation of the controls Afyp and a final rendezvous
guess time 7 ¢. This parameter provides the designer with a trade-space between computation
speed and optimality.

5 Numerical simulations

This section reports the results of two sample numerical simulations. Two chaser spacecraft
and the target, described in Table 1, are propagated from the initial conditions reported in
Tables 2 and 3.

The first sample simulation employs the differential drag analytical approach described
in Sect. 2, implemented as in Sect. 4. When the differential drag controller has completed
its sequence, the thrusters take over, in order to reduce the residual error between the chaser
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Table 2 Target spacecraft initial
conditions

Table 3 Chaser spacecraft initial

ar = 6713889.83 m
er = 0.01

it =51.9412°

Qp =206.3577°

wr =101.0711°

vr = 108.0848°

positions in LVLH rcy (1) (m) [1000, 2000, 10]
rc, (fo) (m) [—1000, —2000, —10]
ve, (t) (m/s) [—0.0084, —1.7018, —0.0063]
Ve, (to) (m/s) [0.0094, 1.7020, 0.0063]

spacecraft and the target spacecraft. This error is due to the assumptions made in Sect. 2
in order to develop the analytical controller. The following more realistic assumptions are
considered for the simulations:

A

The atmospheric density is not constant. It is generated according to the exponential

atmospheric model of Vallado (2004; p. 437, Table 8-4) . The exponential model follows
—(h—h,

the expression p (h) = poe( (5” 0)), where £ is the altitude above the Earth’s surface,

and the parameters po, i, and S H are updated according to the altitude range, following

a look-up table approach (Vallado 2004; p. 437, Table 8-4). For simulation purposes a

bias is added to the generated density values, in order to realistically reproduce a limited

knowledge of the atmospheric density. A constant error of +30% in the atmospheric

density knowledge is here considered.

The gravity force is nonlinear (up to Jy).

The target’s orbit is eccentric.

Disturbances are present (solar radiation pressure, third body effect).

Carrier-phase differential GPS (CDGPS) is supposed to be the sensor for relative nav-

igation. The errors here considered are of the order of 5cm for relative position and

1 cm/s for relative velocity. The chosen values follow state-of-the-art relative navigation

techniques (Ferguson et al. 2001; Bordner and Wiesel 2006). This is implemented by

adding white noise signals to LVLH position and velocity vectors. The white noises are

such that the variance for the relative position is opos = (5/ 3)? while the variance for

the relative velocity is ove] = (1/ 3)2. With these choices, 99% of the measurements are

affected by a maximum error of 5 cm for relative position and 1 cm/s for relative velocity.

The second simulation uses only thrusters on the same time frame of simulation 1, in order
to compare the fuel expenditure and show the amount of saving by using differential drag.

The tolerances in reaching the stable condition for the feedback stabilizing drag con-

troller are found to be strongly dependent on the target spacecraft eccentricity. Numerical
simulations show a satisfactory behavior when

21l = 10%er, 22100 = 107 ter Q1)

@ Springer



82 R. Bevilacqua et al.

Table 4 Simulation Test Case 1 results: fuel consumption and starting points for the low-thrust phase

Chaser 1 Chaser 2

I =2.18 mNs I = 19.4 mNs

AV =2 x 10~% m/s AV =2x 1073 m/s

Thrusting start: r¢, (m)=[—58.75, —148.45, 21.54] Thrusting start: r¢, (m)=[—47.83, —440.90, —7.75]
Total maneuver time: 10.83h Total maneuver time: 9.33h

Fig. 5 Simulation Test Case 1:
drag plates control sequence for
Chaser 1. In this figure and in
Fig. 6, the open configuration
indicates that the chaser is
configured as in Fig. 2, CASE 1;

l ‘ |
. 4

o

g 9
$ DragPlate1 3
a 3

I . ‘
4 6

2 8 10
the closed configuration indicates Time (hr)
that the chaser is configured as in open F -
Fig. 2, CASE 3; the remaining N
indicates CASE 2 2
a
Closed 1 L L 1 L |
0 2 4 6 8 10
Time (hr)
Fig. 6 Simulation Test Case 1: Open
drag plates control sequence for -
Chaser 2. =
g
a
Closed I I L |
0 2 4 6 8 10
Time (hr)
Open F 3
o
2
=
o
g
a
Closed I i I |
2 4 6 8 10
Time (hr)

