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Summary
Minimum time solar sailing trajectories are introduced using a combina-
tion of indirect and direct optimal control techniques. Here, large-scale,
multiphase optimal control problems are solved using a pseudospectral col-
location technique applied to an orbital debris mitigation concept. These
solutions are obtained for realistic sail dimensions, producing multirevolu-
tion, Earth-centered trajectories while accounting for uncontrolled spacecraft
dynamics in the eclipse regions. Specifically, minimum time solutions for orbit
transfer and phasing maneuvers are obtained using only solar radiation pressure
for propulsion and control. First, an optimal primer vector steering history is
obtained through numerical approximation. Locally optimal, closed-form solu-
tions are then implemented based on the primer vector direction, resulting in
minimum time satisfaction of desired terminal orbital conditions. In addition,
a novel solution strategy is presented for multiphase optimal control problems
characterized by uncontrollable dynamics with flexible phase boundaries. The
maneuvers presented will be shown to enable efficient orbital debris mitigation
for large-scale debris in geostationary orbits.
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1 INTRODUCTION

Solar sailing provides a propellantless propulsion solution for satellite maneuvering. Here, thrusting capabilities are gen-
erated from solar radiation pressure (SRP), utilizing the momentum exchange between photons and the sun-exposed
surfaces of a spacecraft. The resulting forces acting upon the spacecraft can be utilized for continuous low-thrust (CLT)
maneuvering. In practice, solar sailing spacecraft must employ large, lightweight, highly reflective surfaces, and exhibit
very low-thrust capabilities. For a spacecraft with a typical surface area to mass ratio on the order of 0.01 m2

kg
,1 the resulting

SRP acceleration is less than 10−10 km
s2 . To achieve propulsive capabilities comparable to conventional low-thrust systems,

a solar sailing spacecraft would require an area to mass ratio closer to 10 m2

kg
. Between the growing popularity (and capa-

bility) of CubeSats and the wealth of research regarding CLT spacecraft maneuvering,2-6 solar sailing is only recently
becoming a plausible means of spacecraft propulsion.

Practical use of solar sailing has been validated through JAXA’s IKAROS spacecraft in 2010.7 The Planetary Society has
launched LightSail 2,8 a 32 m2 sail on a 3U platform. Additional solar sailing concepts are being developed, and help frame
the current state-of-the-art in solar sailing capabilities: NASA’s Near-Earth Asteroid (NEA) Scout is a 86 m2 concept on a
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6U platform.9 To obtain an understanding of the upper bounds of solar sail development, NASA’s Sunjammer spacecraft
boasts a sail surface area of approximately 1200 m2.10 Using these examples, feasible sail trajectories can be developed
based on real-life sail dimensions to motivate additional solar sailing applications in the near future. In particular, orbital
debris mitigation can be addressed for high-altitude orbits where atmospheric drag is not an actor. Using a solar sail,
large-scale orbital debris may be removed from geostationary orbits (GEO) and placed into a retirement orbit as defined
by the Inter-Agency Space Debris Coordination Committee (IADC).11,12 The IADC deorbit guidelines are provided in
Tables B1 and B2 in the appendix. Generally, a deorbit maneuver from the geostationary belt requires a raise in altitude
greater than 235 km into a near circular final orbit beyond the space of operating spacecraft. Though many satellites are
launched with varying levels of deorbit capability, unforeseen systems failures threaten the likelihood of successful deorbit
at end-of-life.13-15 Using a solar sail, unresponsive satellites and rocket bodies can be removed from the geostationary
region, repeatably, using free propulsion.

Solar sail maneuvers are marked by very low-thrust propulsion, resulting in maneuvers of long-duration and many rev-
olutions for planet-centered applications. Furthermore, unique physical constraints require the spacecraft to be exposed
to the sun and allow SRP accelerations only in outward directions from the sun. Recent investigations into SRP trajec-
tory optimization have been focused primarily on applications involving restricted three body problems or interplanetary
trajectory optimization. Fekete16 and Pagel17 determined sail trajectories from the Earth to the moon. Optimized sail tra-
jectories in the Earth-Moon system are additionally obtained by Howell18 and Wawrzyniak.19 Optimal sail trajectories to
the outer solar system have been investigated by Dachwald.20 More recently, the automated trajectory optimizer for solar
sailing has been developed for trajectory design for sail propelled planetary transfers or NEA rendezvous by Peloni et al21,22

Locally optimal solutions have been obtained for planet-centered orbits but do not account for eclipsing or high-fidelity
dynamics models.23-30 Ultimately, none of these works address the specific challenges of Earth-centered orbit transfer
and phasing maneuvering using realizable sail-system masses or dimensions. In addition, eclipsing phenomena have not
been handled directly.

In this study, geostationary deorbit and rendezvous solar sailing trajectories will be obtained in minimum time while
addressing eclipsing phenomena. Control of the spacecraft trajectory is only possible during illumination phases. During
eclipse phases, the spacecraft orbits freely under the influence of multiple gravitational disturbances, creating disconti-
nuities in the control histories. Maneuvering solutions are obtained by subdividing the spacecraft trajectory into multiple
phases, alternating between illuminated and eclipsed states in a similar manner as previous works.3,5 The proposed
maneuvers will support the TugSat concept where a small satellite is tasked with repeatedly deorbiting large orbital debris
from the GEO belt using SRP propulsion.31,32 The TugSat mission involves a deorbit segment and a phasing segment. The
deorbit segment relies on trajectories which relocate large orbital debris into a disposal, or graveyard, orbit as defined by
the parameters in Table B2. During the phasing segment, the sail-craft must return from the graveyard regime to a spe-
cific equatorial longitude in the GEO belt for rendezvous with a new payload. Definitions for the GEO belt dimensions
for the return orbit are provided in Table B1.

The TugSat orbital debris migitation concept, as first introduced in Kelly et al,31 would achieve successful deorbit to the
graveyard regime and return to the protected geostationary region through manipulation of key orbital elements in careful
sequence. The deorbit maneuver was shown achievable in 220 days while the return maneuver would occur anywhere
between 180 days to over 10 years. Deorbit times are improved for various sail sizes in Kelly and Bevilacqua,32 where
a closed-form sail maneuvering strategy is introduced and optimized heuristically using particle swarm optimization,
ultimately reducing deorbit times by over 20%. In this work, deorbit times are further improved by steering the direction
of the primer vector presented in Kelly and Bevilacqua,32 and implementing sail orientations based on the closed-form
solution. Deorbit maneuvers will be obtained which occur on the order of 90 days. In addition, minimum time orbit
phasing solutions will place the sail-craft within a desired GEO belt longitude in under 60 days.

To obtain the minimum time maneuvering solutions which follow, a direct collocation method is employed. Specifi-
cally, an iterative collocation scheme utilizing adaptive mesh refinement is executed using GPOPS-II.33 Here, the collo-
cation method is a Gaussian quadrature implicit integration method with collocation applied at Legendre-Gauss-Radau
(LGR) points.34-36 The adaptive mesh-refinement procedure is a ph mesh refinement method described in Patterson
et al37 First derivative approximations are performed using a sparse finite-differencing method from Patterson and Rao.38

The solver employed is SNOPT, a sparse nonlinear programming (NLP) software package for large-scale nonlinear
optimization.39,40 First, minimum time solutions for deorbit from and rephasing to the GEO belt are obtained without
eclipsing. These solutions are postprocessed to determine the approximate location of eclipsing events for setup of a mul-
tiple phase optimal control problem. With these events in place, an updated minimum time solution is then obtained
which accounts for sail transits through uncontrollable shadow regions. The resulting trajectories are realizable given
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contemporary solar sailing practices and demonstrate the heightened possibilities of solar sailing small satellites. What
follows is the first application of orthogonal collocation techniques to obtain numerically optimized, planetocentric solar
sailing trajectories with eclipsing.

