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Abstract: This paper presents the analytical steps for decoupling the natural dy-
namics representing the relative motion of two spacecraft flying in close orbits, both
without and with the inclusion of the J2 perturbation. Linear mathematical models
with constant coefficients are available in literature for representing such dynamics. In
both cases two modes can be highlighted through the eigenvalue analysis of the state
matrix: a double integrator, representing the secular part of the spacecraft relative
motion, and a harmonic part, related to the typical oscillations present in spacecraft
relative dynamics. In this work we introduce a rigorous two-step state vector trans-
formation, based on a Jordan form, in order to decouple the two modes and be able
to focus on either of them independently. The obtained results give a deep insight to
the control designer, allowing for easy stabilization of the two spacecraft relative dy-
namics, i.e. canceling out the double integrator mode, which implies a constant drift
taking the two spacecraft apart. On the other hand, one could desire an immediate
control on the harmonic part of the dynamics, which is here made possible thanks
to the decoupled form of the final equations. Furthermore, the obtained decoupled
equations of motion present an analytical solution when only along-track control is
applied to the spacecraft. This solution is here presented. The phase planes behavior
for the controlled cases is reported.
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1 Nomenclature

α = Free parameter in generalized
eigenvector calculation
a = First non zero and non unity value
in the state matrix
A = State matrix
A′ = State matrix after first transfor-
mation
Â = State matrix decoupled (after sec-
ond transformation)
β = First free parameter in second
transformation matrix T2

b = Second non zero and non unity
value in the state matrix
B = Control distribution matrix
B̂ = Control distribution matrix after
transformations
γ = Second free parameter in second
transformation matrix T2

i = Complex unity
iref = Reference orbit inclination

J2 = Second order harmonic of Earth
gravitational potential field (Earth flat-
tening) [108263 × 10−8, [1]]
λ = Vector of the eigenvalues of A
LVLH = Local Vertical Local Horizontal
ω = Reference orbit angular velocity
rref = Reference orbit radius
Re = Earth mean radius
[6378.1363 km, [1]]
T = Transformation matrix
T1 = First transformation matrix
T2 = Second transformation matrix
t = Time
u = Control vector
wi, i = 1, .., 4 = Eigenvectors of A
x = Spacecraft relative state vector in
LVLH frame
x, y = Spacecraft relative position com-
ponents in LVLH frame
z = Transformed spacecraft relative
state vector
(...)

0
= Initial value (t = 0)

2 Introduction

A formal state vector transformation is presented in order to separate the two modes
characterizing the relative motion between a chaser spacecraft and a target spacecraft in
circular orbit, for both the well known unperturbed Hill–Clohessy–Wiltshire [2] model
and the more recent Schweighart–Sedwick [3] model which includes the J2 perturbation
are used. Only the in-plane part of the relative motion is here considered, being the
out-of-plane dynamics decoupled.

Our work is built upon the work of Leonard [4] who separates the dynamic of the
Hill–Clohessy–Wiltshire model by averaging the evolution in time of the state variables,
without developing a formal state transformation.

In particular, we employ a two-steps transformation into a Jordan form [5, 6] and then
into a new decoupled-natural-dynamics form by using a chain of generalized eigenvectors
in order to cope with the defectiveness of the state matrix. We obtain two transformed
system models (for the cases with and without J2) with the natural dynamics decoupled
into a double integrator and a harmonic oscillator. The present work embodies the
results of Leonard ([4], moving-ellipse formulation of Hill–Clohessy–Wilshire model) as
a particular case.

The obtained results add further insight to the description of spacecraft relative mo-
tion, and, in particular, enables the control designer to focus on either one of two critical
goals regarding the stabilization of the chaser’s motion with respect to the target: namely,
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either the stabilization into a closed elliptical relative orbit or into a separate circular
orbit with respect to the Earth center.

Furthermore, we perform the analytical integration of the transformed dynamics by
considering only along-track thrust (as proposed in recent literature to simplify mission
design, [7]–[9]).

The decoupled dynamics here obtained, and in particular the analytical nature of the
obtained results, have been used by Bevilacqua and Romano [10, 12] for developing a
completely analytical differential drag controller for multiple spacecraft assembly.