5.1 Simulation Test Case 1: differential drag and optimal low thrust control

The main numerical results regarding the propelled phase for Simulation Test Case 1 are
reported in Table 4. The time required for completing the maneuver is 10.8 hours and 9.3
hours for Chaser 1 and Chaser 2 respectively. The drag plates of the chasers start from the
same configuration of the target, i.e. one of the two couples of plates is closed (see Fig. 2).

Figures 5 and 6 show the drag plates control history for chaser one and two. In particular,
the drag plates are supposed to be opened and closed in couples, by rotating the plates which
are symmetric with respect to the spacecraft in opposite directions, so that attitude effects
can be compensated (see Fig. 2). It is worth noting that given a maneuver time frame of more
than ten hours, the rotations of the plates depicted in Figs. 5 and 6 occur at feasible rates,
according to the linear law described in Sect. 4.
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Fig. 7 Simulation Test Case 1:
low-thrust control sequence for
Chaser 1

Thrust (mN)

Fig. 8 Simulation Test Case 1:
low-thrust control sequence for
Chaser 2

Thrust (mN)

Figures 7 and 8 depict the two chasers’ thrust history, demonstrating active thruster control
only near the end of the maneuver, after the drag controller has completed the feed-forward
phase. Furthermore, Figs. 7 and 8 show that the thrust limitations are respected.

Figures 9 and 10 show the rendezvous trajectories of the two chasers in different views in
the LVLH reference frame. The two chasers reach the target without any collision.

A further advantage of the proposed new drag plates’ concept, already mentioned in the
introduction of the paper, is that no coasting phases are required with respect to the work of
Bevilacqua and Romano (2008), optimizing the overall maneuver required time.

In the paper by Bevilacqua and Romano (2008), the whole system of spacecraft, to include
the target spacecraft, was maneuvered by changing each spacecraft’s cross-wind section area.
Two major disadvantages of this approach are that the target’s orbit can decay more than might
be desired and that a centralized control system is required whereby paddle control signals
are sent throughout the system of chaser spacecraft and target spacecraft at each time step.
In this work, we seek to overcome both of these disadvantages by assuming the target to not
maneuver (which implies also that it is not increasing its drag and so its decay) and allowing
each chaser to independently control its own cross-wind section area.

5.2 Simulation Test Case 2: optimal low thrust only
The main numerical results for Simulation Test Case 2 are reported in Table 5. The initial

guess for the 7 in the fuel-optimal control algorithm is chosen to be the same as the total
maneuver times given in Table 4.
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Fig. 9 Simulation Test Case 1: trajectory of Chaser 1

ﬁ

z (km)

Fig. 10 Simulation Test Case 1: trajectory of Chaser 2

Table 5 Simulation Test Case 2
results: fuel consumption

Chaser 2

Chaser 1

I =19.8 mNs

I =40.5 mNs

2 m/s

Total maneuver time: 8.68 h

AV =221 x10

AV =3.68 x 1073 m/s
Total maneuver time: 10.14h
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Fig. 11 Simulation Test Case 2:
low-thrust control sequence for
Chaser 1

Thrust (mN)

Fig. 12 Simulation Test Case 2:
low-thrust control sequence for
Chaser 2

Thrust (mN)

Time (hr)

Figures 11 and 12 are the chasers’ thrust histories when the maneuver is performed using
thrusters only. In this simulation the engines are used throughout the whole maneuver and
the thrusters’ capability is exploited more than in the previous simulation, still respecting the
constraint on the maximum allowed thrust on each direction.

Figures 13 and 14 show the rendezvous trajectories of the two chasers in different views in
the LVLH reference frame. Both the chasers reach the target state vector. As expected, com-
parison of Tables 4 and 5 yields a dramatic propellant savings for the combined differential
drag and low-thrust controller against the low-thrust controller.