Specifically, contributions to the state-of-the-art in this work include:

• Numerically optimized primer vector histories to generate closed-form sail orientations
• Minimum time deorbit and phasing solutions using SRP propulsion with contemporary sail dimensions
• Eclipse event determination via accurate approximation from non-eclipse solutions
• High-fidelity orbit propagation strategy for multiphase optimal control problems with flexible phase boundaries

The remainder of this discussion is organized as follows. Section 2 describes the equations of motion and disturbance
forces in the dynamic modeling. Section 3 expands on the unique constraints and considerations involved with utilizing a
solar sail for controlled maneuvering. Section 4 introduces and outlines the methods used to set up the solution structure
to the solar sailing optimal control problem. Section 5 transcribes the deorbit and phasing problems into an NLP and
provides minimum time solutions for eclipsed solar sail trajectories. The summary of major outcomes are summarized
in Section 6. Constants and useful definitions are provided in the appendix.

2 DYNAMIC MODELING

The equations of motion describing a perturbed spacecraft orbit about the Earth (⊕) are expressed in an inertially fixed
reference frame as

r̈ +
𝜇⊕

r3 r = ad, (1)

where r is the spacecraft’s position vector of magnitude r and ad is the disturbance acceleration acting upon the spacecraft.
Here, the disturbance acceleration is composed of contributions from Earth’s nonuniform mass distribution, third body
effects from the moon and sun, and a nongravitational disturbance from SRP. In this study, accelerations are resolved
in an Earth-centered, inertial (ECI) coordinate system, defined with the primary axis (Î) pointing in the direction of the
vernal equinox, tertiary axis (K̂) assumed aligned with the Earth’s north pole, and secondary axis (Ĵ) completing the
right-handed basis. An Earth-centered, Earth-fixed (ECEF) coordinate system is defined on a rotating reference frame
with origin at the center of mass of the Earth and axes aligned with the Earth’s principal axes of inertia. In this manner,
the fundamental plane x̂-ŷ contains the Earth’s equator and rotates about ẑ = K̂ at a rate of 𝜔⊕ as defined in the appendix.
Finally, the local-vertical, local-horizontal (LVLH) coordinate system is defined on the spacecraft orbit reference frame
using basis vectors {r̂, ŝ, ŵ} obtained geometrically through

r̂ = r
r
, (2a)

ŵ = r × v||r × v|| , (2b)

ŝ = ŵ × r̂, (2c)

where v is the spacecraft velocity vector relative to the inertial frame. Figure 1 illustrates the relationship between these
coordinate systems. Specific values for the physical parameters to follow are provided in Tables A1and A2 within the
appendix.

2.1 Disturbance forces

The aspherical potential field used in this model accounts for second-order gravitational disturbances41 and is defined as

U =
𝜇⊕

r

(
R⊕

r

)2
[

3Γ22

r2
x
− r2

y

r2 − 1
2
Γ20

(
1 − 3

r2
z

r2

)]
, (3)
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F I G U R E 1 Earth-based coordinate system relationships for
ECI {Î, Ĵ, K̂}, ECEF {x̂, ŷ, ẑ}, and LVLH {r̂, ŝ, ŵ}

where {rx, ry, rz} are the spacecraft coordinates in the ECEF coordinate system, R⊕ is the mean equatorial radius of the
Earth, and Γ20 and Γ22 are the normalized harmonic coefficients defined as

Γ20 ≃ C20, (4a)

Γ22 ≃
√

C2
22 + S2

22. (4b)

Numerical values for R⊕, Γ20, and Γ22 are provided in the appendix. The disturbance acceleration resulting from
Equation (3) is obtainable from

a⊕ = ∇U. (5)

Notice, a coordinate transformation is required to resolve Equation (5) in the ECI coordinate system. This transfor-
mation has been applied for all numerical calculations in this work.

The disturbance force from a neighboring celestial body, n, is accounted for in an inertially fixed reference frame
using

an = 𝜇n

(
rsat,n

r3
sat,n

−
r⊕,n

r3
⊕,n

)
, (6)

where ri,j ≜ ri − rj. To minimize numerical errors known to exist in Equation (6), the following substitution
is used42

rsat,n

r3
sat,n

−
r⊕,n

r3
⊕,n

= Q rsat,n −
r⊕,sat

r3
⊕,n

, (7)

where

Q =
(r2

⊕,sat + 2 r⊕,sat ⋅ rsat,n)(r2
⊕,n + r⊕,nrsat,n + r2

sat,n)

r3
⊕,n r3

sat,n (r⊕,n + rsat,n)
(8)
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resulting in the numerically stable expression

an = 𝜇n

(
Q rsat,n −

r⊕,sat

r3
⊕,n

)
. (9)

Equation (9) is applied in this study to capture gravitational disturbances from the sun (⊙) and moon (☾).
SRP is the lone nongravitational perturbation in this dynamics model and is expressed as Reference 43

aSRP = −𝜅P⊙
AU2

r2
⊙

A
m

cos 𝜃[(1 − 𝜀)ê⊙ + 2𝜀 cos 𝜃n̂] (10)

with SRP P⊙, shadow coefficient 𝜅 (for occultations from the moon and the Earth), astronomical unit AU, sail surface area
to mass ratio A

m
, reflectivity coefficient 𝜀, sun direction unit vector ê⊙, which points in the direction of the sun, relative to

the satellite’s center of mass, and the sun-sail angle 𝜃, obtained from

cos 𝜃 ≜ ê⊙ ⋅ n̂, 𝜃 ∈
[
0, 𝜋

2

]
(11)

with bounds constraining n̂ to point “towards” the sun. Sail trajectories in this work assume a perfectly reflective sail
surface, such that 𝜀 ≜ 1. The shadow coefficient takes on values 𝜅 ∈ [0, 1], where 𝜅 = 1 corresponds to a fully illuminated
sail-craft and 𝜅 = 1 is fully eclipsed. For solar sailing applications, the control (u) is captured in aSRP, typically through
selection of n̂ (ie, u = n̂).