The paper is organized as follows: Section 3 introduces the linear models without and
with J2 perturbation. Section 4 is dedicated to the state vector transformations. Section
5 gives the analytical solution for the time evolution of the state vector for the case of
constant along-track control. Finally Section 6 concludes the paper.

3 Spacecraft Relative Motion Dynamics

The in-plane part of the motion of a chaser spacecraft with respect to a target spacecraft
in circular orbit can be represented by the following general equation, encompassing
both the Hill–Clohessy–Wiltshire [2] unperturbed model and the Schweighart–Sedwick
[3] model which includes J2 perturbation

ẋ = Ax+Bu, x =









x
y
ẋ
ẏ









, A =









0 0 1 0
0 0 0 1
b 0 0 a
0 0 −a 0









, (3.1)

where x is the “R-bar” axis, pointing from the Earth’s center to the LVLH frame’s origin
at the target spacecraft, y is the “V-bar” axis in the direction of the velocity of the target
along a circular orbit.

For the Hill-Clohessy–Wiltshire model it is

a = 2ω, b = 3ω2. (3.2)

For the Schweighart-Sedwick model it is

a = 2ω c, b =
(

5c2 − 2
)

ω2, (3.3)

where the coefficient c is given by

c =
√
1 + s, s =

3J2R
2

e

8r2ref
(1 + 3cos2iref) . (3.4)

The following substantial difference exists between the Hill–Clohessy–Wiltshire model
and the Schweighart–Sedwick model: while the state vector of the former model describes
the chaser’s position and velocity with respect to either a target spacecraft or a reference
point in circular orbit, the state vector of the latter model describes the chaser’s position
and velocity only with respect to a target spacecraft. Indeed, in the Schweighart–Sedwick
case, the evolution of the state of the chaser with respect to a reference point in circular
orbit is described by a more complicated expression, due to the J2 perturbation [3].

It is immediate to see that, if we neglect the J2 perturbation, the Schweighart–Sedwick
equations reduce to the Hill–Clohessy–Wiltshire equations. Furthermore, we underline
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the fact that the condition b < a2 holds for both models. In particular, while this is
immediately obvious for the Hill–Clohessy–Wiltshire case, for the Schweighart–Sedwick
model it translates onto the following condition for the variable s

(

5c2 − 2
)

ω2 < 4ω2c2 → |s| < 1
(3.5)

which is always true, because max (|s|) = 3J2R
2
e

2r2ref
≤ 3J2

2
= 1.624 · 10−3.

4 State Vector Transformation

The eigenvalues of the state matrix A in (3.1) are

λ =
[

0, 0,
√

b − a2,−
√

b− a2,
]T

. (4.1)

Being b < a2, the third and fourth eigenvalues in (4.1) are complex conjugated.
By observing (4.1), it is clear that a double integrator and a harmonic oscillator are

the two modes composing the natural dynamics.
Only the following three independent eigenvectors exist for the matrix A

w1 =









0
1
0
0









, w3 =























−
√
b− a2

a

1

a2 − b

a√
b− a2























, w4 =























√
b− a2

a

1

a2 − b

a

−
√
b− a2























, (4.2)

where w1 corresponds to the two multiple zero eigenvalues (Eq. (4.1)), and w3 and
w4 correspond to the two complex conjugated eigenvalues. Since the state matrix A is
defective (there are only three independent eigenvectors for the system which is of fourth
order), it cannot be diagonalized. As an alternative to diagonalization, we look for a
similarity transformation aiming to possibly represent the system with the state matrix
in the following form

Â =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 −Ω2 0









. (4.3)

This new form of the system matrix, inspired by the developments of [4], is useful
because it decouples the natural dynamics into a double integrator and a harmonic
oscillator. In (4.3), Ω represents the frequency of the harmonic oscillator.

As a first step of the transformation, we build a transformation of A into the modified-
diagonal form (or Jordan form, see [5],[6]). Let us write

x = T1z
′, (4.4)

where z′ is the corresponding new state. The transformation matrix T1 is obtained as
follows

T1 =
(

w1 w2 w3 w4

)

, (4.5)
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where w2 is the generalized eigenvector found by solving the following “Jordan chain”
equation ([5])

(A− λ (1) I)w2 = w1 → Aw2 = w1 → A2w2 = Aw1, (4.6)

where λ (1) = 0, from (4.1), leading to

w2 =
[

− a/b, α, 0, 1
]T

, (4.7)

where α is an arbitrary complex parameter which is obtained form the “Jordan chain”
procedure and can be conveniently chosen, as shown in the following.