An additional advantage of the differential drag controller versus the optimal thrusting
logic can be seen comparing the trajectories (Figs. 9 vs. 13 and 10 vs. 14). The trajectories
generated by the differential drag controller remain more bounded than the ones obtained
through optimal thrusting. This is due to the differential drag stabilizing algorithm that min-
imizes the harmonic oscillation amplitude while driving the secular part of the dynamics at
zero (see Fig. 1), within the tolerance of Eq. 21.

5.3 Limitations on the usage of the differential drag logic for multi-spacecraft rendezvous
scenarios

This section highlights the limitations on the usage of the proposed differential drag control
algorithm. The main assumptions made in order to develop an analytical logic are constant
atmospheric density and circular orbit. Numerical simulations have shown how these and
other minor assumptions can be removed to allow the presented stabilizing and open-loop
differential drag algorithms to be implemented to cope with uncertainties, sensors noises and,
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Fig. 14 Simulation Test Case 2: trajectory of Chaser 2

in particular, the non-modeled dynamics (e.g. eccentricity) and non-constant atmospheric
density.

In particular, the presented numerical simulations assume a positive, constant 30% error
on the knowledge of the density. An improved performance of the controller is obtained if
the constant density value provided to the logic is lower than the typical values of the given
altitude, while inputting a higher density value with respect to the typical ones degrades the
performance until the system becomes fully uncontrollable. This can be justified in that by
considering a lower atmospheric density, the actual control capability of each considered

@ Springer



Multiple spacecraft rendezvous maneuvers 87

chaser spacecraft is underestimated which still produces satisfactory results. However, by
considering a higher atmospheric density than what is typical, the actual control capability
of each chaser spacecraft is overestimated and the spacecraft tend to diverge rather than
converge to the equilibrium solution. Therefore, this can be simply addressed by always
under-estimating the atmospheric density expected at the typical altitudes of maneuvering.
This can be done choosing an atmospheric density model, computing the target spacecraft’s
atmospheric density at the initial time, and subtracting at least 30% from the result to account
for density model inaccuracies.

With regard to the eccentricity of the target’s orbit, numerical simulations show that the
differential drag-based portion of the controller can handle eccentric orbits. However, the dis-
advantage of using the hybrid controller for highly eccentric orbits is that the stable motion
of the chaser spacecraft that is obtained after the stabilization phase maintains a high value
for the amplitude of the residual harmonic motion. Thus, the differential drag portion of
the controller cannot bring the chaser near to the target and the benefits of this algorithm
become negligible. Numerical simulations show that a reasonable boundary on the eccen-
tricity appears to be 0.02.

6 Conclusion

This work presents a hybrid technique which enables multiple-spacecraft rendezvous and
rendezvous to a target spacecraft with low usage of propellant. The combination of differen-
tial drag from far away distances and low-thrust engines for the final approach to the target
is the key factor of this research. In particular, the spacecraft are considered equipped with
drag plates whose orientation can be changed with respect to the atmosphere wind direction,
in order to control the amount of differential drag among them. In the final phase of the
maneuver, a fuel-optimal continuous low-thrust controller drives the spacecraft to the tar-
get. Both the differential and fuel optimal controllers are based on linear dynamics, but are
demonstrated here through numerical simulations to be feasible solutions for a high fidelity
model of the orbital environment with its nonlinear effects, including solar, atmospheric,
third body and up to J4 gravitational effects.

Starting from a previous work by the authors, important developments are herein presented
for the completely analytical differential drag approach. In particular, the implementation of
drag plates is improved with respect to previous work by the authors, in order to allow the
algorithm to be run independently on each chaser spacecraft and allow for reduced maneu-
vering times. Furthermore, new analytical breakthroughs are reported for the closed form
solution control sequence based on differential drag.

Numerical simulations are included to confirm the advantage in terms of propellant con-
sumption of using a hybrid approach with both differential drag and fuel-optimal low-thrust
engines over only a fuel-optimal approach with low-thrust engines. In summary, the concept
of variable drag plates on each of the chaser spacecraft appear to provide a feasible and low-
risk ability to generate requisite drag differentials to effect orbit stabilization near a desired
target spacecraft from which low-thrust control algorithms can be employed to effect precise
rendezvous.
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