The total disturbance acceleration is the sum of these perturbations

ad = a⊕ + a☾ + a⊙ + aSRP. (12)

To obtain ad in the analysis to follow, sun and moon ephemeris dependencies are resolved using analytical approxi-
mations based on Julian date inputs.44

2.2 Dynamics

The dynamics of a spacecraft in response to the disturbance accelerations can be modeled in Gaussian form using modified
equinoctial orbital elements (MEOE), defined as

p ≜ a(1 − e2), (13a)

f ≜ e cos(Ω + 𝜔), (13b)

g ≜ e sin(Ω + 𝜔), (13c)

ℏ ≜ tan
( i

2

)
cos(Ω), (13d)

k ≜ tan
( i

2

)
sin(Ω), (13e)

L ≜ Ω + 𝜔 + 𝜈, (13f)

where {a, e, i, Ω, 𝜔, 𝜈} is the classical orbital element (COE) set. Using Equation (13), the state is defined x =
[p, f , g, ℏ, k, L]T with associated dynamics of the form

ẋ = ZF + b = f(x,u, t), (14)
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where

Z = 1
q

√
p
𝜇

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2p
q

0

q sin L (q + 1) cos L + f −g(ℏ sin L − k cos L)
−q cos L (q + 1) sin L + g f (ℏ sin L − k cos L)

0 0 𝜍2 cos L
2

0 0 𝜍2 sin L
2

0 0 ℏ sin L − k cos L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

and

b =
[
0 0 0 0 0

√
𝜇p

(
q
p

)]T
(16)

using definitions

q ≜ 1 + f cos L + g sin L, (17a)

𝜍2 ≜ 1 + ℏ2 + k2. (17b)

From these definitions, the orbital radius is readily obtained using r = p
q

. For the Earth-centered maneuvers in this
work, 𝜇 = 𝜇⊕ is used and the specific force F in Equation (14) is equivalent to the disturbance acceleration ad, from
Equation (12), expressed mathematically using LVLH components through

F = CTad, (18a)

= [Fr Fs Fw]T, (18b)

where

C ≜ [r̂ ŝ ŵ] (19)

is a direction cosine matrix which transforms coordinates from the LVLH coordinate system to the ECI coordinate system
using the basis vector definitions provided in Equation (2). Control is introduced into Equation (18) through proper
selection of n̂ as detailed in Section 3.

2.3 Change of variable

For long duration simulations, it is often beneficial to integrate the dynamics in terms of true longitude instead
of time.3-5 Assuming prograde orbiting solutions, L is monotonically increasing and is a suitable independent vari-
able substitute for time. Specifically, integrating the dynamics in terms of L helps to locate eclipse terminator points
for the multiphase optimal control problem. During the optimization process, these terminator locations may dif-
fer greatly in terms of time and can prevent solutions from varying too far from a supplied initial guess. Regardless
of time, however, the spacecraft experiences eclipsing phenomena in relatively similar locations in L for all solu-
tions initialized at a common epoch. From Equations (15) and (16), the change in true longitude with respect to
time is

dL
dt

= 1
q

√
p
𝜇
(ℏ sin L − k cos L)Fw +

√
𝜇p

(
q
p

)
= fL(x,u, t) (20)
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allowing for

t′ = dt
dL

= 1
fL(x,u, t)

. (21)

The change of variable can be carried out for the remaining MEOE expressions using

p′ = t′ ⋅ fp(x,u, t), (22a)

f ′ = t′ ⋅ ff (x,u, t), (22b)

g′ = t′ ⋅ fg(x,u, t), (22c)

ℏ′ = t′ ⋅ fℏ(x,u, t), (22d)

k′ = t′ ⋅ fk(x,u, t). (22e)

The updated state is now x = [p, f , g, ℏ, k, t]T with dynamics x′ = f(x,u,L).

3 SOLAR SAILING

3.1 Solar sail control

Solar sail control is made possible through user selection of the sail pointing vector n̂. Closed-form expressions for locally
optimal sail orientations are known to exist, which produce extremal rates of change for a desired orbital parameter.26 It
has been shown by Kelly and Bevilacqua32 that the SRP response can be optimized with respect to some primer vector
𝜻 . Physically, 𝜻 can be defined as the dynamic constraint vector corresponding to the rate of change in a specified orbital
parameter such as 𝜉 (specific orbital energy), a, or e. More generally, 𝜻 defines the dynamic response, due to SRP, across
a specified direction and is an instance of the primer vector.45 For example, to maximize p′, the associated constraint

vector obtained from Equation (15) would have LVLH components defined 𝜻p = t′ ⋅
[
0 2p

q
0
]T
∀L. Figure 2 illustrates the

relationship between n̂, �̂� , and ê⊙. Here, the basis vectors are defined as

ê1 = ê⊙, (23a)

ê3 =
ê⊙ × 𝜻||ê⊙ × 𝜻|| , (23b)

ê2 = ê3 × ê1. (23c)

The sail angles 𝛼 and 𝛽 are sail yaw and pitch control angles, respectively, and the angle 𝛾 is the primer vector angle
measured from ê⊙ to 𝜻 .

From Kelly and Bevilacqua,32 locally optimal sail angles are given as

𝛼⋆ = tan−1

(
−3 cos 𝛾 +

√
cos2𝛾 + 8

4 sin 𝛾

)
∈
[
0, 𝜋

2

]
, (24a)

𝛽⋆ = 0. (24b)

In instances where a specific orbital parameter rate is to be optimized, 𝜻 is always defined and 𝛾 is necessarily uncon-
trollable as ê⊙ and 𝜻 uniquely define the {ê1, ê2, ê3} basis. In addition, with {𝛼⋆, 𝛽⋆} defined, the sail system will orient
deterministically, achieving locally optimal SRP contributions to maximize the rate of change associated with the given
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F I G U R E 2 Sail orientation n̂, along with planar projection n̂1−2,
expressed in basis formed between sun direction vector ê⊙ and primer vector 𝜻

𝜻 . In this study, however, �̂� is treated as the control input, corresponding to a primer vector whose direction and com-
position are not known a priori. In this manner, the objective is to determine the optimal primer vector pointing history
which produces 𝛾 angles associated with minimum time deorbit or phasing trajectories. Control variables in this problem
transcription are then the components of the primer unit vector, defined as

u = 1||𝜻|| [ 𝜁r 𝜁s 𝜁w ]T = [ ur us uw]T. (25)

Now, as u represents a unit vector, the control vector magnitude must equal unity. This reduces the dimensionality of
the unknown control variables, resulting in the path constraint

u2
r + u2

s + u2
w = 1. (26)

Using this strategy, control of n̂ is achieved through approximation of the primer vector direction, rather than through
direct approximation of {𝛼⋆, 𝛽⋆}.

3.2 Eclipse handling

Solar sailing applications require direct exposure to sunlight for propulsion. In practice, a planet-centered sail-craft
will encounter eclipsing events due to occultations by the moon and Earth. During penumbral transits, the space-
craft is exposed to some fraction of the maximum available sunlight while during umbral transits, the spacecraft
is completely eclipsed by the occulting body. Due to the vast distances between the sun and occulting bodies, it
is reasonable to assume the amount of time spent in penumbra is negligible compared with the amount of time
spent in umbra. For the purposes of this research, the spacecraft is assumed to be completely eclipsed even during
the penumbral phases. In addition, occultation events caused by the moon are considered to be negligible due to
the brief duration and infrequent number of sun-moon eclipsing events. To locate relevant eclipsing events, a coni-
cal shadow model is used to determine the illumination status of the spacecraft as shown in Figure 3.46 Here, the
illuminating body is the sun of radius R⊙, and is occulted by the Earth, of radius R⊕. The apex, P, of the result-
ing penumbral cone lies along a shadow axis connecting the sun and Earth at a distance dp from the center of the
Earth

dp =
R⊕ d⊙

R⊙ + R⊕

. (27)
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F I G U R E 3 Conical eclipse
model

The distance d⊙ is measured between the centers of the sun and Earth. A penumbra cone angle, denoted 𝜙p, can now
be defined

𝜙p = arcsin
(

R⊕

dp

)
= arcsin

(
R⊙ + R⊕

d⊙

)
. (28)

To determine the illumination status of the spacecraft, the position vector r is polled in relation to a
unit vector r̂⊙ pointing from the Earth to the sun. The spacecraft position vector projected onto the shadow
axis is

r = (r ⋅ r̂⊙)r̂⊙. (29)