The transformation of Eq. (4.5) results in the following Jordan-form

A′ = T−1

1
AT1 =









0 1 0 0
0 0 0 0

0 0
√
b− a2 0

0 0 0 −
√
b− a2









. (4.8)

As a second step of the transformation of the system matrix toward the desired form
of Eq. (4.3), we use the following complex transformation matrix

T2 =









1 0 0 0
0 1 0 0

0 0 −β
√
a2 − b iβ

0 0 γ
√
a2 − b iγ









, (4.9)

where β and γ are arbitrary complex parameters which can be conveniently selected, as
explained later.

The final expression for the state matrix is calculated as

Â = T−1

2
A′ T2 =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 b− a2 0









. (4.10)

This transformed system matrix is indeed in the desired form of Eq. (4.3) with
Ω =

√
a2 − b.

The overall transformation is given by

x = Tz, T = T2T1 =

























0 −a

b
i

(

a2 − b
)

(β + γ)

a

(β − γ)
√
a2 − b

a

1 α − (β − γ)
√
a2 − b i (β + γ)

0 0
(β − γ)

√

(a2 − b)3

a
i

(

a2 − b
)

(β + γ)

a

0 1 −i
(

a2 − b
)

(β + γ) − (β − γ)
√
a2 − b

























. (4.11)
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5 Analytical Solution of the Transformed Equations in Case of Constant

Along-Track Control

We here focus the attention on the case of a single control thrust acting along the y axis.
In this case, the initial and transformed control distribution matrices are

B =









0
0
0
1









, B̂ = T−1B =































αb

a2 − b

− b

a2 − b

1

4

i (β + γ) a2

βγ (a2 − b)
2

−1

4

(β − γ) a2

βγ (a2 − b)
3

2































. (5.1)

In order to have a control distribution matrix with real values, α,
i (β + γ)

βγ
and

(β − γ)

βγ
must all be real. The last two conditions are satisfied only if γ = −β, yielding

to (5.2)

B̂ =





































αb

a2 − b

− b

a2 − b

−1

2

Im(β) a2

‖β‖2 (a2 − b)2

1

2

Re(β)a2

‖β‖2 (a2 − b)
3

2





































. (5.2)

At this stage, looking at (5.2), we are able to impose convenient values for the arbi-

trary parameters α and β. We choose those values to be α = 0, β = −1

a
. Therefore, the

matrices in (4.11) and (5.2) become

T = T2T1 =







































0 −a

b
0 −2

√
a2 − b

a2

1 0
2
√
a2 − b

a
0

0 0 −
2

√

(a2 − b)3

a2
0

0 1 0
2
√
a2 − b

a







































, B̂ = T−1B =























0

− b

a2 − b

0

a3

2 (a2 − b)
3

2























.

(5.3)
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The expressions of (5.3) are expanded in the Appendix as functions of ω and c.
Moreover, we have

x = Tz =





































−a3z2 + 2b
√
a2 − bz4

a2b

az1 + 2
√
a2 − bz3
a

−2
√
a2 − bz3
a2

az2 + 2
√
a2 − bz4
a





































, z = T−1x =

































a2y − by − aẋ

a2 − b

−b (ax+ ẏ)

a2 − b

− a2ẋ

2 (a2 − b)
3

2

−a2 (bx+ aẏ)

2 (a2 − b)
3

2

































. (5.4)

In particular, for the Hill–Clohessy–Wiltshire dynamic model, the transformed system
with control along y is obtained by substituting the values of a and b given in (3.2) into
(4.10) and (5.3)

Â =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 −ω2 0









, B̂ =









0
−3
0
4









. (5.5)

Eq. (5.5), corresponding to our new state
[

z1 z2 z3 z4
]T

, reproduces the results

of Leonard ([4], where the state, in Leonard’s notation, is
[

ȳ ˙̄y β β̇
]T

, with β
having a different meaning with respect to our notation).

Figure 5.1: Qualitative shape of the curves on the phase plane of the double integrator
subsystem (z1 vs. z2) in case of constant thrust along the y axis for both the Hill–Clohessy–
Wiltshire and the Schweighart–Sedwick models.
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Figure 5.2: Qualitative shape of the curves on the phase plane of the harmonic oscillator
subsystem (z3 vs. z4) in case of constant thrust along the y axis for both the Hill–Clohessy–
Wiltshire and the Schweighart–Sedwick models.