A distance parameter dr, measured along r̂⊙, is defined as

dr ≜ ||r||. (30)

The orthogonal distance between the spacecraft and the shadow axis can be obtained through

hr = ||r − r||. (31)

Now, the penumbra terminator point associated with the current spacecraft position r is located orthogonal to the
shadow axis at a distance hp defined

hp = (dp + dr) tan𝜙p. (32)

Ultimately, a spacecraft is located within the penumbra cone when the following condition is satisfied:

𝜃r ≤ 𝜃p (33)

with polar angle definitions

𝜃p = tan−1
(hp

dr

)
, ∈

[
0, 𝜋

2

]
, (34)

𝜃r = tan−1
(

hr

r ⋅ r̂⊙

)
, ∈ [0, 𝜋]. (35)

The spacecraft resides exactly on the termination point of the penumbra region when 𝜃r = 𝜃p.
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In practice, spacecraft in the GEO region are subject to eclipsing events twice per year, when the
Earth-sun geometry lies about the vernal equinox line (ie, during the vernal and autumnal equinoxes).
Outside of these equinoctial regions, the obliquity of the ecliptic keeps the GEO belt fully illuminated by
the sun.

4 OBTAINING MINIMUM TIME SOLUTIONS

Special care must be taken when structuring the initial guess for the NLP solver in order to produce a feasible solu-
tion. For spacecraft trajectory optimization problems, approximations of thrust arcs and short term oscillations in the
orbital elements may exhibit general solution profiles which repeat roughly once per orbit. With this in mind, ini-
tial mesh structures here are subdivided into equally spaced intervals based on the number of revolutions associated
with the initial guess of the solution. Specifically, multiple revolution trajectories are initially defined using one mesh
interval per revolution with an equal number of collocation points within each mesh interval. In the discussion to fol-
low, minimum time solar sailing solutions are obtained by first considering trajectories which are assumed to be fully
illuminated by the sun at all times. Upon selection of a non-eclipsed, minimum time trajectory, the solution is post-
processed to determine the locations of eclipsing events along the candidate trajectory. Based on the locations of these
eclipsing events, a new eclipsed trajectory is formed by partitioning the non-eclipsed solution into multiple phases,
consisting of alternating illuminated and eclipsed phases. This trajectory serves as an initial guess for the minimum
time eclipsing solution. Here, a novel method for obtaining accurate state approximations across eclipse regions will
be introduced. This method can be applied to all multiphase optimal control problems which include uncontrollable
phases.

4.1 Non-eclipsed maneuvers

The transcription of the minimum time solar sailing problem requires definitions of bounds on the state, control, and
constraint space as well as the supply of an initial guess of the state and control trajectories. Defining the bounds
on the solution space can be performed based on knowledge of the spacecraft dynamics and orbital mechanics; how-
ever, determination of a suitable initial guess proves more challenging. It is well known that candidate solutions
for the trajectory optimization problem often lie within a close neighborhood to that of the initial guess.3,4 Diffi-
culty arises in generating a suitable initial guess without introducing excessive biasing on the solution structure. In
an effort to prevent such biasing, the transcription method here only considers an initial guess on the state and
control histories at the beginning and end of the trajectory (ie, at L0 and Lf ). Most importantly, the solution bias-
ing here was observed to be overwhelmingly dependent upon the initial guesses on variables tf and Lf . Candidate
solutions frequently converged to within ±1 day of an initially supplied estimate of the final time and ±2𝜋 of an
initially supplied estimate of the final true longitude. To address this phenomenon, an iterative search method is
employed.

As all maneuvers take place within a close proximity of the GEO belt, it is reasonable to assume the final num-
ber or revolutions associated with the optimal trajectory will approximately equal the final number of days it takes
to complete the maneuver. Denoting L̃f and t̃f the initial guesses on the final true longitude and time, respec-
tively, the integer N is introduced where L̃f = N revs and t̃f = N days. Starting with an initial guess of N, an optimal
solution candidate is sought. Once a solution is initially obtained, N is reduced by one and a new candidate solu-
tion is sought. When N can be reduced no further to obtain a solution, the trajectory associated with the smallest
N value is deemed the minimum time solution and the final time associated with the last solution obtained will
be denoted t⋆f . This search method is founded upon the observation that for these simulations, any two Lf values
Lf , i and Lf , j, where Lf , i <Lf , j, the final times satisfy the behavior tf , i < tf , j. To further reduce the risk of solution
biasing, the method below allows for the underestimation of N, requiring no a priori knowledge of the expected
duration of the minimum time maneuver. The procedure for obtaining the minimum time solution is detailed in
Algorithm 1.
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Algorithm 1. Minimum time solution procedure

1. Initialization
i Define bounds on x, u, and c

ii Supply initial guess for x and u at beginning and end of trajectory
iii Select value of N
iv Define solution counter isol = 0

2. Optimization
i Set L̃f = N ∼ revs and t̃f = N ∼ days

ii Divide mesh into N equally space intervals
iii Attempt minimum time solution using GPOPS-II with SNOPT

3. Termination Tests
if solution is found then

i Set isol = isol + 1
ii Set t⋆f = tf

iii Set N = N − 1 and go back to step 2
else if isol>1 then

i Set N = N + 5
ii Go back to step 2
else

i Terminate search algorithm
ii t⋆f is minimum time solution
end if

Specific selections on bounds and initial guess definitions are detailed in Section 5.

4.2 Eclipsing maneuvers

To obtain more realistic expectations for the optimal deorbit performance, the effects of the penumbral regions must
be taken into consideration. Previous works have implemented a receding horizon approach, where a solution to the
optimal control problem is obtained and saved up to the first encounter of a penumbra terminator point.3,5 Upon
encounter of an eclipse region, the spacecraft trajectory is assumed to be Keplerian (ad=0), where the orbital ele-
ments (except for true longitude) are held constant during transits between penumbral terminator points. Estimated
values for L can be computed analytically at the terminator points as described in Betts.47 Once the spacecraft reen-
ters an illuminated region, the optimal control problem is solved once more. The initial conditions are updated,
coinciding with reentry into the illuminated region, and the trajectory is saved until the next shadow region is encoun-
tered. This sequence repeats until the minimum time solution is obtained. A patched solution, consisting of piecewise
fragments of the multiple optimal control solutions, is then used as an initial guess for a multiphase optimal con-
trol problem. Figure 4 illustrates the piecewise nature of the multiphase optimal control problem. Phases are linked
such that

L(i)
f = L(i+1)

0 (36)

and

[ p f g ℏ k t ]L(i)
f
= [ p f g ℏ k t ]L(i+1)

0
, (37)
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F I G U R E 4 Conceptual depiction of the
multiphase trajectory resulting from eclipsing
phenomena. True longitudes at the junctions between
phases are shown to be equal

where the superscript (i) ∈ { 1, 2, … ,P} denotes the phase number for the multiphase optimal control problem con-
sisting of P phases. This method may be sufficient to obtain an approximate of the minimum time solution, but is
inherently unrepresentative of the problem to be solved due to the substitution of oversimplified dynamics across
the shadow transit region. The resulting inaccuracies are even more consequential for orbit transfers which exhibit
many revolutions across an eclipse region. For scenarios where high accuracy solutions are desired, an alternative
solution method must be implemented which maintains the fidelity of the dynamic modeling, even across the eclipse
regions.

4.2.1 Eclipsed trajectory approximation

Here, a novel orbit approximation technique is introduced, which assumes spacecraft motion subject to the same
level of dynamic modeling fidelity across the entire orbit transfer. In this formulation, the only difference between an
eclipse and an illuminated region is the presence of the control input (aSRP). Consider an eclipse region as modeled
in Figure 3. Using Equation (1), the disturbance forces acting on the spacecraft are caused by gravitational perturba-
tions from the Earth’s nonspherical mass distribution as well as those from the sun and the moon. It would appear,
accurately, that the dynamics from Equation (14) are now uncontrollable as u is no longer included in the system.
Without a control variable, the NLP solver will be unable to determine a trajectory between penumbra terminator
points which satisfies Equation (33). This dilemma can be circumvented by introducing a virtual control variable, ǔ,
on the estimation of the time derivative t′ during the eclipsed orbit phase. In this manner, the dynamic constraints
become

f(x, ǔ,L) − [ p′ f ′ g′ ℏ′ k′ ǔ ]T = 0. (38)

Now, to ensure that Equation (38) accurately approximates Equation (14), the following path constraint is
introduced

ǔ − dt
dL

= 0. (39)

As it is known that both time and true longitude increase monotonically throughout the orbit, an additional path
constraint can be imposed on the control approximation such that

ǔ > 0. (40)
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F I G U R E 5 Comparison of
the satellite state evolution while
approximating dt

dL
using LGR

collocation vs Keplerian dynamics
for an example geostationary
satellite transiting across an eclipse
phase. LGR, Legendre-Gauss-Radau
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The NLP solver can now be tasked with accurately approximating the change in time with respect to true longitude
as t′ is a function of x and can be calculated at each LGR collocation point. This method approximates the state evolution
exactly as a response to the gravitational perturbations. The differences in modeling using Keplerian vs LGR approxi-
mation can be seen in Figure 5 which illustrates the state evolution of an example geostationary spacecraft across an
eclipsed phase of its orbit. From these results, the differences in approximation techniques is quite apparent. The semi-
major axis values differ by approximately 100 m while the eccentricity and inclination differences continue to diverge.
Significant differences are also captured in the ascending-node, perigee, and true anomaly angles, resulting in a cumula-
tive true longitude difference of approximately 2◦. When the accuracy of a solution is of high concern, these discrepancies
can accumulate into misleading performance characteristics. For example, the trajectories produced in this work can
be characterized by approximately 20 passes through eclipse regions, providing ample opportunity for compounded
Keplerian approximation inaccuracies. Ultimately the LGR collocation scheme more accurately tracks the true dynam-
ics when compared with the Keplerian propagation technique, leading to an improved representation of the spacecraft
motion.

4.2.2 Eclipsed solution algorithm

Equipped with a method to accurately approximate the spacecraft dynamics along an eclipse phase, a procedure to
obtain minimum time maneuvering solutions with eclipsing is now introduced. As with the non-eclipsing problem,
the eclipsed solution will be structured based on the initial guess on Lf and tf . Furthermore, instead of determin-
ing estimates of Lf and tf across a single mesh, terminator points must be accurately approximated for P phases
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of the multiphase eclipsing problem. Specifically, estimates of [L(i)
0 , L(i)

f ] and [t(i)0 , t(i)f ] must be made for each phase
i ∈ {1, 2, … ,P}. Fortunately, these values can be readily obtained by postprocessing the non-eclipsing solutions
and determining values of L and t which satisfy 𝜃r = 𝜃p from Equation (33). For each phase, an initial guess of x
and u is provided only at the terminator points L(i)

0 and L(i)
f in a similar fashion as with the non-eclipsing case,

so as not to over-bias the solution. Recall, as estimates for t are known from postprocessing, only {p, f , g, ℏ, k}
remain to be defined in x at the terminator points. Finally, the mesh intervals must be initialized for each of the
P phases.

For the eclipsing results in this study, all trajectories are characterized by a single, fully illuminated, multirevo-
lution trajectory immediately preceded or followed by a number of alternating eclipsed and illuminated phases. This
is a consequence of the selection of Julian Dates for the simulated scenarios. As a result, P− 1 phases are initial-
ized with a mesh consisting of a single mesh interval with four collocation points for cubic approximations of the
spacecraft trajectory. The remaining phase is addressed similarly as the non-eclipse case, where the mesh is divided
into N intervals corresponding to the number of completed revolutions within the multirevolution phase. For cases
where trajectories are initialized near eclipse dates, denoted Case A, phase i=P will be the multirevolution phase.
Conversely, trajectories which terminate near eclipse dates, denoted Case B, phase i= 1 will be the multirevolution
phase.

To obtain minimum time eclipsing solutions, revolutions may be added or subtracted from the initial guess derived
from the non-eclipse solution, which requires additional consideration due to the existence multiple phases. When mod-
ifying revolutions for Case A, the procedure is similar to that of the non-eclipsing case, where N is updated in phase
P, and the initial guess for L(P)

f and t(P)f is updated. For Case B, N remains fixed in the multirevolution phase, and the
number of phases must be altered instead. All additional revolutions are accompanied by the addition of two phases:
one eclipsed phase and one illuminated phase. As a result, revolutions may be added such that phase i=P+ 1 is defined
using

x(P+1)
0 = x(P)

f x(P+1)
f = x(P)

f , (41a)

u(P+1)
0 = u(P)

f u(P+1)
f = u(P)

f , (41b)

L(P+1)
0 = L(P)

f L(P+1)
f = L(P)

f + 𝜋

2
, (41c)

t(P+1)
0 = t(P)f t(P+1)

f = t(P)f + 0.25 days, (41d)

and phase i=P+ 2 is defined through

x(P+2)
0 = x(P+1)

f x(P+2)
f = x(P+1)

f , (42a)

u(P+2)
0 = u(P+1)

f u(P+2)
f = u(P+1)

f , (42b)

L(P+2)
0 = L(P−1)

f L(P+2)
f = L(P)

f + 2𝜋, (42c)

t(P+2)
0 = t(P−1)

f t(P+2)
f = t(P)f + 1 day, (42d)

where, once again, the state definitions in Equations (41a) and (42a) refer to variables {p, f , g, ℏ, k} as t is defined as
in Equations (41d) and (42d). If it is determined that phases should be removed while searching for the minimum time
eclipsing solution, the final phases can simply be removed from the problem transcription, starting with phase i=P and
working backwards towards phase i= 1 as necessary. The procedure for obtaining the minimum time solution is detailed
in Algorithm 2.
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Algorithm 2. Minimum time solution procedure with eclipsing

1. Initialization
i Obtain non-eclipsed solution

ii Postprocess non-eclipsed solution to obtain [L(i)
0 ,∼ L(i)

f ] and [t(i)0 ,∼ t(i)f ] ∀i ∼∈ {1,∼ 2,∼ … ,∼ P}
iii Supply initial guess for x and u at each [L(i)

0 ,∼ L(i)
f ] pairing

iv Determine N associated with phase P
v Define solution counter isol = 0

2. Optimization
i Divide mesh interval on phase P into N equally spaced intervals

ii Define a single mesh interval to each of the remaining P − 1 phases
iii Attempt minimum time solution using GPOPS-II with SNOPT

3. Termination Tests
Case A:

if solution is found then

i Set isol = isol + 1
ii Set t⋆f = t(P)f

iii Set N = N − 1
iv Go back to step 2
else if isol>1 then

i Set N = N + 1
ii Go back to step 2
else

i Terminate search algorithm
ii t⋆f is minimum time solution
end if

Case B:
if solution is found then

i Set isol = isol + 1
ii Set t⋆f = tP

f
iii Remove phase P from trajectory
iv Set P = P − 1
v Go back to step 2

else if isol>1 then

i Add phase P + 1 in accordance with Equation (41)
ii Add phase P + 2 in accordance with Equation (42)

iii Set P = P + 2
iv Go back to step 2
else

i Terminate search algorithm
ii t⋆f is minimum time solution
end if

Specific definitions on bounds and initial guess definitions are provided in the following section.