Analytical integration of the transformed dynamics, taking into account only a con-
stant controlling thrust along y, leads to

z1 = − b

a2 − b
uy

t2

2
+ z20t+ z10 , z2 = − b

a2 − b
uyt+ z20 ,

z3 =

(

z30 −
a3uy

2 (a2 − b)
5

2

)

cos
[(√

a2 − b
)

t
]

+
z40√
a2 − b

sin
[(

√

a2 − b
)

t
]

+
a3uy

2 (a2 − b)
5

2

,

z4 = z40 cos
[(√

a2 − b
)

t
]

−
√
a2 − b

(

z30 −
a3uy

2 (a2 − b)
5

2

)

sin
[(√

a2 − b
)

t
]

.

(5.6)
The assumption of continuous constant thrust reflects the state of the art for space

thrusters, where only a regime value for the control is available [12]. Figure 5.1 and Figure
5.2 show the phase planes for the two types of forced motion (the forced double integrator
represented by state variables z1 and z2, and the forced harmonic oscillator represented
by state variables z3 and z4) with either positive or negative constant control along y.
Arrows are indicating the paths directions according to the sign of the control. The
curves on phase plane z1 vs. z2 are parabolas with symmetry about the z2 axis for both
the Hill–Clohessy–Wiltshire and the Schweighart–Sedwick models (only the curvature

changes in the two cases, being in particular equal to −3ω2

8uy

for the Hill–Clohessy–

Wiltshire model and −a2 − b

2buy

for the Schweighart–Sedwick model). The curves on the

phase plane z3
z4√
a2 − b

are circles for both the Hill–Clohessy–Wiltshire and Schweighart-

Sedwick models. The z3 coordinates for the centers of the circles in Figure 5.2 are given
by

± a3uy

2 (a2 − b)
5

2

(5.7)
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as calculated through the analytical solution in (5.6). The position of those centers is
positive or negative according to the control sign.

Eq. (5.6) also gives the state vector evolution for coasting (control off) phases, by
simply imposing uy = 0. In particular, when the control is off, a drift parallel to the z1
axis is experienced in the z1 vs. z2 phase plane, whose direction is related to the sign of
z2 (see Eq. (5.6)), while the circles in Figure 5.2 simply evolve around the origin. Again,
the phase planes reproduce the results of [4] when the values for Hill–Clohessy–Wiltshire
equations are used for a and b.

Eq. (5.4) and Eq. (5.6) together show how the spacecraft relative motion can be
seen as an oscillation, represented by the states z3 and z4, around a virtual point, whose
evolution is given by z1 and z2 in (5.6).

6 Conclusion

We developed a linear transformation of both the Hill–Clohessy–Wiltshire model for
spacecraft relative motion nearby a circular orbit and the more recent Schweighart–
Sedwick including the J2 effect. The proposed transformation highlights the superposi-
tion of double integrator and harmonic oscillator modes. Previous results in literature,
regarding the traveling-ellipse formulation of the Hill–Clohessy–Wiltshire equations are
included as a particular case of our state vector transformation. In particular we give
analytical solution and a description of the phase planes when only along-track control
is used. The achieved dynamic separation via state transformation allows the control
designer to focus directly on either one of two critical goals regarding the stabilization
of the chaser’s motion with respect to the target: namely, either the stabilization into a
closed elliptical relative orbit or into a separate circular orbit with respect to the Earth
center.
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7 APPENDIX

Substitution of (3.3) into (5.3) leads to

T =































0 −2
c

ω (5c2 − 2)
0

i
√

ω2 (c2 − 2)

2ω2c2

1 0
−i
√

ω2 (c2 − 2)

ωc
0

0 0
i
(

c2 − 2
)√

ω2 (c2 − 2)

2c2
0

0 1 0
i
√

ω2 (c2 − 2)

ωc































,
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B̂ =

























0

−
(

5c2 − 2
)

ω2

4ω2c2 − (5c2 − 2)ω2

0

−4iω3c3

((5c2 − 2)ω2 − 4ω2c2)
3

2

























. (7.1)
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