5 NUMERICAL RESULTS

Equipped with a strategy to generate minimum time solar sail trajectories for both eclipsed and non-eclipsed maneu-
vering, solutions to the deorbit and rephasing problems can now be obtained. Recall, NLP solver SNOPT is used in this
work with adaptive mesh refinement executed using GPOPS-II. Mesh intervals have been allowed up to eight collocation
points before being subdivided, with mesh refinement tolerance set to 10−6 and overall SNOPT tolerance set to 10−6. For
the simulations to follow, a 100 kg sail-craft with 1200 m2 sail area is simulated to either deorbit a 1100 kg payload or ren-
dezvous with a desired slot in the GEO belt; as a result, the deorbit maneuvers result in a 1 m2

kg
area to mass system while

the rendezvous maneuvers result in a 12 m2

kg
area to mass system. The following results help to characterize the current

capabilities of solar sails for high-altitude orbital debris mitigation.

5.1 Deorbit solutions

To address the minimum time deorbit maneuver, a solution to the following optimal control problem is desired

arg min
𝜃(t)

tf , (43a)
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s.t.

r̈ −
𝜇⊕

r3 r = ad, (43b)

[ a0 e0 i0 ]T = [ rGEO 0 0 ]T, (43c)

ef ≤ 0.003, (43d)

rp,f ≥ rGEO + 250 km, (43e)

0 ≤ 𝜃(t) ≤ 𝜋

2
, (43f)

where the cost function J = tf is to be reduced using the sun-sail angle 𝜃(t) from Equation (11). Equality constraints 43b
and 43c provide the dynamic constraints and initial conditions for a geostationary satellite orbit, respectively. Inequality
constraints 43d and 43e are event constraints which define satisfactory deorbit of the debris fragment into the graveyard
orbit. The value rGEO + 250 km comes as a result of Table B2 for the 1 m2

kg
system simulated here. The final inequality in

Equation (43f) serves as a path constraint on the sail orientation, restricting sail solutions to produce orientations which
point the sail surface normal towards the sun. For this optimization problem, the state is resolved in the MEOE set.
Practical limitations can be placed based on expected orbital behaviors from Reference 31, resulting in

rGEO ≤ p ≤ rGEO + 1000 km − 0.1 ≤ ℏ ≤ 0.1
−0.01 ≤ f ≤ 0.01 − 0.1 ≤ k ≤ 0.1
−0.01 ≤ g ≤ 0.01 0 ≤ t ≤ N days (44)

Limitations on the true longitude are defined as

L0 ≤ L ≤ N revs, (45)

where L0 = 0, nominally. For the sake of initializing all simulations in direct sunlight, the autumnal simulations begin
with an initial true longitude of L0 = 𝜋, as L0 = 0 initializations place the spacecraft in eclipse.

The boundary condition from Equation (43c) specifies the ideal orbital definitions for a geostationary satellite. The
resulting initial conditions in the MEOE set are

x0 = [ p0 f0 g0 ℏ0 k0 t0 ]T

= [ rGEO 0 0 0 0 0 ]T (46)

Terminal conditions must satisfy Equations (43d) and (43e), placing restrictions directly on COE variables a and e and
MEOE variables p, f , and g. To determine bounds on the acceptable terminal state values, Equation (43e) provides

pf ≥ (1 + ef )(rGEO + 250 km) (47)

based on rp ≜
p

1+e
, the radius of perigee expressed in terms of the semiparameter and eccentricity. From Equation (43d),

the minimum eccentricity of e= 0 provides the lower bound on pf , resulting in

rGEO + 250 km ≤ pf . (48)

Furthermore, the eccentricity bounds result in the following limits on f f and gf

−0.003 ≤ {ff , gf } ≤ 0.003. (49)
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Elements ℏ, k, and t, as well as L are free parameters, with no additional constraints on the initial or terminal
conditions. Ultimately, the estimate of the final state x̃f = [ p̃f f̃ f g̃f ℏ̃f k̃f t̃f ]T is selected such that

p̃f = 1.003 ⋅ (rGEO + 250 km) ℏ̃f = 0.1

f̃ f = 0.003 k̃f = 0

g̃f = 0 t̃f = 50 days (50)

where N is chosen to be 50, resulting in L̃f = 50 revs. These conditions define a candidate solution where rp, f = rGEO + 250
km and e= 0.003. The selection of N = 50 was made to deliberately underestimate the duration of the deorbit maneuvers
and allow the search algorithms detailed in Section 4 to perform across a broad solution space.

Recall from Section 3 that a locally optimal sail orientation exists with respect to some prescribed constraint or primer
vector 𝜻 whose orientation defines the response of the closed form, locally optimal solution. As the sail orientation seeks
to manipulate some combination of e and rp in minimal time, the primer vector can be reasonably restricted to the r̂-ŝ
plane (uw = 0). This further reduces the dimensionality of the unknown control variables, resulting in the updated path
constraint

u2
r + u2

s = 1 (51)

with individual control components restricted to

−1 ≤ {ur, us} ≤ 1. (52)

In this manner, the control can be reduced to a single vector component as ur =
√

1 − u2
s . It is noted, however, that

for the results that follow, individual components {ur, us} are approximated separately while satisfying Equation (51),
as this method generated more convergence capability in practice. Regardless of the selection of �̃� from u, Equation (43f)
will be satisfied automatically from the resulting { 𝛼⋆, 𝛽⋆ } combination as defined in the optimization basis in Figure 2.
Here, control estimates at L0 and Lf were arbitrarily defined to be

ũ0 = [ 1 0 ]T (53)

and

ũf = [ 0 1 ]T (54)

respectively.
To illustrate the feasibility of minimum time solar sailing deorbit, solutions to Equation (43) are sought for four test

scenarios. The dates for the test cases are selected so as to coincide with the solstices and equinoxes of year 2018. The
results of the non-eclipsed maneuvers are presented first which serve as initial guesses for the eclipsed maneuvering
solutions. Table 1 summarizes the optimized, non-eclipsed deorbit maneuver.

From these obtained solutions, eclipse terminator points are obtained via postprocessing and an initial mesh is formed
based on the anticipated solution structure. Bounds on all L(i)

f and intermediate L(i)
0 variables were set to ±2𝜋 of their

guessed values, with bounds on the associated t(i)f and intermediate t(i)0 times set to ±1 day of the supplied guess values.

T A B L E 1 Minimum time deorbit results for 1.00 m2

kg
system based on initial date

Initial date Total time (days) Total revolutions

Vernal equinox 89.1230 88.7810

Summer solstice 92.4514 92.1154

Autumnal equinox 88.8666 89.0322

Winter solstice 86.6965 86.3645

Average 89.2844 89.0755
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Event constraints are defined at the junctions of each phase using

x(i+1)
0 − x(i)

f = 0, (55a)

L(i+1)
0 − L(i)

f = 0, (55b)

to be enforced for all i ∈ { 1, 2, … , P − 1 }. To ensure each intermediate phase is bounded by an eclipsing event,
additional event constraints from Equation (33) are imposed at the boundaries as

𝜃
(i)
r − 𝜃

(i)
p = 0. (56)

During an eclipse phase, the path constraint

𝜃
(i)
r − 𝜃

(i)
p ≤ 0 (57)

must be satisfied while illuminated phases must satisfy

𝜃
(i)
p − 𝜃

(i)
r ≤ 0 (58)

along the trajectory.
Results from the eclipsed maneuvering cases are compiled in Table 2 with state and control parameters provided in

Figures 6 to 8 for the winter case. The best sail performance occurs near the winter solstice, with vernal and autum-
nal equinox solutions exhibiting similar performance characteristics, and the summer solstice solution requiring the
most time for deorbit. The coupling between perigee and eccentricity behaviors is shown in Figure 6. During the first
40 days of maneuvering, the eccentricity demonstrates a drastic rise to the retirement threshold value while the perigee
increases with small acceleration. Beyond this first 40 days, the secular trends in eccentricity and perigee remain mostly
constant with eccentricity steady about 0.003 and perigee linearly increasing to the threshold value. Analysis of the
solution structure for all deorbit control approximations indicates a primer vector profile which evolves according to
a repeated, tangent behavior as shown in Figure 7, where discontinuities in the control are apparent as a result of
eclipsing.

Consistent among all simulations is the presence of eclipse regions. Eclipse regions occur at the ends of the sum-
mer and winter initialized simulations, when the Earth is beginning to enter the equinoctial regions. Alternatively,
simulations initialized on the vernal and autumnal equinoxes begin their maneuvers in the middle the Earth’s eclipse
seasons. Observing the state evolution in Figure 8, a noticeable eclipsing impact exists, highlighting the sensitivity of
the state dynamics to the control, particularly in the semimajor axis and argument of perigee plots. Compared with the
non-eclipsed solutions, the minimum time deorbit solutions are characterized by nearly one additional day of maneu-
vering accompanied by nearly one additional revolution about the Earth. These results appear to be attributed directly
to the lack of SRP control while in eclipse, as the average time spent in shadow amounts to 21.03 hours for a deorbit
maneuver.

T A B L E 2 Results of minimum time deorbit maneuver with eclipsing for the 1 m2

kg
satellite system initialized at the start

of each season

Initial date Total time (days) Total revolutions Eclipse time (hours) Phase count

Vernal equinox 90.07 89.75 21.66 47

Summer solstice 93.30 92.93 21.20 45

Autumnal equinox 89.10 89.30 21.47 45

Winter solstice 87.83 87.47 19.79 44

Average 90.00 89.86 21.03 ∼ 45
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F I G U R E 6 Perigee and eccentricity histories for minimum
time deorbit with eclipsing from 2018 winter solstice
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F I G U R E 7 Zoomed optimal control solution for
minimum time deorbit with eclipsing from 2018 winter
solstice. Control discontinuities due to eclipsing deorbit
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5.2 Phasing solutions

To obtain a minimum time phasing solution, the maneuver is transcribed into the following optimal control problem

arg min
𝜃(t)

tf , (59a)

s.t.
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r̈ −
𝜇⊕

r3 r = ad, (59b)

[ a0 e0 i0 ] = [ (rGEO + 250 km) 0 0 ] , (59c)

af = rGEO, (59d)

ef ≤
200 km

rGEO
, (59e)

if ≤ 15◦, (59f)

|𝜙f | ≤ 1◦, (59g)

0 ≤ 𝜃(t) ≤ 𝜋

2
. (59h)

This optimal control problem seeks a minimum time solution which transfers a sail-craft from an arbitrary graveyard
orbit to a desired slot within the GEO belt. In an ECEF coordinate system, the spacecraft has longitude 𝜆 and the location
of the desired GEO slot has longitude 𝜆GEO. Using these angles, the phase error 𝜙 is introduced as

𝜙 = mod(𝜆 − 𝜆GEO, 2𝜋) − 𝜋, (60)

where mod() is the modulo operator and the subtraction of 𝜋 is used in calculations to bound 𝜙 ∈ [−𝜋, 𝜋]. This phase
error will be used here to determine the relative longitude between the sail-craft and the desired GEO belt location.
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F I G U R E 8 Classical orbital
element evolution as a result of eclipsing
considerations for 2018 winter solstice
deorbit
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T A B L E 3 Results of minimum time GEO slot rendezvous maneuver for January 1, 2018 start date

Initial 𝝓 Total time (days) Number of revolutions Eclipse time (hours) Number of phases

0◦ 8.08 8.10 0 1

90◦ 60.44 61.35 2.45 11

180◦ 50.79 51.43 0 1

270◦ 38.02 38.37 0 1

Abbreviation: GEO, geostationary orbits.

From Equation (59), dynamic constraints are included through Equation (59b) and are identical to Equation (43b).
Equality constraint 59c initializes the satellite orbit with minimum satisfactory deorbit conditions as defined by the IADC.
Constraints contained in Equations (59d) to (59f) define terminal conditions which must be satisfied simultaneously to
ensure placement of the spacecraft within the protected GEO region as defined by the IADC. With a geosynchronous
semimajor axis, the period of the final orbit is known to at least be equal to one sidereal day. The eccentricity constraint
on the final orbit ensures that the spacecraft is no more than 200 km from the GEO belt. Equation (59g) constrains the
final phase error, 𝜙f , to be less than one degree. Finally, Equation (59h) serves as an inequality constraint which ensures
the SRP force contributions act in a direction opposing the sun direction vector (ê⊙).

Four time-optimal GEO slot rendezvous scenarios are now addressed, initialized on January 1, 2018, from a perfectly
circular disposal orbit of radius r0 = rGEO + 250 km with initial phase errors of 𝜙0 = {0◦, 90◦, 180◦, 270◦}. These initial
phase error selections will prove the rendezvous capabilities of a solar sailing spacecraft regardless of the desired final
longitude about the Earth. Recall, the area to mass ratio is calculated assuming a 1200 m2 sail-craft of 100 kg mass,
resulting in a 12 m2

kg
system without payload.

For the minimum time rendezvous problem, the iterative search method is employed using N = 5 to, once again,
deliberately underestimate the duration of the true minimum time solution. As with the deorbit maneuvers, limitations
on the state were defined as indicated in Equation (44). The initial state for the rendezvous maneuver is defined as

x0 = [ p0 f0 g0 ℏ0 k0 t0 ]T

= [ (rGEO + 250 km) 0 0 0 0 0 ]T (61)

with a guess supplied on the final state such that

p̃f = rGEO − (200 km)2

rGEO
ℏ̃ = 0

f̃ = 200 km
rGEO

k̂ = 0

g̃ = 0 t̃f = N days (62)

This guess places the spacecraft just within the GEO region with zero inclination at some final time t̃f based on the
IADC definitions in Table B1. To restrict solutions to regions about the GEO belt, bounds on the state are set to

rGEO − 1000 km ≤ p ≤ rGEO + 1000 km − 0.1 ≤ ℏ ≤ 0.1
−0.05 ≤ f ≤ 0.05 − 0.1 ≤ k ≤ 0.1
−0.05 ≤ g ≤ 0.05 0 ≤ t ≤ tmax (63)

with true longitude bounds of integration L ∈ [0, N revs] for all four rendezvous cases. The control is structured similarly
as with the minimum time deorbit simulations, where control guesses are supplied at the terminator points of each
potential phase using Equations (53) and (54). As control solutions are again restricted to the r̂-ŝ plane, control bounds
are defined through Equation (52) while adhering to unity constraint Equation (51).

Results from the phasing scenarios are compiled in Table 3. The 90◦ initial phase error simulation is selected to
illustrate the orbit profile associated with the phasing maneuvers as displayed in Figures 9 and 10.
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initial longitude error. GEO, geostationary orbits

Figure 9 provides a rendezvous profile where the sail-craft lowers its semimajor axis below the GEO belt in order to
reduce the phasing difference between its current and desired longitudes then subsequently increases the semimajor axis
to the geosynchronous value once the sail-craft is appropriately phased. Here, rendezvous solutions are obtained in a
matter of months, as opposed to years as suggested in Reference 31. The longitude error, semimajor axis, and eccentricity
profiles exhibit nearly symmetric behaviors and are more quickly brought to within their desired thresholds as a result
of the significant increase in area to mass ratio compared with the deorbit scenarios. The inclination, however, appears
largely unaffected by the sail maneuvers, and varies slowly as a result of gravitational disturbances. From Reference 31,
it is known that the dynamics associated with changes in semimajor axis, eccentricity, and phase error are attributed to
applied forces in the r̂-ŝ plane while inclination variations are dependent upon ŵ contributions. This phenomenon is
made apparent here as the inclination behavior in Figure 9 shows very little response to sail inputs which have contribu-
tions only in the r̂-ŝ plane by design. As the TugSat concept is not expected to operate beyond the 15◦ limit defined by the
IADC, inclination ranges for the intended use-cases will have minimal impact on the phasing control solution.



KELLY and BEVILACQUA 23

Similar to the deorbit maneuvers, the primer vector control solution in Figure 10 displays repeating tangent-like behav-
ior, periodic with each completed revolution. By examination of the full control profile, the specific structure of the control
approximation is observed to trend such that control solutions at the beginning and end of the maneuver appear inverted
from one another. Physically, this is attributed to the sail first maneuvering to lower the spacecraft orbit, while reducing
the phase error, then subsequently increasing the spacecraft orbit to remain in the correct longitude at a geosynchronous
altitude.

For all test cases analyzed here, the optimal phasing method is implemented as an orbit lowering method in order
to catch up to the GEO slot of interest. Physically, the angular velocity of the spacecraft increases and the orbital period
decreases, resulting in a decrease in the phase error. Raising the orbit by a similar increment in altitude would not amount
to the same capability in phase error reduction as the mean motion of a spacecraft changes with respect to semimajor
axis by a factor of a− 3

2 . In addition, the rendezvous time required for the 0◦ phase error simulation is significantly shorter
as the penalty incurred by the spacecraft’s change in semimajor axis was not enough to bring the eccentricity above the
threshold defined by the IADC. For the { 90◦, 180◦, 270◦ } simulations which did exceed the IADC threshold during
maneuvering, the final rendezvous time seem to differ by approximately 10 days per 90◦ of initial phase error.

6 CONCLUSION

SRP is a feasible means of propulsion for applications near the GEO belt such as high-altitude orbital debris mitigation.
The orbit transfer problem serves as proof of concept that SRP is a meaningful propulsion source, with suggested use
with small satellites. The planar rephasing problem further validates SRP propulsion as a means of more precise orbital
maneuvering, allowing for sufficient terminal proximity to some desirable orbit before more traditional relative motion
dynamic and control strategies can be implemented. Furthermore, the resulting solution structure presents a novel blend
of underactuated, low-thrust control using quadrature techniques with abundant nonlinear path and event constraints.
The solutions to these problems may translate to cost-effective propulsion solutions for long-term, propellantless science
missions.

The TugSat mission concept is used to validate the effectiveness of the SRP propulsion methods through deorbit and
longitude targeting simulations designed to represent potential debris mitigation techniques in the GEO belt. Ultimately,
the TugSat maneuvers provide deorbit and subsequent rendezvous capability for durations on the order of months as
opposed to years as suggested in previous works. Notably, an entire deorbit and GEO belt rendezvous maneuver can be
accomplished using numerical optimization methods in less time than it would take for a single deorbit maneuver in
either Kelly et al31 or Kelly and Bevilacqua.32

Finally, the optimized primer vector and improved eclipse handling techniques introduced here are not restricted
to the solar sailing problem. Optimized primer vector orientations can be sought for any CLT orbit transfer problem,
offering an alternative means of trajectory design or initial guess generation. In addition, large time-scale, multirevolution
maneuvers subject to eclipsing can be addressed with more realistic state approximations, thus producing more accurate
minimum time solutions.
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APPENDIX A. CONSTANT PARAMETERS

Additional constants used in this research are defined as follows

𝜔⊕ = 2𝜋
tsid

, (A1)

rGEO = 3

√
𝜇⊕

𝜔2
⊕

, (A2)

P⊙ = TSI
c

, (A3)

where 𝜔⊕ is Earth’s angular velocity, rGEO is the characteristic radius of a GEO, and P⊙ is the ambient SRP at 1 AU.
Normalized units for distance (DU) and time (TU) are used for all numerical integration methods in this research and

are designed such that the gravitational parameter is unity. Defining the distance unit equal to rGEO, normalized units
can be obtained as

1 DU = 42 164.169637135361 km
1 TU = 1371.344092645860 sec

∴ 𝜇⊕ = 1 DU3

T

T A B L E A1 Physical parameters for
celestial bodies

Body Equatorial radius, R (km) Gravitational parameter, 𝝁
(

km3

s2

)

Earth ⊕ 6378.1366 398 600.436233

Moon ☾ 1737.4 4902.800076

Sun ⊙ 695 700 132 712 440 040.944000
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Parameter Value

Astronomical unit AU 149 597 870.700 km

Total solar irradiance TSI 1360.8 W
m2

Speed of light c 299 792.458 km
s

Solar day tsol 86 400 s

Sidereal day tsid 86 164.0905400 s

Gravitational coefficients C20 −1.08262617385222 10−3

C22 1.57461532572292 10−6

S22 −9.03872789196567 10−7

T A B L E A2 Physical constants

APPENDIX B. INTER-AGENCY SPACE DEBRIS COORDINATION COMMITTEE GUIDELINES

Tables below provided from References 11,12.

Orbit parameter Definition

Radius rGEO ± 200 km

Inclination ≤15◦

Abbreviation: GEO, geostationary orbits.

T A B L E B1 Protected GEO belt region

T A B L E B2 GEO region disposal guidelines

Orbit parameter Definition

Radius of perigee ≤ rGEO + 235 km +
(

1000 ⋅ CR ⋅ A
m

)
235 km: Sum of the upper altitude of the GEO protected region (200 km) and the maximum descent of a

reorbited spacecraft due to luni-solar and geopotential perturbations (35 km)

CR: Solar radiation pressure coefficient (1∼ 1.5)
A
m

: Aspect area to dry mass
(

m2

kg

)
Eccentricity ≤0.003

Abbreviation: GEO, geostationary orbits.


